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Abstract—We research an initial-boundary value problem with integral condition of the second kind
in a rectangular domain for a hyperbolic equation with singular coefficient. The solution is obtained
in the form of the Fourier–Bessel series. There are proved theorems on uniqueness, existence and
stability of the solution. In order to prove the existence of solution of the non-local problem we obtain
sufficient conditions for the convergence of the series in terms of the initial values.
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1. INTRODUCTION

Let l, T > 0 be given real values, D = {(x, t)| 0 < x < l, 0 < t < T} is rectangular domain. We
consider hyperbolic equation

�Bu(x, t) ≡ utt − uxx −
k

x
ux = 0, (1)

where k �= 0 is given real number. Equation (1) belongs to the class of degenerated hyperbolic equations.
Investigation of boundary value problems for that equations is of importance for contemporary theory
of differential equations with partial derivatives. The problems have numerous applications in gas
dynamics, magnet hydrodynamics, envelope theory and other fields of science and technique.

The Cauchy and Cauchy–Goursat problems for equation (1) were studied first in the work [1] for
all k ≥ 1 in characteristic triangle. As shown in the paper [2], the problems are not well-posed for
k < 0. And the papers [3, 4] contain studies of the problems for equations of mixed type such that
their hyperbolic parts coincide with equation (1). The non-local problems for equation (1) with integral
conditions of the first kind and second kind are studied in the papers [5–7].

In the present paper we investigate the following initial-boundary value problem for equation (1)
in domain D with non-local integral condition of the second kind for k ≤ −1. We put in the further
consideration without loss of generality l = 1, because equation (1) is invariant with regard to change of
variables x1 = x/l, y1 = y/l.

Statement of the problem. It is necessary to find the function u(x, t) satisfying the following
restrictions:

u(x, t) ∈ C1(D) ∩C2(D), (2)
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1420 SABITOV, ZAITSEVA

�Bu(x, t) ≡ 0, (x, t) ∈ D, (3)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), 0 ≤ x ≤ 1, (4)

u(0, t) = 0, 0 ≤ t ≤ T, (5)

(
xk−1u(x, t)

)′

x

∣∣∣
x=1

+

1∫

0

u(x, t)x dx = 0, 0 ≤ t ≤ T, (6)

where ϕ(x), ψ(x) are given sufficiently smooth functions satisfying matching conditions

(
xk−1ϕ(x)

)′

x

∣∣∣
x=1

+

1∫

0

ϕ(x)x dx = 0,
(
xk−1ψ(x)

)′

x

∣∣∣
x=1

+

1∫

0

ψ(x)x dx = 0. (7)

The problems for differential equations, where instead of classical initial and boundary value con-
ditions are given conditions connecting meanings of desired functions or its derivatives at inner and
boundary points of domains, arise in numerous branches of sciences: physics, chemistry, biology. In
particular, the problems with integral conditions are encountered in mathematical modeling of the
thermal conductivity, the transfer of moisture in capillary-porous media, processes in turbulent plasma.
The detailed study of boundary value problems with integral conditions for hyperbolic equations can
be found in the works [8–10]. The papers [11–13] contain investigations of problems with integral
conditions for equations with singular coefficient.

The condition (6) contains besides an integral operator the boundary meanings of derivative of the
desired function. According [8], we refer this integral condition to the second kind.

In what follows we apply the spectral analysis in proving of uniqueness, existence and stability of the
solution. It is built explicitly as the Fourier–Bessel series. We check its convergence in the class of
regular solutions.

2. UNIQUENESS

We seek particular solutions of equation (1), which do not vanish in domain D and satisfy restric-
tions (2), (5) and (6) in the form of products u(x, t) = X(x)T (t). We substitute the product into
equation (1), conditions (5) and (6), and obtain the following spectral problem for unknown function
X(x):

X ′′(x) +
k

x
X ′(x) + λ2X(x) = 0, 0 < x < 1, (8)

X(0) = 0, (9)

(
xk−1X(x)

)′

x

∣∣∣
x=1

+

1∫

0

X(x)x dx = 0, (10)

here λ2 is the separation constant. By virtue of equation (8) and condition (9) we obtain from integral
condition (10):

(
xk−1X(x)

)′

x

∣∣∣
x=1

+

1∫

0

X(x)x dx = (k − 1)X(1) +X ′(1)− 1

λ2

1∫

0

[
xX ′′(x) + kX ′(x)

]
dx

= (k − 1)X(1) +X ′(1) − 1

λ2

1∫

0

∂

∂x

[
xX ′(x) + (k − 1)X(x)

]
dx
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= (k − 1)X(1) +X ′(1) − 1

λ2

[
xX ′(x) + (k − 1)X(x)

]∣∣∣
1

0
=

(
1− 1

λ2

)
(X ′(1) + (k − 1)X(1)) = 0.

