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Abstract—Inverse magnetolelluric (MT) problems are considered in a formulation reflecting the methodolog-
ical and technological progress in modern magnetotellurics. Relations beiween MT and magnelovariational
(MV) problems are determined. The theorem of uniqueness is proven for 2-D MV inversion. Features inherent
in the multidimensional geocleetric interpretation are examined and its rigorous mathematical formulation is
proposed. The notion of a model error is introduced and principles of constructing interpretational models are

developed.

INTRODUCTION

Progress in modern magnetotellurics is related to
the striking technological and methodological
advances that took place in this field of exploration and
deep geophysics over the past decade. Field instru-
ments ensuring a stable determination of magnetotellu-
ric (MT) and magnetovariational (MV) characteristics
have been created. Effective programs have been devel-
oped for automated 2- and 3-D inversion of impedances
and tippers. MV sounding, for many years taking a
back seat to magnetotellurics, became a basic method
of deep geoelectric studies that is free from the distort-
ing effect of local near-surface heterogeneities (geo-
electric noise). New approaches to the analysis and
interpretation of MT and MV data widening the geo-
logical and geophysical informativeness of geoelectrics
are proposed. Field investigations that have been con-
ducted in many tectonic provinces of the world have
provided basically new information on the structure of
the sedimentary cover, solid crust, and upper mantle.

Presently, it is evident that all (hese results need to
be generalized and the development of a theory provid-
ing a methodological basis for modern magnetotellu-
rics is a challenge of current research. In this work, we
attempt to answer some of the relevant questions.

1. GENERAL DEFINITIONS
The main MT characteristic (response function) is
the impedance tensor [Z], determined from the relation
between horizontal components of electric and mag-
netic fields
E. =[Z]H,, (1)

where

E. = E(E, E,)

Z.\.\ Z.T ¥
Z: B

[Z] = H, = H(H, H).

The main MV characteristic (response function) s
the tipper [W] (the Wiese- Parkinson vector), deter-
mined from the relation between the vertical compo-
nent of the magnetic field and its horizontal compo-
nents:

H.=[WIH,. )

where
(W1 =[w., w,]

The inverse MT problem consists in the determina-
tion of the geoclectric structure of the Earth from a
known dependence of the MT and MV response func-
tions on the coordinates of the surface observation point
and the frequency of the observed electromagnel

field.

The electrical conductivity o{x, y. £} is found from
the conditions

lZ]1-[2Z{xyv.2=0, 0 0(x v, )} <8, (32

W —Wix, v,z= 0, 60 v.2)H €8y, (3b)
where [Z] and W are the impedance tensor and tipper
determined on the sets of surface points M(x, y) and fre-

quencies y; 8, and 8y are determination errors of [Z]

and W ; and [Z] and W are operators of the forward
problem that calculate the impedance tensor and tipper,
depending parametrically on x, y, and w, from a given
electrical conductivity o(x, y. ).

Inverse problem (3) includes MT inversion (3a) and
MYV inversion (3b) and is solved in the class of piece-
wise-homogeneous and piecewise-continuous models
excited by a plane wave vertically incident on the
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Earth's surface, Inversions (3a) and (3b) should be mutu-
ally consistent. They result in a distribution &(x, v, £) such
that misfits of the impedance tensor and tipper do not
exceed errors in the initial information 8, and 8. This
distribution generates the set of equivalent inversion
solutions Z;.

Errors in the initial information 8; and 8,y consist of
measurement and model errors. The measurement
errors are commonly random. They arise due to instru-
mental noise, external interferences, and uncertainties

involved in the calculation of [Z] and W. Improve-
ments in instrumentation and data processing methods
decrease these errors. Presently, due to progress in MT
technologies, measurement uncertainties are, as a rule,
fairly small (at least, far from sources of intense indus-
trial noise). A main difficulty is related to model errors
that arise due to the inevitable deviation of inversion
models from real geoelectric structures and the real MT
field. As an illustrative example, we consider uncertain-
ties arising in the 2-D inversion of data obtained above
3-D structures and uncertainties typical of polar zones,
where the magnetic field of ionospheric currents has a
vertical component and cannot be approximated by a
plane wave. Model errors are systematic and can be
estimated with the use of mathematical modeling.
Model uncertainties are usually larger than measure-
ment uncertainties.

