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Abstract—For the hyperbolic equation with Bessel operator, we study the initial boundary-
value problem with integral nonlocal condition of the second kind in a rectangular domain.
The integral identity method is used to prove the uniqueness of the solution to the posed
problem. The solution is constructed as a Fourier–Bessel series. To justify the existence of the
solution to the nonlocal problem, we obtain sufficient conditions to be imposed on the initial
conditions to ensure the convergence of the constructed series in the class of regular solutions.
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1. INTRODUCTION

We consider the hyperbolic equation with Bessel operator

�Bu(x, t) ≡ utt − x−k ∂

∂x
(xkux) = 0, (1)

where x > 0 and k is a given real number, k > −1, k �= 0. Equation (1), which, after Kipriyanov
[1, p. 7], will be called a B-hyperbolic equation, arises, for example, when switching from Cartesian
to cylindrical coordinates in the wave equation while considering radial gas vibrations in a stationary
infinite cylindrical pipe or when switching to spherical coordinates while considering small vibra-
tions of a gas near its equilibrium position inside an impermeable spherical shell [2, pp. 185, 191].
Pul’kin [3] studied the Cauchy and Cauchy–Goursat problems for Eq. (1) with k ≥ 1. The Tri-
comi problem for a mixed-type equation with a hyperbolic part that coincides with Eq. (1) was
considered in [4, 5].

Let D = {(x, t) : 0 < x < l, 0 < t < T} be a rectangular domain in the Oxt coordinate plane,
where l, T > 0 are given real numbers. In the present paper, for Eq. (1) in the domain D, we study
the following initial value problems with a nonlocal boundary condition of the second kind for k ≥ 1
and −1 < k < 1, k �= 0.

Problem 1. Let k ≥ 1. To determine such a solution u(x, t) of the equation

�Bu(x, t) ≡ 0, (x, t) ∈ D, (2)

that
u(x, t) ∈ C1(D)

⋂
C2(D) (3)

and it satisfies the initial conditions

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), 0 ≤ x ≤ l, (4)
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122 SABITOV, ZAITSEVA

and the integral condition of the second kind

ux(l, t) +

l∫

0

u(x, t)xk dx = 0, 0 ≤ t ≤ T. (5)

Problem 2. Let −1 < k < 1, and let k �= 0. To determine a solution u(x, t) to Eq. (2) satisfying
conditions (3)–(5) and the condition

lim
x→0+

xkux(x, t) = 0, 0 ≤ t ≤ T. (6)

Here ϕ(x), ψ(x) are given sufficiently smooth functions satisfying the relations

ϕ′(l) +

l∫

0

ϕ(x)xk dx = 0, ψ′(l) +

l∫

0

ψ(x)xk dx = 0. (7)

Pul’kina [6] coined the term “integral condition of the second kind”. In [7] and the monograph [8],
she was also the first to use functional-analysis methods to study the boundary value problems with
integral conditions for Eq. (1) at k = 0, for telegraph equation, and for more general hyperbolic-type
equations with smooth coefficients

utt − (a(x, t)ux)x + c(x, t)u = f(x, t).

Mixed problems with integral conditions of the first kind for hyperbolic equations with Bessel
operator were considered in [9, 10], and the boundary value problems equipped with such a condition
for mixed-type equations were studied in [11–13].

In the present paper, based on [11–13], we prove the existence theorem for the solution to
the problem in Eqs. (2)–(7) for all k > −1, with the solution being constructed in the form of
a Fourier–Bessel series and the convergence of the series being substantiated in the class of regular
solutions (2) and (3).

We note that, for the B-elliptic equation

utt + x−k ∂

∂x
(xkux) = 0, (x, t) ∈ D,

at k ≥ 1 by virtue of the results in [14, 3] in the class of bounded solutions, we need not pose
the Dirichlet condition at the boundary x = 0 of the rectangle D. In this case, it was shown
in [3; 15, p. 68] that the derivative along the normal to this interval, i.e., ux, is zero on the
interval x = 0.