We obtain λ2 = 1 or X ′(1) + (k − 1)X(1) = 0. Hence, the non-local condition (10) is equivalent to
two local conditions. Apparently, this is inherent only in the equation (1).

The general solution of equation (8) for k ≤ −1 is determined by formula

X̃(x) = K1x
νJν(λx) +K2x

νYν(λx),

where Jν(ξ), Yν(ξ) are Bessel functions of the first and the second kinds of order ν = (1− k)/2 relatively,
and K1, K2 are arbitrary constants. The common decision for K1 = 1, K2 = 0 satisfies condition (9).
As a result, we obtain X̃(x) = xνJν(λx), ν = (1− k)/2.

Then eigenvalue λ2
0 = 1 corresponds to eigenfunction X0(x) = xνJν(λ0x). We substitute this

decision into condition of the third kind. And deduce the following equation for the eigenvalues of
problem (8)–(10):

λJ ′
ν(λ)− νJν(λ) = 0. (11)

By virtue of formula zJ ′
ν(z)− νJν(z) = −zJν+1(z) see [14] (p. 305) equation (11) is equivalent to the

following one: J 3−k
2
(λ) = 0. According [15] (p. 317), the zeros of this equation have asymptotic formula

λn = πn+ π/2− kπ/4 +O(1/n) (12)

for sufficiently large n. Thus, the problem (8)–(10) has the following system of eigenfunctions

X̃0(x) = x
1−k
2 J 1−k

2
(λ0x), X̃n(x) = x

1−k
2 J 1−k

2
(λnx), n ∈ N,

and its eigenvalues λn are zeros of equation (11). The obtained system of eigenfunctions is not
orthogonal on segment [0, 1], because the eigenvalue λ0 is not zero of Bessel function J 3−k

2
(λx), i.e., it

is not root of equation (11). But the subsystem of functions X̃n(x), n ∈ N, is orthogonal and complete
in the space L2[0, 1] with weight xk as system of eigenfunctions of spectral problem (8), (9) and (11).
The orthogonality follows from equality

1∫

0

xkX̃n(x)X̃m(x)dx =

1∫

0

xJ 1−k
2
(λnx)J 1−k

2
(λmx)dx = 0,

since λn and λm are the zeros of equation (11) and ν = (1− k)/2 > −1. This system is complete in
the space L2[0, 1] by virtue of the Steklov theorem [14] (p. 314). Therefore, in what follows we consider
the orthonormalized system of eigenfunctions X̃n(x), n = 1, 2, . . .. The equations X̃n(x) enable us to
consider below the following normalized orthogonal system of eigenfunctions

Xn(x) =
X̃n(x)

||X̃n||L2,ρ(0,1)

, (13)

the norm is defined by formula

||X̃n||2L2,ρ(0,1)
=

1∫

0

ρ(x)X̃2
n(x)dx, ρ(x) = xk.

According [16], we introduce functions

un(t) =

1∫

0

u(x, t)xkXn(x)dx, n = 1, 2, . . . , (14)
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and auxiliary functions

un,ε(t) =

1−ε∫

ε

u(x, t)xkXn(x)dx, n = 1, 2, . . . ,

where ε > 0 is sufficiently small. We differentiate this equality twice with regard to variable t, 0 < t < T ,
and obtain by means of equation (1)

u′′n,ε(t) =

1−ε∫

ε

utt(x, t)x
kXn(x)dx =

1−ε∫

ε

(
uxx +

k

x
ux

)
xkXn(x)dx

=

1−ε∫

ε

∂

∂x
(xkux)Xn(x)dx = xkuxXn(x)

∣∣∣
1−ε

ε
−

1−ε∫

ε

xkuxX
′
n(x)dx.

In addition, we obtain from this equality by virtue of equation (8):
1−ε∫

ε

xkuxX
′
n(x)dx = λ2

nun,ε(t) + u(x, t)xkX ′
n(x)

∣∣∣
1−ε

ε
.