The strategy and informativeness of the inverse prob-
lems depend on the dimensionality of models in use.

The simplest inverse problem is 1-D inversion, car-
ried out in the class of 1-D models. It provides the local
determination of the electrical conductivity along verti-
cal profiles passing through observation points. The
I-D inversion evidently ignores distortions produced
by horizontal geoelectric inhomogeneities and is justi-
fied if horizontal variations in the conductivity are
fairly small. Otherwise, it can miss real structures and
provide false structures (artifacts).

The transition to 2- and 3-D inversions, carried out in
the classes of 2- and 3-D models, enables the due regard
for the effects of horizontal geoelectric inhomogeneities
but substantially complicates the inverse problem.

(1) A contradiction arises between the finite region
of MT and MV observations and the infinite region of
the inverse problem. In forward problems, this contra-
diction is easily removed through the introduction of an
infinite normal layered structure outside the observa-
tion region. In the inverse problem, the normal structure
of the medium is unknown and should be specified as a
mathematical abstraction consistent with data of obser-
vations. Such a structure can be constructed by the
extrapolation of scalar invariants of the impedance ten-
sor, for example, the invariant Zy (the Berdichevsky
impedance). Let values of the impedance tensor [Z] be
determined in an observation region S; bounded by a

contour C and let [Z"], m =1, 2, ..., M be specified at
M points of Cj (Fig. 1). The average value of the invari-
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ant Zg on the contour Cj, i.e., on the boundary of the
observation region, is found as

M M (ra) L]
I w1 2325
2B HZZ‘I‘* = ﬁz 2

m= | m=|

Using a spline approximation, the values £y are extrap-

olated in such a way that the condition Zy = Zj is valid
on a new boundary contour C, and the derivative of
Zy along the normal to C; vanishes. Given these condi-

tions, we assume that the impedance Zj is close to the
normal impedance Zy, of a horizontally layered medium
in the region external with respect to C; and determine
the normal conductivity G{z) by the 1-D inversion of

the impedance Zg. To test this algorithm, one should
make sure that an increase in the distance between the
boundaries Cj and C, has no significant effect on the
results of MT and MV inversions in the central part of
the observation region S,

A similar algorithm based on the averaging and
extrapolation of longitudinal and transverse compo-
nents of the impedance tensor can be applied in a 2-D
approximation of elongated structures. Let observa-
tions be performed on a transverse profile §; from y=-¢,
to y = ¢ (Fig. 2). The average of the invariant Zy at the
ends of the profile is determined as

Zy = %{zn(,‘l' = =) + Zy(y = co) }

_ ZM=cp) + ZH(=cp) + Z'(co) + Z' (<o)
= Z :

Applying a spline approximation, the values Z are then
extrapolated beyond the profile in such a way that the

MNo. 4 2004



il

278
ZN = EB '-f]_ -ﬂ'“ S“ fﬂ:}. {'n f‘]_ ZN = EB
- J8
aplz) 'ﬂ{__v_ ;j aylz)
[ Observation domain
Fig. 2.

conditions Zz = Za and 9Z,/dy = 0 are valid at the
points ¥ = —€1 and y = ¢;. This extrapolation yields a
model in which the observation region is symmetrically
surrounded by @ horizontally homogeneous medium
that has the normal impedance Zy=Zy and a normal
conductivity oyz) determined from the 1-D inversion

of the impedance Zp:

onlz) ¥<—C
aly,z) = {9(n32) - <yY<6
onl(z) ¥=6i-

Evidently, the introduction of a symmetric normal
surrounding medium is quite justified if the values of Zy
at the ends of the profile are similar, Otherwise, one
should introduce an asymmetric normal model of the
surrounding medium. Such models do not require spe-
cial analysis, because any asymmmetric model can be
reduced by its mirror reflection to a symmetric model.

{2) Multidimensional inversions are less stable. This
is explained by the fact that, compared to 2 1-D model,
a much greater number of parameters is required for an
adequate description of 2- and 3.D models. It is evident
that multidimensional inverse problems are distin-
guished by 4 stronger contradiction between the
detailedness of their solutions and their stability, con-
trolling the resolution of the inversion [Berdichevsky
and Dmitriev, 2002]. The detailedness of inversion
should be consistent with ts resolution. Therefore, in
solving 2-D and particularly 3-D problems, onc should
smooth ofr schematize models of the geoelectric
medium. This complies with the nature of the electro-
magnetic  field, which provides information on
smoothed structures and their integral characteristics.