Equation (2) possesses the same property for k ≥ 1. Separating the variables, we can easily
show that

ux(0, t) = 0, 0 ≤ t ≤ T, (8)

thereby proving an additional property of the solution to Problem 1. In what follows, the relation in
Eq. (8) can also be taken advantage of in our reasoning. However, with the derivative ux remaining
bounded as x → 0, no need arises to use this relation, as will be shown below.

2. UNIQUENESS OF SOLUTIONS TO PROBLEMS 1 AND 2

Theorem 1. If solutions to Problems 1 and 2 exist then they are unique.

Proof. Let u1 and u2 be two solutions of the problem in Eq. (2)–(5). Then their difference
u = u1 − u2 satisfies Eq. (2), inclusion (3), the homogeneous initial conditions

u(x, 0) = 0, ut(x, 0) = 0, 0 ≤ x ≤ l, (40)

the integral condition in Eq. (5), and condition (8).
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We substitute the function u into Eq. (1), multiply the result by xk, and integrate it for a fixed
t ∈ (0, T ) over variable x from ε to l − ε, where ε > 0 is a sufficiently small number, to obtain

l−ε∫

ε

uttx
k dx−

l−ε∫

ε

∂

∂x
(xkux) dx = 0

or
l−ε∫

ε

uttx
k dx−

(

xk ∂u

∂x

)∣
∣
∣
∣

l−ε

ε

= 0. (9)

Passing to the limit in (9) as ε → 0, due to condition (3), we have

d2

dt2

l∫

0

u(x, t)xk dx = lkux(l, t). (10)

Substituting the value of the derivative from the integral condition in Eq. (5) into (10), we obtain

d2

dt2

l∫

0

u(x, t)xk dx+ lk
l∫

0

u(x, t)xk dx = 0. (11)

We introduce the notation

Z(t) =

l∫

0

u(x, t)xk dx

to write Eq. (11) as the equation
Z ′′(t) + lkZ(t) = 0

that has a general solution of the form

Z(t) =

l∫

0

u(x, t)xk dx = C1 cos(
√
lk t) + C2 sin(

√
lk t), (12)

where C1 and C2 are arbitrary constants.

With regard to the initial conditions (40), we determine the constants C1 = 0 and C2 = 0 from
Eq. (12). As a result, we have

l∫

0

u(x, t)xk dx = 0. (13)

Substituting (13) into condition (5), we obtain

ux(l, t) = 0. (14)

Further, we consider the following identity which can easily be verified by direct differentiation:

xkut�Bu(x, t) =
1

2

∂

∂t
[xk(u2

t + u2
x)]−

∂

∂x
(xkutux),

where u(x, t) is an arbitrary function with continuous second derivatives. Since the function u
satisfies Eq. (1), the last expression can be written as

1

2

∂

∂t
[xk(u2

t + u2
x)] =

∂

∂x
(xkutux). (15)
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124 SABITOV, ZAITSEVA

Now we integrate identity (15) for a fixed t ∈ (0, T ) over the variable x from ε to l− ε, where ε > 0
is a sufficiently small number, and then pass to the limit as ε → 0. By virtue of condition (3),
we have

1

2

∂

∂t

l∫

0

(u2
t + u2

x)x
k dx = lkut(l, t)ux(l, t)

or, with regard to (14),

1

2

∂

∂t

l∫

0

(u2
t + u2

x)x
k dx = 0,

which implies
l∫

0

(u2
t + u2

x)x
k dx = C(x), (16)

where C(x) is a function depending only on the variable x. Now we set t = 0 in Eq. (16), and, with
regard to conditions (40), obtain the identity

l∫

0

(u2
t (x, 0) + u2

x(x, 0))x
k dx = C(x) ≡ 0,

and, hence, ut(x, t) ≡ 0 and ux(x, t) ≡ 0. Therefore, we have u(x, t) ≡ const, which again implies
the identity u(x, t) ≡ 0 in view of the homogeneous initial conditions (40). Thus, u1 ≡ u2.