The last two equalities imply

u′′n,ε(t) = xkuxXn(x)
∣∣∣
1−ε

ε
− λ2

nun,ε(t)− u(x, t)xkX ′
n(x)

∣∣∣
1−ε

ε
.

It follows from formula X̃n(x) that Xn(x) = O(x1−k) and X ′
n(x) = O(x−k) for x → 0. Then we pass in

the last equality to limit for ε → 0, and obtain by means of conditions (2), (5), (9), (11):

u′′n(t) + λ2
nun(t) = [ux(1, t) + (k − 1)u(1, t)]Xn(1), t ∈ (0, T ). (15)

Then we multiply equation (1) by x and integrate the product for fixed t ∈ (0, T ) with regard to variable
x from ε to 1− ε. As a result, we obtain

d2

dt2

1−ε∫

ε

u(x, t)x dx− [xux + (k − 1)u]
∣∣∣
1−ε

ε
= 0.

In the obtained equality we pass to the limit for ε → 0, and by virtue of conditions (2), (5), (6) conclude
that

− d2

dt2

[(
xk−1u(x, t)

)′

x

∣∣∣∣
x=l

]
− [lux(l, t) + (k − 1)u(l, t)] = 0.

Consequently,

d2

dt2
[ux(1, t) + (k − 1)u(1, t)] + [ux(1, t) + (k − 1)u(1, t)] = 0.

We denote Z(t) = ux(1, t) + (k − 1)u(1, t), and obtain ordinary differential equation Z ′′(t) + Z(t) = 0.
Its general solution is

Z(t) = P1 cos t+ P2 sin t,

where P1 and P2 are arbitrary constants. Consequently,

ux(1, t) + (k − 1)u(1, t) = P1 cos t+ P2 sin t.

The initial conditions (4) enable us to find meanings of the constants from the last equality:

P1 = ϕ′(1) + (k − 1)ϕ(1), P2 = ψ′(1) + (k − 1)ψ(1).

Thus,

ux(1, t) + (k − 1)u(1, t) =
[
ϕ′(1) + (k − 1)ϕ(1)

]
cos t+

[
ψ′(1) + (k − 1)ψ(1)

]
sin t.
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We substitute the last equality into (15), and obtain the following equation for determination of functions
un(t): u′′n(t) + λ2

nun(t) = P3 cos t+ P4 sin t, t ∈ (0, T ), where

P3 = P1Xn(1) = (ϕ′(1) + (k − 1)ϕ(1))J 1−k
2
(λn), P4 = P2Xn(1) = (ψ′(1) + (k − 1)ψ(1))J 1−k

2
(λn).

The general solution of this ordinary equation is

un(t) = an cos λnt+ bn sinλnt+ vn(t), (16)

where an and bn are arbitrary constants, vn(t) is determined by formula

vn(t) =
1

λ2
n − 1

[
(ϕ′(1) + (k − 1)ϕ(1)) cos t+ (ψ′(1) + (k − 1)ψ(1)) sin t

]
J 1−k

2
(λn).

Note that λ2
n �= 1 for any n ∈ N, because ±1 are not zeros of equation (11).

In order to determine the coefficients an and bn in (14) we use the initial conditions (4):

un(0) =

1∫

0

ϕ(x)xkXn(x)dx = ϕn, u′n(0) =

1∫

0

ψ(x)xkXn(x)dx = ψn.

As a result, we obtain the system

an = ϕn − 1

λ2
n − 1

(ϕ′(1) + (k − 1)ϕ(1))J 1−k
2
(λn),

bn =
ψn

λn
− 1

(λ2
n − 1)λn

(ψ′(1) + (k − 1)ψ(1))J 1−k
2
(λn).

We substitute these meanings of constants an and bn into (16), and find finally

un(t) = ϕn cos λnt+
ψn

λn
sinλnt+

1

λ2
n − 1

[
ϕ′(1) + (k − 1)ϕ(1)

]
J 1−k

2
(λn) (cos t− cos λnt)

+
1

(λ2
n − 1)λn

[
ψ′(1) + (k − 1)ψ(1)

]
J 1−k

2
(λn)

(
sin t− 1

λn
sinλnt

)
. (17)

Theorem 1. If the problem (2)–(7) has a solution, then it is unique.
Proof. Let u(x, t) be a solution of homogeneous problem (2)–(7), where ϕ(x) ≡ 0 and ψ(x) ≡ 0.