(3) The third property of multidimensional inver-
sions is the redundancy of experimental data. In the
general case, the real scalar function of conductivity
olx, v, 2) 18 found from four cnmplax—vnlued compo-
nents of the impedance tensor [Z(x, y, ©)] and two com-
plex-valued components of the tipper W(x, ¥, @} ie.,
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from 12 scalar functions. However, solving 2 2-D
inverse problem, one separates the galvanic and induc-
tion effects associated with the TM and TE modes and
reduces experimental data to two complex-valued com-
ponents of the impedance tensor and one complex-val-
ued component of the tipper. These components differ
:n both stability with respect 1o near-surface distortions
and sensitivity to various target structures. From the
standpoint of informativeness, they complement each
other, and their successive separate focused inversions
can give the most complete information on sought-for
geoelectric Siructures. The galvanic and induction
effects are nonseparable in 3.1 inverse problems, and
separale inversions of all six components of the imped-
ance tensor and tipper are hardly effective in this case,
because their informativeness is poorly known (not to
mention the laboriousness and instability of such an
interpretation). The best approach appears 10 be the
“cealarization” of a 3.D inverse problem, i.e., the deter-
mination of conductivity from scalar invariants of the

impedance tensor (e.g., using the invariant Zg =

.||'Z_,t_,2_\.x—-ZI_‘.Z_M or Zy = (Zy— Z,J2) and the tipper

(e.g., using the invariant W = W2, + Wi,. ). This
approach includes two informativeness levels: (1) MV
inversion (i.e., inversion of the scalar invariant of the
tipper), which provides information on deep structures
that is free from near-surface distortions, and (2) MT
inversion (i.e., inversion of the scalar invariant of the
impedance 1ensor), which can contain errors due to
near-surface distortions but provides information on
structures producing SLrong galvanic anomalies. Note
that the scalarization of the 3.D inverse problem (not-
withstanding a substantial simplification of the inter-
pretation procedure) requires significant compu tational
resources, because (WO forward problems for two dif-
ferent polarizations of the primary field should be
solved at each iteration Step in order to determine the
impedance tensor and tipper. The required computa-
tional resources can be substantially reduced by using
the method of synthetic fields. In this method, only one
forward problem 1S solved at each iteration Step,
because the conductivity ‘s found directly from the
magnetic (or electromagnetic) field synthesized at the
Earth’s surface from a known distribution of the imped-
ance (ensor or tipper.

2. INVERSE PROBLEM IN ONE-, TWO-,
AND THREEFDIMENSIDNHL MODELS

Here, we address inverse problem (3) and determing
the operators of the forward problem [Zlx,y, 2= 0, ,
alx,v.2)1] and Wix,»z=0, 0, olx, y.2)); ateach iter-
ation step, they calculate the impedance (ensor and tip-
per using an approximate distribution of conductivity
ol(x, ¥, 2)- Obviously, these operalors depend on the
dimensionality of models used.
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Inversion in the Class of 1-D Models

We consider a 1-D model in which the electrical
conductivity o(z) is a piecewise-constant function of
depth z:

U(:]=Gu it :n-l{:{:m
ne[1,N], =0, zy=eo, h,=2,-2,_,,

where @, and h, are the conductivity and thickness of
the nth layer, respectively. The model rests at the depth
2=y on an infinite homogeneous basement having a
conductivity oy = const. The scalar impedance Z of this
model can be directly determined from the Riccati
equation. Therefore, determining o(z) from the imped-

ance Z, we construct the operator Z{z=0, ®, 6(z)] with
the use of the Riccati equation:

dZ(z 0) . o2 e
— 6(z)Z°(z, w) = iwp,, @

ze [0, 241,

with Z(z, ®) being continuous at layer boundaries and
with the boundary condition

Wiy, (5)

2y, @) = (1~0) [0

Inversion in the Class of 2-D Models

Let a 2-D model striking along the x axis contain an
anomalous region [y| < [ the conductivity of which is a
piecewise-constant function of the horizontal coordi-
nate y and the depth z and let this region border infinite
normal regions y <—/ and y > { in which the conductiv-
ity O,{z) depends solely on the depth z (Fig. 3). Then,
we have

opy(z) y<-I
g =q0(y,z) -lsy=l (6)
au(z) y=>1.

