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Abstract—For a hyperbolic equation with a Bessel operator in a rectangular domain, we study
the initial-boundary value problem in dependence of the numeric parameter that enters in the
operator. We represent the solution as the Fourier—Bessel series. Using the method of integral
identities, we prove the uniqueness of the problem solution. For proving the existence of the
solution, we use estimates of coefficients of the series and the system of eigenfunctions; we
establish them on the base of asymptotic formulas for the Bessel function and its zeros. We
state sufficient conditions with respect to the initial conditions that guarantee the convergence
of the constructed series in the class of regular solutions. We prove the theorem on the stability
of the solution to the stated problem.
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INTRODUCTION

One of the most important branches of the modern theory of partial differential equations is
the theory of boundary value problems for degenerate equations. This fact is due to multiple
applications of this theory in various domains of science and technology. The interest towards
degenerate equations is connected not only with the necessity of solving applied problems, but
also with the intensive development of the theory of mixed-type equations. The first boundary
problem for degenerate partial differential equations with variable coefficients was first studied
in the paper [1]. A special place in this theory belongs to the study of equations that contain
the Bessel differential operator. The study of this class of equations was commenced by Euler,
Poisson, and Darboux and then developed in the theory of generalized axis-symmetric potential
[2-7]. The importance of this class of equations is due to their use in applications to gas dynamics
and acoustics problems [4-6], to the theory of jets in hydrodynamics [8], to linearized Maxwell -
Einstein equations [9, 10], and to the elasticity and plasticity theory [11]. Equations of three main
classes that contain the Bessel operator, according to the terminology proposed in [12], are called B-
elliptic, B—hyperbolic, and B-parabolic. See the paper [13] for an extensive study of B-hyperbolic
equations, and see [14] for a rather complete survey of papers devoted to the study of boundary
value problems for elliptic equations with singular coefficients.

In a rectangular domain D = {(z,t) | 0 < x <[, 0 < t < T} in the coordinate plane Oxt, where
[,T > 0 are given real values, consider the following B-hyperbolic equation:

0
Opu(x,t) = uy — x_k% (xkux> =0, (1)
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66 SABITOV, ZAITSEVA

where 2% 82

~ (a:kum) is the Bessel operator, while k£ # 0 is a given real value.

Eq. (1) with £ = 1 occurs, for example, when studying free oscillations of a heavy homogeneous
hanging thread under the action of gravity, when studying radial gas vibrations in a fixed unbounded
cylindrical tube, and (with £ = 2) when studying small gas vibrations around its equilibrium position
inside an impermeable spherical shell (|15, pp. 176, 185, 191). The author of the paper [16] was
first to thoroughly study Cauchy and Cauchy-Goursat problems for Eq. (1) with all £ > 1 in the
characteristic triangle, but authors of [17] prove that with & < 0 these problems are ill-posed. The
paper [18] is dedicated to studying the Tricomi problem for a mixed-type equation, whose hyperbolic
part coincides with Eq. (1). In papers [19] and [20]| one considers Dirichlet and Keldysh problems
for a mixed-type equation with the Bessel operator in a rectangular domain, and in [21] and [22]
one studies the well-posedness of the initial-boundary value problems with an integral condition for
Eq. (1).

Since one can reduce the initial-boundary value problem with nonlocal integral condition of the
Samarskii-Tonkin type to mixed problems for Eq. (1), it is necessary to thoroughly study initial-
boundary value problems for Eq. (1). The author of this paper is not aware of such research.
Therefore in this paper we study the second initial-boundary value problem for the B-hyperbolic
equation (1) in a rectangular domain D with all k& # 0.