We multiply the equation (1) by x, and integrate it for fixed t ∈ (0, T ) in variable x from ε up to 1− ε. As
a result, we obtain

1−ε∫

ε

uttx dx−
1−ε∫

ε

(xuxx + kux)dx = 0 or
d2

dt2

1−ε∫

ε

u(x, t)x dx−
1−ε∫

ε

∂

∂x
(xux + (k − 1)u)dx = 0.

We have from this

d2

dt2

1−ε∫

ε

u(x, t)xdx− (xux + (k − 1)u)

∣∣∣∣∣
1−ε

ε

= 0.

By virtue of conditions (2) and (5) we are able to pass in the last equality to the limit for ε → 0, and obtain

d2

dt2

1−ε∫

ε

u(x, t)x dx− (ux(1, t) + (k − 1)u(1, t)) = 0, 0 ≤ t ≤ T.

We find from the integral condition (6):

ux(1, t) + (k − 1)u(1, t) = −
1∫

0

u(x, t)x dx.
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The substitution of this expression into previous equality leads to ordinary differential equation

d2

dt2

1∫

0

u(x, t)x dx+

1∫

0

u(x, t)x dx = 0,

whose general solution is
∫ 1
0 u(x, t)x dx = M1 cos t+M2 sin t, where M1 and M2 are arbitrary con-

stants. We have from this by means of null initial conditions
∫ 1
0 u(x, t)x dx = 0.

Then from condition (6) we obtain ux(1, t) + (k− 1)u(1, t) = 0, 0 ≤ t ≤ T . Thus, for function u(x, t)
we obtain homogeneous boundary condition

u(0, t) = 0, ux(1, t) + (k − 1)u(1, t) = 0, 0 ≤ t ≤ T.

This problem is studied above by means of method of separation of variables, i.e., we have constructed
the system of eigenvalues (13), and by means of this system and the introduced functions (14) we find
their explicit form (17). By assumptions we have ϕ(x) = ψ(x) ≡ 0, then imply that ϕn = ψn ≡ 0 for
all n ∈ N. We deduce from (17) that un(t) = 0 for all n ∈ N. Then for any t ∈ [0, T ] relation (14)
implies that

∫ 1
0 u(x, t)xkXn(x)dx = 0. System (13) is complete in the space L2[0, 1] with weight xk;

hence, u(x, t) = 0 almost everywhere on segment [0, 1] for any t ∈ [0, T ]. According (2), we obtain
u(x, t) ∈ C(D). Consequently, u(x, t) ≡ 0 in D. �

3. EXISTENCE

The obtained above particular solutions (13) and (17) enable us to write a solution of problem (2)–(7)
as the series

u(x, t) =

∞∑
n=1

un(t)Xn(x). (18)

We assume that its term-by-term differentiation is possible, and consider the following series:

ut(x, t) =

∞∑
n=1

u′n(t)Xn(x), ux(x, t) =

∞∑
n=1

un(t)X
′
n(x),

utt(x, t) =

∞∑
n=1

u′′n(t)Xn(x), uxx(x, t) =

∞∑
n=1

un(t)X
′′
n(x).

Let us show that under certain restrictions on functions ϕ(x) and ψ(x) (see the initial conditions (4))
these series uniformly converge in closed domain D.

Lemma 1. For sufficiently large n and any t ∈ [0, T ] there are valid bounds:

|un(t)| ≤ C1

(
|ϕn|+

|ψn|
n

)
+

|ϕ′(1)|
n3/2

+
|ψ′(1)|
n3/2

+
|ϕ(1)|
n3/2

+
|ψ(1)|
n3/2

,

|u′n(t)| ≤ C2 (n|ϕn|+ |ψn|) +
|ϕ′(1)|
n1/2

+
|ψ′(1)|
n3/2

+
|ϕ(1)|
n1/2

+
|ψ(1)|
n3/2

,

|u′′n(t)| ≤ C3

(
n2|ϕn|+ n|ψn|

)
+ n1/2|ϕ′(1)| + |ψ′(1)|

n1/2
+ n1/2|ϕ(1)| + |ψ(1)|

n1/2
.