The uniqueness of the solution of Problem 2 can be proved similarly. The theorem is proved.

3. EXISTENCE OF SOLUTION TO PROBLEM 1

Particular solutions of Eq. (1) that are nonzero in the domain D and satisfy conditions (3)
and (5) will be sought as products u(x, t) = X(x)T (t). We substitute this expression into Eq. (1)
and into conditions (3) and (8) to obtain the following spectral problem for the unknown X(x) :

X ′′(x) +
k

x
X ′(x) + λ2X(x) = 0, 0 < x < l, (17)

|X(0)| < +∞, (18)

X ′(l) +

l∫

0

X(x)xk dx = 0, (19)

where λ2 is the separation constant.

With regard to Eq. (17), from the boundary condition (19) we obtain the relations

X ′(l) +

l∫

0

X(x)xk dx = X ′(l)− 1

λ2

l∫

0

[

X ′′(x) +
k

x
X ′(x)

]

xk dx

= X ′(l)− 1

λ2

l∫

0

d

dx
(xkX ′(x)) dx =

(

1− lk

λ2

)

X ′(l) = 0.

Hence it follows that, with condition (3) taken into account, the nonlocal integral condition in
Eq. (19) for λ �= lk/2 is equivalent to the local boundary condition of the second kind

X ′(l) = 0. (20)
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The solution of Eq. (17) satisfying condition (18) has the form

X̃(x) = x(1−k)/2J(k−1)/2(λx), (21)

where Jν(ξ) is the Bessel function of the first kind of order ν = (k − 1)/2. In this case, it is easy

to see that the function in Eq. (21) satisfies the condition X̃ ′(0) = 0, as one should expect due to
relation (8).

Substituting the function in Eq. (21) into the boundary condition in Eq. (20), we obtain

J(k+1)/2(μ) = 0, μ = λl. (22)

By the Lommel theorem [17, p. 530], Eq. (22) has countably many zeros for (k + 1)/2 > −1, with
all zeros being real. Denoting the nth root of Eq. (22) as μn, n ∈ N, we obtain the eigenvalues
of the problem in Eqs. (17)–(19). It is also well known [18, p. 317] that the zeros μn of Eq. (22)
satisfy, for large n, the asymptotic representation

μn = λnl = πn+
π

4
k +O

(
1

n

)

. (23)

Then the corresponding system of the eigenfunctions of problem (17), (18), and (20) becomes

X̃n(x) = x(1−k)/2J(k−1)/2(λnx), n ∈ N. (24)

For ease of further calculations, we normalize the system of functions (24) as follows:

Xn(x) =
1

‖X̃n‖L2,ρ(0,l)

X̃n(x), (25)

where

‖X̃n‖2L2,ρ(0,l)
=

l∫

0

ρ(x)X̃2
n(x) dx, ρ(x) = xk. (26)

Let u(x, t) be a solution of problem (2)–(5). Following [19, 20], we consider the functions

un(t) =

l∫

0

u(x, t)xkXn(x) dx, n = 1, 2, . . . , (27)

whereXn(x) are determined by Eqs. (25) and (26). Based on the functions in Eq. (27), we introduce
the auxiliary functions

un,ε(t) =

l−ε∫

ε

u(x, t)xkXn(x) dx, n = 1, 2, . . . , (28)

where ε > 0 is a sufficiently small number.

We differentiate identity (28) twice with respect to the variable t for 0 < t < T and, with regard
to Eq. (1), obtain

u′′
n,ε(t) =

l−ε∫

ε

utt(x, t)x
kXn(x) dx =

l−ε∫

ε

(

uxx +
k

x
ux

)

xkXn(x) dx

=

l−ε∫

ε

∂

∂x
(xkux)Xn(x) dx = xkuxXn(x)|l−ε

ε −
l−ε∫

ε

xkuxX
′
n(x) dx. (29)
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From Eq. (28), by virtue of Eq. (17), we have

un,ε(t) = − 1

λ2
n

l−ε∫

ε

u(x, t)xk

[

X ′′
n(x) +

k

x
X ′

n(x)