The electromagnetic field in a 2-D model separates
into two independent modes: the inductive TE mode
with the components E,, H,, and H. and the galvanic
TM mode with the components E,, E., and H,. The TE
mode gives rise to the longitudinal impedance 2 and
the tipper W.,, which reflect the inductive effect of geo-
electric structures (inductive anomalies), whereas the
TM mode gives rise to the transverse impedance Z*,
reflecting the galvanic effect of geoelectric structures
(galvanic anomalies). Thus, we have three independent
formulations of the inverse problem, separating induc-
tive and galvanic anomalies of different physical ori-
oins,

(1) MT inductive inversion: a(y, z) is found from the
longitudinal impedance Z'. To determine the operator
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Ay, z =0, o, oy, )], the longitudinal impedance is
written in the form

- E(yz=0 o
Z(yz=0,0) = H_Lm_ﬂm;
e Byiz o) (N
= iw fAR, S
; ”“E-‘E,{:-n:,m}
a: +=0

where E (y, z, @) is obtained from the Helmholtz equa-
tions

BEE,{}H:, ®) | a’E_f{_v.ﬁ z, ®)

dy” dz”
+iop,ou(z)E(»z,0) =0

PE(y, 2, 0) A a'IE:{J’=1E= ) (8

Ay’ dz”
+ i, a(y, 2)E (v, z,@) = 0

Iv > 1,

=t
with the conditions at infinity

E_-;{}", o m)l}{ - '_""Efl:.-:, w),

(9
EI[:“" EI m}:_ —p i _— ﬂ
and the boundary conditions
dE (v, z, ®
[E.(y,z w)]s = 0, [—{;——}J =0. (10)
i I3

Here, E fr (z, w) is the normal electric field in the region

surrounding the anomalous zone, and n is the normal to
the boundary S between blocks or layers of different
conductivities. The square brackets in (10) indicate a
discontinuity of a function at the boundary §.

The anomalous electric field in air E7 (v, 2) = E(y, 2) -

EY (z) satisfies the radiation condition.

No. 4 20044
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According to (7) and (9), we have

EY Z
2:\a®) a1y

ZI{_"-’- s m]h{ —- ZH{:1 W) =

where Zy(z, ) and H_f (z, w) are the normal (1-D)

impedance and the normal magnetic field in the region
surrounding the anomalous zone.

{2) MV inductive inversion: o(y, z) is found from the
tipper ﬁ’;}. . To determine the operator W_ |y, z=0, o,
a(y, z) |, the tipper is represented in the form

o Hipnz=0,0)
W:}'{}'r - = ﬂq- m] = H.l_.{:lr", z= U,. {ﬂ‘}
dE (v, z, w) (12)
i O
dE (v, z, ©)
a: F 1]

where E (v, z, w) is obtained from Helmholtz equations (8)
with conditions at infinity (%) and with boundary condi-
tions (10). According to (9) and (12), we have

W:;-{}"- &y m]l}‘l—}m_.-‘- ﬂl “3]

i.e., the tippers vanish as the distance from the anoma-
lous zone tends to infinity.

(3) MT galvanic inversion: 6(y, z) is found from the
transverse impedance Z" . To determine the operator

Z*{y,z=0, ®, oy, z)}, the transverse impedance is writ-
ten as

iy _ E(n:=0,0)
L12=00) = H,(y,z=0,m)
aH (v, z, W) (14)
- 1 dz

T oW IH(,z=0,0)|._,

where H (v, z, @) is obtained from the Helmholtz equa-
tions

PH (v, 2, ®) a 'H (v.z, ®)

dy” dz”
+fm}lﬂU~[Z}HI{J’, Zy l'ﬂ} =0

v =1,
P Hy (.2 0) Hy .z 0)

v oz

+iopo(y, 2)Hnz,0) =0 |yl <1,

(15)

with the conditions at infinity

H (3, 2 @)y o — Hy (2, 0),
HJU"! L fﬂ'];_,,,_, —= 0

(16)
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and the boundary conditions

=0

(H,(z 0] = 0, [ -

H.(y,z=0,®) = const

1 9H,(v,zw)
o(y, z) dn ]‘,,

Here, H" (z, @) is the normal magnetic field in the
region surrounding the anomalous zone.