Here and in what follows Ci stands for a positive constant.

Proof. Proof of the bounds follows from formulas (17) and (12). �

Lemma 2. For sufficiently large n and any x ∈ [0, 1] there are valid bounds:

|Xn(x)| ≤ C4, |X ′
n(x)| ≤ C5n, |X ′′

n(x)| ≤ C6n
2.
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Proof. As known, X̃n(x) = x
1−k
2 J 1−k

2
(λnx) ∈ C2[0, 1], and for large ξ there is valid asymptotical

bound Jν(ξ) = O
(
ξ−1/2

)
. We find

||X̃n||2L2,ρ(0,1)
=

1∫

0

xkX̃2
n(λnx)dx =

1∫

0

xJ2
1−k
2

(λnx)dx =
1

2
J2

3−k
2

(λn).

The relations (13) imply the first bound from this lemma. We evaluate derivatives of function X̃n(x):

X̃ ′
n(x) = λnx

1−k
2 J− k+1

2
(λnx) , X̃ ′′

n(x) = −k

x
X̃ ′

n(x)− λ2
nX̃n(x).

From these equalities the remaining estimates follow. �

Lemma 3. If function ϕ(x) belongs to C2[0, 1] and has third derivative ϕ′′′(x) with finite
variation on [0, 1], then function ψ(x) belongs to C1[0, 1] and has second derivative ψ′′(x) with
finite variation on [0, 1]. If

ϕ(0) = ψ(0) = ϕ(1) = ψ(1) = ϕ′(0) = ψ′(0) = ϕ′(1) = ψ′(1) = ϕ′′(0) = ϕ′′(1) = 0,

then

|ϕn| ≤ C7n
−4, |ψn| ≤ C8n

−3. (19)

Proof. We obtain by means of (8) and conditions of the lemma

ϕn =

1∫

0

ϕ(x)xkXn(x)dx = − 1

λ2
n

1∫

0

ϕ(x)(xkX ′
n(x))

′dx =
1

λ2
n

1∫

0

ϕ′(x)xkX ′
n(x)dx

= − 1

λ2
n

1∫

0

(ϕ′(x)xk)′Xn(x)dx = − 1

λ2
n

1∫

0

ϕ′′(x)xkXn(x)dx − k

λ2
n

1∫

0

ϕ′(x)

x
xkXn(x)dx.

We denote

ϕ(2)
n =

1∫

0

ϕ′′(x)xkXn(x)dx, ϕ1n =

1∫

0

ϕ1(x)x
kXn(x)dx, ϕ1(x) = ϕ′(x)/x,

and have ϕn = − 1
λ2
n
ϕ
(2)
n − k

λ2
n
ϕ1n. We obtain from the first integral ϕ(2)

n by virtue of (8) that

ϕ(2)
n =

1∫

0

ϕ′′(x)xkXn(x)dx = − 1

λ2
n

1∫

0

ϕ′′(x)
(
xkX ′

n(x)
)′

dx

= − 1

λ2
n

⎡
⎣ϕ′′(x)xkX ′

n(x)
∣∣∣
1

0
−

1∫

0

ϕ′′′(x)xkX ′
n(x)dx

⎤
⎦ =

1

λ2
n

1∫

0

ϕ′′′(x)xkX ′
n(x)dx =

ϕ
(3)
n

λ2
n

,

where ϕ
(3)
n =

∫ 1
0 ϕ′′′(x)xkX ′

n(x)dx.

The derivative ϕ′′′(x) has finite variation on segment [0, 1] by assumptions of the lemma. Then

see [17] (p. 202) ϕ(3)
n = O(1) for large n, and, consequently, there is valid the bound |ϕ(3)

n | ≤ C9.
Analogously, we integrate by parts the second integral, and obtain by means of (8) and assumptions

of the lemma

ϕ1n = − 1

λ2
n

1∫

0

ϕ1(x)
(
xkX ′

n(x)
)′

dx =
1

λ2
n

1∫

0

ϕ′
1(x)x

kX ′
n(x)dx =

ϕ
(1)
1n

λ2
n

,
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where ϕ
(1)
1n =

∫ 1
0 ϕ′

1(x)x
kX ′

n(x)dx, and this integral converges.