]

dx = − 1

λ2
n

l−ε∫

ε

u(x, t)
d

dx
(xkX ′

n(x)) dx

= − 1

λ2
n

[

u(x, t)xkX ′
n(x)|l−ε

ε −
l−ε∫

ε

xkuxX
′
n(x) dx

]

,

which implies
l−ε∫

ε

xkuxX
′
n(x) dx = λ2

nun,ε(t) + u(x, t)xkX ′
n(x)|l−ε

ε . (30)

Taking relation (30) into account in representation (29), we obtain

u′′
n,ε(t) = xkuxXn(x)|l−ε

ε − λ2
nun,ε(t)− u(x, t)xkX ′

n(x)|l−ε
ε . (31)

Now, as in the proof of the uniqueness of the solution of the problem, we multiply Eq. (1) by xk

and integrate it for a fixed t ∈ (0, T ) over the variable x from ε to l−ε, where ε > 0 is a sufficiently
small number. As a result, we obtain

d2

dt2

l−ε∫

ε

u(x, t)xk dx−
(

xk ∂u

∂x

)∣
∣
∣
∣

l−ε

ε

= 0.

Now we pass to the limit as ε → 0 in the obtained relation and, by virtue of conditions (3) and
(5), arrive at the equation

d2

dt2
(ux(l, t)) + lkux(l, t) = 0.

We introduce the notation Z(t) = ux(l, t) and, as a result, obtain the ordinary differential equation

Z ′′(t) + lkZ(t) = 0,

which has a general solution of the form Z(t) = C̃1 cos(
√
lk t) + C̃2 sin(

√
lk t), where C̃1 and C̃2 are

arbitrary constants. Then

ux(l, t) = C̃1 cos(
√
lk t) + C̃2 sin(

√
lk t). (32)

With regard to the initial conditions in Eq. (4), from Eq. (32) we obtain the values of the constants

C̃1 = ϕ′(l) and C̃2 = l−k/2ψ′(l).

It follows from Eq. (25) that Xn(x) = O(1) and X ′
n(x) = O(x) as x → 0. Then, with regard to

conditions (3), (20) and relation (32), we pass in (31) to the limit as ε → 0 and derive the following
equation for determining the functions un(t):

u′′
n(t) + λ2

nun(t) = C1 cos(
√
lk t) + C2 sin(

√
lk t), t ∈ (0, T ), (33)

where
C1 = C̃1l

(k+1)/2J(k−1)/2(λnl) = ϕ′(l)l(k+1)/2J(k−1)/2(λnl),

C2 = C̃2l
(k+1)/2J(k−1)/2(λnl) = ψ′(l)

√
lJ(k−1)/2(λnl).

The general solution of a homogeneous equation that corresponds to Eq. (33) has the form

un(t) = an cos(λnt) + bn sin(λnt),

where an and bn are arbitrary constants.
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We seek a particular solution of Eq. (33) in the form

vn(t) = A cos(
√
lk t) +B sin(

√
lk t), (34)

where A and B are the coefficients to be determined. Substituting the sought-for solution (34) into
Eq. (33), we obtain

A =
C1

λ2
n − lk

=
ϕ′(l)

λ2
n − lk

l(k+1)/2J(k−1)/2(λnl), B =
C2

λ2
n − lk

=
ψ′(l)

λ2
n − lk

√
lJ(k−1)/2(λnl).