The problem. Find a function u(x,t) which satisfies the following conditions:

w(z,t) € C(D)NCAD), zFuy(z,t) € C(D), (2)
Opu(z,t) =0, (x,t) €D, (3)

u(z,0) = ¢(z), w(z,0)=v(), 0<z<l, (4)
up(l,t) =0, 0<t<T, (5)
ag&@%daﬂzﬁ 0<t<T, k<1, (6)
w0,6) =0, 0<t<T, k<-1, (7)

where p(x) and ¥ (x) are given sufficiently smooth functions such that ©'(1) = ¢'(1) = 0.

Problem (2)-(5) with k£ > 1 is a problem with incomplete boundary data. In the case of the
B-elliptic equation

Ut + ar_kﬁ (xkuz) =0
oz

with k£ > 1 in view of results obtained in papers [1, 23] in the class of bounded solutions, the segment

x = 0 of the domain boundary is free of the boundary condition. Moreover, in papers (|23|, [24],

p. 68) one proves that the derivative in the normal direction, i.e., u,, vanishes on the segment = = 0.

An analogous case also takes place for Eq. (1). Separating variables, one can easily prove that the

following equality is valid with k£ > 1:

u(0,8) =0, 0<t<T. (8)

Thus we have proved an additional property of the solution to problem (2)—(5) with £ > 1. In
what follows, we either use equality (8) in the proofs or not, depending of the behavior of the

derivative u, with x — 0. If this derivative remains bounded as x — 0, then condition (8) becomes
extra.

1. THE UNIQUENESS OF THE PROBLEM SOLUTION

Theorem 1. If problem (2)—(7) has a solution, then it is unique.
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Proof. Let u; and ug be two solutions to problem (2)—(7). Then their difference v = u; — ug satisfies
conditions (2), (3), (5), and (6) and homogeneous initial conditions

v(z,0) =0, w(z,0)=0, 0<z<I. (4p)
In the domain D consider the identity
10 0
v, Opo(z,t) = 371 { k (vf —HJ?C)] ~ (xkvtvx> =0.

Integrating this identity over the domain D, =DN{0<e <z <[, 0<t <7 <T}, where ¢
and 7 are arbitrary values in the mentioned intervals, we get the correlation

/ z" (vg + vf) dz + 2xFvevdt = I + In + Is + I, = 0. (9)
0D+

Let us calculate the following integrals separately:

l T
L = / zk (vg(:n, 0) + vf(w,O)) de =0, I,= 2/ Fou|  dt =0,
0 0

=l

dt.

Tr=¢

l T
I3 = —/ z* (vfc + vf) ‘ dr, Iy= —/ 2xkvxvt
0 t=t 0

Note that liI(I)1+ Iy = 0, because the product z¥v, tends to zero as  — 0, when k& > —1, and this
E—r

product is bounded with  — 0, when k£ < —1. Then formula (9) with € — 0 gives the correlation

!
/ zk (v?fl—vf)‘ dr = 0.
0 t=1

This means that v, = 0 and vy = 0 on the segment ¢ = 7, and due to the arbitrariness of 7 € (0,7

we conclude that v(x,t) = const in D. Then in view of zero initial conditions (4¢) we get the identity
v(x,t) = 0. Therefore, u; = us. O

2. THE EXISTENCE AND STABILITY OF THE PROBLEM SOLUTION WITH K >1

We seek for partial solutions to Eq. (1), which differ from zero in the domain D and satisfy
conditions (2) and (5), in the form u(x,t) = X ()T (t). Substituting this function in Eq. (1) and
condition (5) and separating variables, we get the following spectral problem with respect to the
function X (z):

k
X" (z) + ;X’(az) +AX(2) =0, 0<z<lI, (10)
| X(0)] < +oo0,  X'(1) = 0; (11)
here A2 is the separation constant.