According to (14) and (17), we have
E f{a w)

HY(z, 0)

Z'(y, 3 @)y e — Zpylz, @) = (18)

where Zy(z, @) and Ef {z, @) are the normal (1-D)

impedance and the normal electric field in the region
surrounding the anomalous zone.

Inversion in the Class

af 3-D Models

We considered MT and MV inversions in the classes
of 1- and 2-D models. It is evident that these models are
connected with a rather rough mathematical abstraction
and the validity of their application to an approximate
description of real geoelectric structures always
requires analysis and substantiation. Presently, we have
a well-developed mathematical apparatus for the solu-
tion of 1- and 2-D inverse problems of magnetotellu-
rics, and criteria for assessing the conditions favorable
for the successful application of this apparatus are
available. Achievements of two-dimensional magneto-
tellurics are widely known, but one should not forget
cases of failure caused by the disregard of 3-D effects.
The development of effective computational programs
ensuring a sufficiently fast 3-D inversion of impedances
and tippers is the main challenge of modem magneto-
tellurics.

MNow, we address MT and MV inversions in the class
of 3-D models. Let a homogeneously layered Earth
with a normal conductivity g,(z) depending on depth z
contain a closed anomalous region V in which the con-
ductivity a(x, y, z) is an arbitrary piecewise-continuous
function of the horizontal coordinates x and y and the
depth z (Fig. 4). This model admits two independent
formulations of an inverse problem that separate MT
and MV inversions with their different sensitivities to
near-surface distortions.

(1) MT inversion: o(x, v, z) is found from the imped-

ance tensor [i 1. We determine the operator [Z]x, v, 2=
0, w, o(x, v, 2) }] with the help of the method of integral
equations.

Vol 40 No.o 4 2004
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The electromagnetic field in a 3-D model satisfies
the integral relations

E(r) = EV(r)
+”J""“{rvl[GE(rirv}lEErvifM s
'f
H(r) = H"(n)
(19b)

+I”ﬂﬁ(m[G"Erlrv]]E{r,,Jdv,
v

where EY and HY are the normal electric and magnetic
fields, [G"] and [G"] are the electric and magnetic
Green tensors, AG = G — Gy, 15 the excess (anomalous)
conductivity, M(r) is an arbitrary point in the Earth or
on its surface, and M (r,) is a point in the anomalous
region V.

An integral equation for the electric field inside the
anomalous region is readily derived from (19a). ITM(r e V.
we have

E(r,)- j'_[_[aa-(r,,}u;f{r;|:,,}]E[r,,;ufv -

= E"(r}).

Solving integral equation (20) and determining the
electric field E(r,) inside V, we substitute E(r,) into
(19) and find the electric and magnetic fields on the
Earth’s surface.

An advantage of this approach consists in the fact
that the electric and magnetic Green tensors are calcu-
lated only once for a given normal distribution of con-
ductivity G,(z). The conductivity o(r,) then changes in
the iterative inversion process, and kernels of integrals
are simply obtained through the multiplication of the
known Green tensors by the excessive conductivity
Aa(r,). This substantially shortens the computational

time because kernels of integrals need not be calculated
anew whenever the model of the medium changes.

The electric and magnetic fields are found for two
different polarizations of the normal field:

EYY = (], 0,0}, H"" = {0, #¥, 0},
EY = {0, £/, 0}, B"® = (4}, 0,0}.

The resulting electromagnetic fields on the Earth’s sur-
face E[” = {EL”‘ Ej-”-.{”q Ht“= {H-i-[ju H:.”. HE_-HI
and E¥= (£, E”,0),H®=(H, B, B ) pro-
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vide the system of linear equations for the determina-
tion of impedance tensor components

B i |
Z.t.rﬁf} + Z:_'L'H:.lh - E[;!in
{zﬂﬂ_‘t” +Z H = E,
Z_._.J,Hih-i- Z,TH?} & E?].