Then the partial solution (34) of Eq. (33) is determined by the relation

vn(t) =

√
l

λ2
n − lk

(
√
lk ϕ′(l) cos(

√
lk t) + ψ′(l) sin(

√
lk t))J(k−1)/2(λnl), (35)

and its general solution becomes

un(t) = an cos(λnt) + bn sin(λnt) + vn(t). (36)

To determine arbitrary constants an and bn, we impose the initial conditions (4) on the func-
tions (27), i.e.,

un(0) =

l∫

0

u(x, 0)xkXn(x) dx =

l∫

0

ϕ(x)xkXn(x) dx = ϕn, (37)

u′
n(0) =

l∫

0

ut(x, 0)x
kXn(x) dx =

l∫

0

ψ(x)xkXn(x) dx = ψn. (38)

With regard to conditions (37) and (38), from Eqs. (36) and (35) we obtain

un(0) = an +
ϕ′(l)

λ2
n − lk

l(k+1)/2J(k−1)/2(λnl) = ϕn,

u′
n(0) = bnλn +

ψ′(l)

λ2
n − lk

l(k+1)/2J(k−1)/2(λnl) = ψn,

which implies

an = ϕn − ϕ′(l)

λ2
n − lk

l(k+1)/2J(k−1)/2(λnl), bn =
ψn

λn

− ψ′(l)

(λ2
n − lk)λn

l(k+1)/2J(k−1)/2(λnl). (39)

Substituting the values (39) into (36), we find the ultimate form of the functions

un(t) = ϕn cos(λnt) +
ψn

λn

sin(λnt) +
ϕ′(l)

λ2
n − lk

l(k+1)/2J(k−1)/2(λnl)(cos(
√
lk t)− cos(λnt))

+
ψ′(l)

λ2
n − lk

l(k+1)/2J(k−1)/2(λnl)

(

l−k/2 sin(
√
lk t)− 1

λn

sin(λnt)

)

. (40)

We use the obtained partial solutions in Eqs. (25) and (40) to write the solution of prob-
lem (2)–(5) formally as a series

u(x, t) =

∞∑

n=1

un(t)Xn(x), (41)

where the functions Xn(x) are determined by formula (25) and the functions un(t) by formula (40).
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Along with the series in Eq. (41), we consider the series

ut(x, t) =

∞∑

n=1

u′
n(t)Xn(x), ux(x, t) =

∞∑

n=1

un(t)X
′
n(x), (42)

utt(x, t) =

∞∑

n=1

u′′
n(t)Xn(x), uxx(x, t) =

∞∑

n=1

un(t)X
′′
n(x). (43)

Now we prove the uniform convergence of the series in Eqs. (41)–(43) in the domain D under some
additional conditions imposed on the functions ϕ(x) and ψ(x).

Lemma 1. The following estimates hold for sufficiently large n and for any t ∈ [0, T ] :

|un(t)| ≤ C1

(

|ϕn|+
|ψn|
n

)

+
|ϕ′(l)|
n5/2

+
|ψ′(l)|
n5/2

, (44)

|u′
n(t)| ≤ C2(n|ϕn|+ |ψn|) +

|ϕ′(l)|
n3/2

+
|ψ′(l)|
n5/2

, (45)

|u′′
n(t)| ≤ C3(n

2|ϕn|+ n|ψn|) +
|ϕ′(l)|
n1/2

+
|ψ′(l)|
n3/2

; (46)

here and below, Ci are positive constants.

Proof. The proof of the estimates in Eqs. (44)–(46) follows from formulas (40) and (23).

Lemma 2. The following estimates hold for sufficiently large n and for all x ∈ [0, l] :

|Xn(x)| ≤ C4, |X ′
n(x)| ≤ C5n, |X ′′

n(x)| ≤ C6n
2. (47)

Proof. It is known that, for large ξ,

Jν(ξ) = O(ξ−1/2). (48)

From (26) we obtain

‖X̃n‖L2,ρ(0,l) =
l√
2
|J(k+1)/2(μn)|. (49)

Then it follows from Eqs. (48) and (49) that

‖X̃n‖L2,ρ(0,l) = O(n−1/2) as n → ∞. (50)

With regard to Eq. (49), formula (25) becomes

Xn(x) =
1

‖X̃n‖L2,ρ(0,l)

X̃n(x) =

√
2x(1−k)/2J(k−1)/2(λnx)

l|J(k+1)/2(μn)|
. (51)

Then the first estimate in Eq. (47) follows from relations (48), (50), and (51).