Multiplying Eq. (10) by 22 and changing variables as follows:

X(@) =22 2(0), €=xr, (12)
we reduce Eq. (10) to the Bessel equation
Z
2d°Z 2 _ 2, (1
whose general solution takes the form
Z(E) :PIJV(£)+P2YV(£); (13)
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68 SABITOV, ZAITSEVA
here J,(§) and Y, (&) are Bessel functions of the first and second kinds, respectively, of the order

v = (k—1)/2, while P; and P, are arbitrary constant values.
In view of formulas (12) and (13) the general solution to Eq. (10) with & > 1 obeys the formula

X(z)=Pa'z s (Aa) + Pgm%Y%()\:p). (14)

In order to make function (14) satisfy the first condition in (11), we put P, =0 and P; =1,
(since eigenfunctions are defined accurate to a constant factor). Then the solution takes the form

X(z) = x%J%(m). (15)

Note that function (15) satisfies condition (8). Then by substituting function (15) in the second
condition in (11), we get the correlation

o =0,
X = (7 Ju(m))’

2 x

(16)

=l 2
whence it follows that
Jep (n) =0, p=Al. (17)

In the theory of Bessel functions, it is known (|25], p. 530) that the function J,(§) with v > —1
has a countable set of real zeros. Then by denoting the nth root of Eq. (17) by wu, with given k& we
find eigenvalues A, = py, /1 of problem (10), (11).

According to ([26], p.317), zeros of Eq. (17) with large n obey the asymptotic formula

1
un:)\nl:wn—kgk—kO(E). (18)

Note that with Ay = 0 the spectral problem (10), (11) has an eigenfunction, which identically
equals a constant value; we assume that it equals one. Therefore, the system of eigenfunctions of
problem (10), (11) takes the form

Xo(z) =1, X =0, (19)

X, (z) :xl;fJﬂ <Nlﬁ> :x%J%(Anaz), n e N; (20)

2
here eigenvalues A, are zeros of Eq. (17).

Note that the system of eigenfunctions (19) and (20) of problem (10), (11) is orthogonal in the

space Ls[0,1] with the weight ¥ and, moreover, it forms a complete system in this space ([27],
p. 343).
In further calculations we use the following orthonormalized system of functions:

1 -
Xp(z) = ———X,(z), n=0,1,2,..., (21)
[ Xn ()]
where
~ l ~
%)l = [ ola) Ria)da, pla) =" 22)
According to [28], consider functions

l
up(t) = / u(z, )k X () de, n=0,1,2,..., (23)

0

where X, (z) obey formula (21).
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Basing on (23), we introduce auxiliary functions
(24)

l—e
Upe(t) = / u(z, )2 X, (z)de, n=1,2,...,
£

where € > 0 is a sufficiently small value.
Twice differentiating equality (24) in the variable ¢ with 0 < ¢t < T, taking into account Eq. (1),

we get the correlation

l—e l—e
") = / ug(z, ) 2" X, () de = / <um + g%) 2* X, () dzx
€ €

un,{-:
l—e o l—e l—e
/ (2Fug) X (2) do = 2Fu, X (2)|  — / eFuy X () de. (25)
€ 15

)

ox

Formula (24) in view of Eq. (10) gives the correlation

U (1) = _%2 7€u(x,t)xk [X;;(x) + gx,g(x)} do = ‘%g /_ u(:n,t)% (27 () do =

n
3

whence we deduce that

£

l—e
/ tFuy X1 () de = Ny, o (t) + u(z, t) 2" X (x)
&€

l—e
. (26)

)

Substituting the latter equality in (25), we get the formula
=e 1 kot
— Aune(t) —u(z, t)x" X (z)

u',i@(t) = :Ekuan(x)
In view of correlation (2) functions u(z,t) and 2*u,(x,t) are continuous in D. Then by proceeding

to the limit in formula (26) as ¢ — 0, taking into account boundary conditions (5) and (11), we get

£

the following ordinary differential equation with respect to functions w, (t):
ull (t) + N2u, () =0, te(0,T).
Its general solution takes the form
Up(t) = ap cos Apt + by, sin A, t, (27)
where a, and b, are arbitrary constant values, which have to be defined. To this end, we subject

functions (23) to initial conditions (4); we get correlations
l l
un(0) = / o(2)a* X, (x) dx = ¢,, ul(0) = / V(x)2* X, () de = 1y,
0 0