We estimate the integral ϕ(1)
1n for large n by means of representation

ϕ
(1)
1n =

λn

||X̃n||L2,ρ(0,1)

1∫

0

(
ϕ′(x)

x

)′
xkx

1−k
2 J− k+1

2
(λnx)dx

=
λn

||X̃n||L2,ρ(0,1)

1∫

0

x

[
ϕ′′(x)− ϕ′(x)

x

]
x

k−3
2 J− k+1

2
(λnx)dx.

By assumptions ϕ′(0) = ϕ′′(0) = 0. Therefore, for sufficiently small δ > 0 and 0 ≤ x ≤ δ we have

ϕ′(x) = ϕ′(0) +
ϕ′′(0)

1!
x+

ϕ′′′(ξx)

2!
x2 =

1

2
ϕ′′′(ξx)x2, 0 < ξ < x,

ϕ′′(x) = ϕ′′(0) +
ϕ′′′(θx)

1!
x = ϕ′′′(θx)x, 0 < θ < x.

By virtue of these representations the function

x
1
2 f(x) = x

1
2

[
ϕ′′(x)− ϕ′(x)

x

]
x

k−3
2 =

[
ϕ′′(x)− ϕ′(x)

x

]
x

k
2
−1 =

[
ϕ′′′(θx)− 1

2
ϕ′′′(ξx)

]
x

k
2

has bounded variation on segment [0, δ], because it is product of two functions of finite variation
see [17] (p. 202).

One can show analogously that function x
1
2 f(x) has finite variation on segment [δ, 1]. Then it has

finite variation on segment [0, 1]. and, as in the case of integral ϕ(3)
n , we obtain bound |ϕ(1)

1n | ≤ C10. The
first estimate follows from these estimates.

We integrate by parts twice, and obtain by assumptions of the lemma

ψn = − 1

λ2
n

1∫

0

ψ′′(x)xkXn(x)dx− k

λ2
n

1∫

0

ψ′(x)

x
xkXn(x)dx = − 1

λ2
n

ψ(2)
n − k

λ2
n

ψ1n,

where

ψ(2)
n =

1∫

0

ψ′′(x)xkXn(x)dx, ψ1n =

1∫

0

ψ′(x)

x
xkXn(x)dx.

Analogously, we obtain equalities ψ
(2)
n = O

(
λ−1
n

)
, ψ1n = O

(
λ−1
n

)
, which imply by means of ψn the

second bound. �

The coefficients (17) of series (18) under assumptions of the lemma 3 turn into the following ones:

un(t) = ϕn cos λnt+
ψn

λn
sinλnt. (20)

According the Lemmas 1–3, the series (18) and its derivatives up to the second order inclusive for
any (x, t) ∈ D allow majoration by the convergent numerical series C11

∑∞
n=1 n

−2, and, consequently,
uniformly converge in the closed domain D. Thus, there is proved

Theorem 2. If functions ϕ(x) and ψ(x) satisfy assumptions of Lemma 3, and conditions (7)
hold, then there exists a unique solution of problem (2)–(7), it is determined by series (18), and
u(x, t) ∈ C2(D).
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4. STABILITY

Theorem 3. The solution of problem (2)–(7) satisfies the bound

||u||L2,ρ(0,1) ≤ C12(||ϕ||L2,ρ(0,1) + ||ψ||L2,ρ(0,1)),

where constant C12 does not depend on functions ϕ(x) and ψ(x).
Proof. By means of (20) and Lemma 1 we have |un(t)| ≤ C1 (|ϕn|+ |ψn|/n) . We obtain from (18)

by means of this bound

||u||2L2,ρ(0,1)
=

1∫

0

xku2(x, t)dx =

1∫

0

xk
∞∑
n=1

un(t)Xn(x)
∞∑

m=1

um(t)Xm(x)dx

=

∞∑
m,n=1

un(t)um(t)

1∫

0

xkXn(x)Xm(x)dx =

∞∑
n=1

u2n(t)

1∫

0

xkX2
n(x)dx =

∞∑
n=1

u2n(t)

≤ 2C2
1

∞∑
n=1

(
|ϕn|2 +

1

n2
|ψn|2

)
≤ 2C2

1

( ∞∑
n=1

ϕ2
n +

∞∑
n=1

ψ2
n

)
= 2C2

1

(
||ϕ||2L2,ρ(0,1)

+ ||ψ||2L2,ρ(0,1)

)
.

This relation implies this bound. �
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