Now we calculate
X̃ ′

n(x) = −λnx
(1−k)/2J(k+1)/2(λnx). (52)

Then the second estimate in Eq. (4.7) follows from Eqs. (48), (50), and (52).

Equation (17) implies the relation

X̃ ′′
n(x) = −k

x
X̃ ′

n(x)− λ2
nX̃n(x).

By virtue of the first two estimates, this implies the third estimate in Eq. (47). The lemma is
proved.

DIFFERENTIAL EQUATIONS Vol. 54 No. 1 2018



INITIAL VALUE PROBLEM FOR B-HYPERBOLIC EQUATION 129

Lemma 3. If a function ϕ(x) belongs to the space C2[0, l] and its derivative ϕ′′′(x) exists and
is of finite variation on the interval [0, l]; a function ψ(x) belongs to the space C1[0, l] and its
derivative ψ′′(x) exists and is of finite variation on the interval [0, l]; and the relations

ϕ′(0) = ϕ′′(0) = ψ′(0) = ϕ′(l) = ψ′(l) = 0

are satisfied , then the following estimates hold true :

|ϕn| ≤
C7

n4
, |ψn| ≤

C8

n3
. (53)

Proof. With regard to Eqs. (17) and (20) and the conditions of the lemma, we twice apply
integration by parts to Eq. (37) to obtain

ϕn =

l∫

0

ϕ(x)xkXn(x) dx = − 1

λ2
n

l∫

0

ϕ(x)xk

[

X ′′
n(x) +

k

x
X ′

n(x)

]

dx = − 1

λ2
n

l∫

0

ϕ(x)(xkX ′
n(x))

′ dx

= − 1

λ2
n

[

ϕ(x)xkX ′
n(x)|l0 −

l∫

0

ϕ′(x)xkX ′
n(x) dx

]

=
1

λ2
n

l∫

0

ϕ′(x)xkX ′
n(x) dx

=
1

λ2
n

[

ϕ′(x)xkXn(x)|l0 −
l∫

0

(ϕ′(x)xk)′Xn(x) dx

]

= − 1

λ2
n

l∫

0

(ϕ′(x)xk)′Xn(x) dx

= − 1

λ2
n

l∫

0

ϕ′′(x)xkXn(x) dx − k

λ2
n

l∫

0

ϕ′(x)

x
xkXn(x) dx.

We introduce the notation

ϕ(2)
n =

l∫

0

ϕ′′(x)xkXn(x) dx, ϕ1n =

l∫

0

ϕ1(x)x
kXn(x) dx, ϕ1(x) =

ϕ′(x)

x
, (54)

and, as a result, obtain

ϕn = − 1

λ2
n

ϕ(2)
n − k

λ2
n

ϕ1n. (55)

By virtue of Eqs. (17) and (20), from the first integral in Eq. (54) we obtain the relations

ϕ(2)
n =

l∫

0

ϕ′′(x)xkXn(x) dx = − 1

λ2
n

l∫

0

ϕ′′(x)(xkX ′
n(x))

′ dx

= − 1

λ2
n

[

ϕ′′(x)xkX ′
n(x)|l0 −

l∫

0

ϕ′′′(x)xkX ′
n(x) dx

]

=
1

λ2
n

l∫

0

ϕ′′′(x)xkX ′
n(x) dx =

ϕ(3)
n

λ2
n

, (56)

where

ϕ(3)
n =

l∫

0

ϕ′′′(x)xkX ′
n(x) dx.
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It follows from Eq. (52) that

ϕ(3)
n = − λn

‖X̃n‖L2,ρ(0,l)

l∫

0

ϕ′′′(x)x1+kJ(k+1)/2(λnx) dx.