(28)

Formulas (27) and (28) give correlations a, = ¢y, by, = ¥ /Ay. Substituting the calculated values

in (27), we find the final representation of functions
Un(t) = pp cos At + % sin A, t. (29)

n

(30)

Analogously we find
uO(t) = o + Q/)Ota
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70 SABITOV, ZAITSEVA
l l
up(0) = Ve 1/ o(z)zlide = o,  uh(0) = I VE+ 1/ Y(x)xkde = 1. (31)
0 0

Let ¢(z) =1(x) =0, then formulas (28) and (31) give the correlation ¢, =1, =0, while
formulas (29) and (30) imply that u,(t) =0 with all n € Ny = NU{0}. Then formula (23) with

l
any t € [0,7] gives the equality / u(x,t)z" X, (z) dz = 0. Hence in view of the completeness of
0

system (21) in the space L»[0,1] with the weight #* we conclude that u(x,t) = 0 almost everywhere
on the segment [0, 1] with any ¢ € [0,7]. Since according to formula (2), the function u(z,t) € C(D),
we conclude that u(z,t) =0 in D. Thus, we have proved the uniqueness of the solution to

problem (2)-(5), taking into account the completeness of the system of eigenfunctions of the scalar
spectral problem.

On the base of obtained partial solutions we find a solution to problem (2)-(5) as the Fourier—
Bessel series, namely,

u($7 t) = UO(t)XO(x) + Z un(t)Xn($)a (32)
n=1

here functions u,(t) obey formula (29), X, (z), n =0,1,2,..., do formula (21), and the function
ug(t) does formula (30).

Together with series (32), let us consider the following series:

Ut(x’ t) = ¢0X0($) + Z u;w(t)Xn(x)v uw($7 t) = Z un(t)X;w($)7 (33)
n=1 n=1

uy(x,t) = Zu;fb(t)Xn(x), Upg (T, 1) = Zun(t)X;{(x) (34)
n=1 n=1

Let us prove the uniform convergence of series (32)—(34) in the domain D, provided that functions
o(z) and () satisfy certain additional conditions.
Formulas (29) and (18) imply the following lemma.

Lemma 1. For sufficiently large n and any t € [0,T], bounds
[un(t)] < C1 (len] + [¥nl/n) (35)

|up, (8)] < Ca (nleon| + [¥nl)

Jun (8)] < Cs (n?|on] + 1))

are valid; hereinafter C; are positive constant values.

Lemma 2 ([22]). For sufficiently large n and with all x € [0,1] the following bounds are valid:
[ Xn(2)] < Ca, X5 (2)] < Csn, | X (2)] < Con?.

According to lemmas 1 and 2, with any (z,t) € D series (32) is majorized by the series

[e.e]

C?Z(|90n| + |¢n|/n)v (36)

n=1
while series (33) and (34) are majorized, respectively, by series

o0

CBZ(”|‘/711| + |¢n|)v (37)

n=1
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o

Co Y (n*lpn| +nlthnl) - (38)

n=1

Let us study the convergence of series (36)—(38).

Lemma 3 ([22]). If a function ¢(x) € C?[0,1] and the derivative ©"(x) exists and has a finite
variation on [0,1], a function (z) € C1[0,1] and the derivative )" (x) exists and has a finite variation
on [0,1], and

then
lon| < Cron™,  [¥hn] < C1in ™3, (39)

According to Lemma, 3, series (36)—(38) are majorized by the numeric series
o
Cha Z n?, (40)
n=1

consequently, series (32)—(34) converge uniformly in the closed domain D.

Therefore, the function wu(z,t) defined by series (32) satisfies all conditions of problem (2)—(5).
Thus, the next theorem is proved.

Theorem 2. If functions p(z) and (x) satisfy conditions of Lemma 3, then problem (2)—(5) has
a unique solution u(x,t); it is defined by series (32) and satisfies the inclusion u(z,t) € C*(D).