Since the function x1/2f(x) = x1/2ϕ′′′(x)xk = ϕ′′′(x)xk+1/2 is of bounded variation on the inter-
val [0, l] [21, p. 202], it follows, based on the theorem in [17, p. 653], that

l∫

0

ϕ′′′(x)x1+kJ(k+1)/2(λnx) dx = O

(
1

λ
3/2
n

)

as n → ∞. Then, by virtue of the asymptotic relation in Eq. (50), we have ϕ(3)
n = O(1) for large n,

and hence, the following estimate holds true:

|ϕ(3)
n | ≤ C9. (57)

Similarly, from the second relation in Eq. (54), based on Eqs. (17), (20) and the conditions of
the lemma, we obtain the integral

ϕ1n =

l∫

0

ϕ1(x)x
kXn(x) dx = − 1

λ2
n

l∫

0

ϕ1(x)(x
kX ′

n(x))
′ dx

= − 1

λ2
n

[

ϕ1(x)x
kX ′

n(x)|l0 −
l∫

0

ϕ′
1(x)x

kX ′
n(x) dx

]

=
1

λ2
n

l∫

0

ϕ′
1(x)x

kX ′
n(x) dx =

ϕ
(1)
1n

λ2
n

, (58)

where

ϕ
(1)
1n =

l∫

0

ϕ′
1(x)x

kX ′
n(x) dx,

and, in view of Eq. (52), this integral converges.

Now we estimate the integral ϕ(1)
1n for large n. We represent it as

ϕ
(1)
1n = − λn

‖X̃n‖L2,ρ(0,l)

l∫

0

(
ϕ′(x)

x

)′

xkx(1−k)/2J(k+1)/2(λnx) dx

= − λn

‖X̃n‖L2,ρ(0,l)

l∫

0

[
ϕ′′(x)

x
− ϕ′(x)

x2

]

x(k+1)/2J(k+1)/2(λnx) dx

= − λn

‖X̃n‖L2,ρ(0,l)

l∫

0

x

[

ϕ′′(x)− ϕ′(x)

x

]

x(k−3)/2J(k+1)/2(λnx) dx.

Since ϕ′(0) = ϕ′′(0) = 0 by the condition of the lemma, for x such that 0 ≤ x ≤ δ, where δ > 0
is a sufficiently small number, we obtain

ϕ′(x) = ϕ′(0) +
ϕ′′(0)

1!
x+

ϕ′′′(ξx)

2!
x2 =

1

2
ϕ′′′(ξx)x2, 0 < ξ < x,

ϕ′′(x) = ϕ′′(0) +
ϕ′′′(θx)

1!
x = ϕ′′′(θx)x, 0 < θ < x.
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In consequence of these representations, the function

x1/2f(x) = x1/2

[

ϕ′′(x)− ϕ′(x)

x

]

x(k−3)/2 =

[

ϕ′′(x)− ϕ′(x)

x

]

xk/2−1 =

[

ϕ′′′(θx)− 1

2
ϕ′′′(ξx)

]

xk/2

is of bounded variation on the interval [0, δ] as the product of two functions with a finite varia-
tion [21, p. 202].

On the interval [δ, l], we can similarly show that the function x1/2f(x) is of finite variation. Then
it is of finite variation on the entire interval [0, l]. Therefore, as in the case of the integral ϕ(3)

n ,
we have the estimate

|ϕ(1)
1n | ≤ C10. (59)

Substituting expressions (56) and (58) into Eq. (55), we arrive the relation

ϕn = − 1

λ4
n

ϕ(3)
n − k

λ4
n

ϕ
(1)
1n ,

which together with inequalities (57) and (59) imply the first estimate in Eq. (53).

Based on the conditions in Eq. (38) for ψ′(l) = 0, after similar calculations, we obtain

ψn =

l∫

0

ψ(x)xkXn(x) dx

= − 1

λ2
n

l∫

0

ψ′′(x)xkXn(x) dx− k

λ2
n

l∫

0

ψ′(x)

x
xkXn(x) dx = − 1

λ2
n

ψ(2)
n − k

λ2
n

ψ1n, (60)

where

ψ(2)
n =

l∫

0

ψ′′(x)xkXn(x) dx, ψ1n =

l∫

0

ψ′(x)

x
xkXn(x) dx.

Now we estimate the integrals ψ(2)
n and ψ1n in a similar way. Based on formula (25), we have

ψ(2)
n =

1

‖X̃n‖L2,ρ(0,l)

l∫

0

xψ′′(x)x(k−1)/2J(k−1)/2(λnx) dx.

The latter and the fact that the function x1/2f(x) = ψ′′(x)xk/2 is of finite variation entail the
estimate

ψ(2)
n = O(λ−1

n ) (61)

as n → ∞. Similarly, we have

ψ1n =
1

‖X̃n‖L2,ρ(0,l)

l∫

0

xψ′(x)x(k−3)/2J(k−1)/2(λnx) dx.

By the condition of the lemma, ψ′(0) = 0, and hence, the function

x1/2f(x) = ψ′(x)xk/2−1 = ψ′′(θx)xk/2, 0 < θ < x ≤ δ,

where δ > 0 is a small number, is of finite variation on the interval [0, δ]. Similarly, the function
x1/2f(x) is of finite variation on the interval [δ, l], and hence, on the entire interval [0, l]. Then, for
large n we obtain the estimate

ψ1n = O(λ−1
n ). (62)
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Thus, Eq. (60) and relations (61), (62) imply the second estimate in Eq. (53). The lemma is
proved.

With regard to the conditions of Lemma 3, the coefficients un(t) of the series in Eq. (41) become

un(t) = ϕn cos(λnt) +
ψn

λn

sin(λnt). (63)

According to Lemmas 1–3, for any (x, t) ∈ D, the series in Eqs. (41)–(43) can be majorized by
the numerical series C11

∑∞
n=1 n

−2, and hence, converge uniformly in a closed domain D. Thus, we
have proved the following theorem.

Theorem 2. If functions ϕ(x) and ψ(x) satisfy the conditions of Lemma 3, then there exists
a unique solution to problem (2)–(5). This solution can be represented by the series in Eq. (41),
with the sum of the series belonging to the space C2(D).

4. EXISTENCE OF SOLUTION TO PROBLEM 2

As in Problem 1, we substitute the product u(x, t) = X(x)T (t) into Eq. (1) and in conditions (5)
and (6) to obtain the following spectral problem for X(x) :

X ′′(x) +
k

x
X ′(x) + λ2X(x) = 0, 0 < x < l, (64)

lim
x→0+

xkX ′(x) = 0, X ′(l) +

l∫

0

X(x)xk dx = 0, 0 ≤ t ≤ T. (65)

The system of eigenfunctions X̃n(x) of problem (64), (65) has the form in Eq. (24), and the
eigenvalues λn = μn/l (n = 1, 2, . . .) are determined as zeros of Eq. (22), with the asymptotic
formula in Eq. (23) holding true for them for large n.

We introduce the norm by formula (26) and then consider the functions in Eq. (25).

As in the preceding problem, we construct the solution of problem (2)–(6) as the sum of the
series

u(x, t) =

∞∑

n=1

un(t)Xn(x), (66)

where the functions Xn(x) are determined by formula (25) and the functions un(t) by formula (40),
where the coefficients ϕn and ψn are given by formulas (37) and (38). The functions un(t) andXn(t)
satisfy, respectively, the estimates in Lemmas 1 and 2.

We impose the conditions of Lemma 3 on the functions ϕ(x) and ψ(x). Then the functions un(t)
in the series in Eq. (66) take on the form in Eq. (63). According to Lemmas 1–3, for any (x, t) ∈ D,
the series in Eq. (66) and its derivatives up to the second order inclusively can be majorized by the
numerical series C12

∑∞
n=1 n

−2. Therefore, the sum of the series in Eq. (66) satisfies conditions (2)
and (3). We have thus proved the following theorem.

Theorem 3. If functions ϕ(x) and ψ(x) satisfy the conditions of Lemma 3, then there exists
a unique solution of problem (2)–(6). This solution can be represented by the series in Eq. (66),
with the sum of the series belonging to the space C2(D).
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