Theorem 3. The solution to problem (2)—(5) satisfies the bound
[u(z, )] < Crs(lle(@) + ()], (41)

where ()2 = [3 pla)| () 2dz, plz) = *.

Proof. In view of formula (35), correlation (32) implies that

S L _ [ av - _
||| —/0 xu(z,t) de = ; x Zun(t)Xn(x) Z U (8) X () dx =
n=0 m=0

=> " ud(t) = ud(t) + > ud(t) < (o + vot)* + CF Y <‘¢"‘ N |¢n|> <
n=0

- 1
< Coteh +u) + 208 S (lonl? + gl <

n=1

< ol +42) + 207 (z E zwz) _ Cus (ol +191?). O

n=1 n=1

3. THE EXISTENCE AND STABILITY OF THE PROBLEM SOLUTION WITH
-1<k<l1 k#0

Separating variables in Eq. (1), we get the following spectral problem with respect to the function
X(x):

k

X" (z) + ;X’(a;) + XX (2) =0, 0<z<l, (42)
Jim " X' (x) =0, X'(I)=0. (43)
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72 SABITOV, ZAITSEVA
Let us define the general solution to Eq. (42) with |k| < 1, k # 0, by the formula
X(z) = Pz Jik (Az) + Pa'z Jr—1 (Az); (44)
2 2

since the value % is not integer, J1-x (Az) and Jx—1 (Az) are linearly independent solutions to the
2 2

Bessel equation.
This formula allows us to calculate

X'(z) = PAz' 2 J_ e (Az) — P\ 2 Jews (A2).
2 2

Since z¥X'(z) = O(P; + Pya**1) as x — 0, by putting P; = 0 we make function (44) satisfy the
first condition in (43). Put P, = 1.
Then the solution to Eq. (42) satisfying the first condition in (43) obeys the equality;

X(x) = x%Jk;l (A\zx),
2

it formally coincides with (15), but here —1 < k < 1 and k # 0.
Let us now require that this function should satisfy the second boundary condition in (43),
namely,
dX (z)
dx

= (x% J% ()\x))/

= N e (M) =0, (45)
2

whence it follows that
Ao =0,

J% (n) =0, pn = Al (46)
Therefore, the system of eigenfunctions of problem (42), (43) takes the form

XO($) =1, X=0,

Xn(x) :xl;szﬂ </‘lﬂ> = x%J%(Anaz), n e N,

2
where eigenvalues \,, are zeros of Eq. (46).
Analogously to the case when k > 1, we get the following assertions.

Theorem 4. If functions p(x) and (x) satisfy conditions of Lemma 3, then problem (2)—(6) ha
a unique solution u(x,t) which is defined by series (32) and satisfies the inclusion u(z,t) € C?(D).

Theorem 5. The solution to problem (2)-(6) satisfies bound (41).

4. THE EXISTENCE AND STABILITY OF THE PROBLEM SOLUTION WITH k < -1

Let us seek for partial solutions to Eq. (1) which differ from zero in the domain D and satisfy
conditions (2), (5), and (7) in the form of the product w(z,t) = X(x)T'(t). Substituting this
expression in Eq. (1) and conditions (5) and (7), we state the following problem with respect
to the unknown function X (z):

k

X" (x) + ;X’($) +X2X(z)=0, 0O<z<lI, (47)
X(0)=0, X'(I)=0. (48)
In view of correlation (13) the general solution to Eq. (47) with & < —1 obeys the formula
X(z) = Pz T Jix(Ax) + P T Yig (\z). (49)
2 2

RUSSIAN MATHEMATICS Vol. 63 No. 10 2019



THE SECOND INITIAL-BOUNDARY VALUE PROBLEM 73

Calculate

X'(x) = Pl)\aj%,]_%()\:n) + PQ)\l'l%kY_%()\ZE).

Since with 2 — 0 the function X(x) = O(Piz'~* + P;) = O(1), while its derivative X'(z) =
O(Pix% + Pyx) = O(x), for fulfilling the first condition in (48), one should choose values of
constants in formula (49) as follows: P; =1 and P» =0. As a result, this solution takes the
form

X(@)=a27 ik (). (50)

iubst(i)tuting function (50) in the second boundary condition in formula (48), we get correlations
0=70,

J_%(,un) =0, fpn =Ml (51)

However with \g = 0 the spectral problem (47), (48) has only the trivial solution, consequently, it is

not an eigenfunction. Therefore, the system of eigenfunctions of problem (47), (48) takes the form

X, (z) :xl;sz% </‘lﬂ> :xl;sz%()\na;), n e N, (52)

where eigenvalues \,, are zeros of Eq. (51). The system of functions (52), being a solution to the
Sturm-Liouville problem for Eq. (47) with boundary conditions (48), is orthogonal and complete

in the space L»[0,1] with the weight 2*. Note also that according to ([26], p.317), zeros of Eq. (51)
with large n satisfy the asymptotic formula

1
un:)\nl:wn—gk—%—i—O(E). (53)

In what follows, we consider the orthonormalized system of eigenfunctions
Xp(x) = Xp(@)/|Xnl, neN, (54)
where the norm obeys formula (22).

Taking into account formula (54), we introduce functions
l
Un (1) :/ w(z, )k X () de, n=1,2,.... (55)
0

Analogously to the solution of the problem with & > 1, taking into account Eqs. (1) and (47),
we get the equality
l—e l—e

— X e(t) - ule, )t X (@) (56)

3 3

u _(t) = 2Fu, X, ()

n,e

Formula (52) implies that X, () = O(z'~*) and X! (z) = O(x™*) as  — 0. Proceeding to the
limit in formula (56) as ¢ — 0, in view of conditions (2), (5), (7), and (48) we get the correlation

ul (1) + N2u, () =0, te(0,T). (57)

Furthermore, assuming that function (55) satisfies initial conditions (4), we get equalities (28). The
unique solution to problem (57), (28) obeys formula (29).

Basing on the calculated partial solutions (54) and (29), let us formally write the solution to
problem (2)—(5), (7) as the Fourier-Bessel series

w(@,t) =D un(t)Xn(@). (58)
n=1
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Coeflicients of this series satisfy bounds established in Lemmas 1 and 2, consequently, with any
(x,t) € D series (58) and those obtained from it by termwise differentiation of the first and second
orders are majorized by the series

Ci6 Y, (*lpn] +nltnl) - (59)
n=1

Lemma 4. Assume that a function ¢(x) € C%[0,1], the derivative ¢"(x) exists and has a finite
variation on [0,1], there exists a function v(z) € C1[0,1], the derivative ¥" (x) ewists and has a finite
variation on [0,1], and

©(0) = 1(0) = p(l) = ¥(1) = ¢'(0) = ¢'(0) = &' (1) = ¢'(I) = ¢"(0) = ¢"(I) = 0,

then estimates (39) are valid.

The proof is analogous to that proposed in the paper [29].
According to Lemma 4, series (59) is majorized by the converging numeric series (40),
consequently, the sum of series (58) belongs to the class C2(D). The constructed function u(z,t)

defined by series (58) satisfies all conditions of problem (2)-(5), (7). Therefore, the following theorem
is proved.

Theorem 6. If functions p(x) and ¥(x) satisfy conditions of Lemma 4, then there exists a unique
solution u(z,t) to problem (2)—(5), (7); it is defined by series (58), while u(z,t) € C?*(D).

Theorem 7. The solution to problem (2)-(5), (7) satisfies the bound

[ull < Crr(llell + 1), (60)
where the constant Ch7 is independent of functions ¢(x) and ¥ (x).

The proof is similar to the proof of Theorem 3.
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