{Z‘-rH{rH"‘ Z H“: = E'.‘t”'l

(21)

Hence,

_EHD_EOHD OO e

- Hi::HLE:_Hi::Hiln‘ = HinHizu_Hi::Hé;]

5 EE,”Hf.H-Ef}Hi.“ : EQ D _ phg
W HL”H?’—H{,“H;”' i H?}H;E'-HPH}”'

XX

(2) MV inversion: o(x, , ) is found from the tipper W .
To determine the operator W{x, v, z =0, o, a(x, v, 2)},

we use the magnetic fields H® = (4", H", H" ]
and H® = {H®, H'” | H |, obtained on the Earth’s
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surface for two different polarizations of the normal
field, and solve the system of linear equations

(n (1) (1]
Wl + Wl = H, 23)
W HD + W H = HE )
which yields the tipper components
- HHP - PR
H,{,” Hi” - H® Hi_”
(24)

H’EIJH“:I o HE”HE!

W, = - - :
H-{IHH.';] L Hia-:lHi-”

¥

3. THREE QUESTIONS OF HADAMARD

Starting to solve an inverse problem, one should
answer three questions of Hadamard: Does a solution to
this problem exist? Is it unique? Finally, is it stable with
respect to small perturbations (errors) in initial data?
These questions determine the correctness of the for-
mulation of the inverse problem. If its solution exists
and if it is unique and stable, the problem is well-posed.
If one of these conditions is violated, the problem is
regarded as ill-posed. We show that inverse problems of
magnetotellurics are unstable and, therefore, ill-posed.

On the Existence of the Selution to the Inverse Problem
of Magnetotellurics

At first glance, the problem of the existence of the
solution appears to be simple, because the impedance

tensor [i] and the tipper W measured on a set of

Earth’s surface points should correspond to the really
existing distribution of conductivity in the heteroge-

neous Earth. However, the experimental values of [i]

and W being in practice more or less inaccurate, con-
flicts between real and model conditions are possible.

Let [Z] and W contain measurement and model
errors &, and 6. It is evident that the real distribution of
conductivity in the Earth and the real MT and MV
response functions do not belong to the chosen model
class on which the inverse problem (3) is defined. Such
an inverse problem does not have a rigorous solution.
To remove this contradiction, the notion of a quasi-
solution is introduced; namely, a distribution of con-
ductivity o(x, y, z) is said to be a quasi-solution of
inverse problem (3) if the misfits of the impedance ten-
sor and tipper calculated from this distribution do not
exceed the errors in the initial information 8, and &y
Inverse problem (3) having a set of quasi-solutions, we
have to select from this set a quasi-solution that pro-
vides the best approximation to the real. geoelectric

structure. This distribution of conductivity @ (x, v, 2) is
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called an exact model solution. In solving the inverse
problem, our goal is to find the exact model solution.

Using the notion of the exact model solution, we can
formalize the definiton of measurement and model
errors. Let [Z] and W be the impedance tensor and the
tipper obtained from a model that belongs to the chosen
model class and has the conductivity @ (x, v, 2). Then,
measurement errors are determined as

2= liz1-1zil &y =Iw-wl, @9
and model errors are determined as
85 = [[Z1-1Z{x, v, 2= 0, », o(x, v, )},
7 = l1Z]1-[2{x,) (x, v, 2 HI -

ﬁﬂ:-d = ||W -W{x,y,z=0,w, o(x,y, :j}".

Setting 8, = 83" + 83" and &y, = &y + &) and
applying the triangle rule, we reduce (25), (26) to the
initial inverse problem (3).

On the Unigueness of the Solution to the Inverse
Problem aof Magnetatellurics

Considering inverse problems of magnetotellurics,
we proceed from the following heuristic statement. If
the impedance tensor and tipper belong to a model class
on which the inverse problem is defined and are exactly
specified on the Earth’s surface in the entire frequency
range, the inverse problem has a unique solution. This
statement was proven in four partial cases.

Tikhonov [1965] proved the theorem of uniqueness
for 1-D MT inversion in the class of piecewise-analyti-
cal functions o(z). He considered this theorem as a
basis for MT sounding.

We present a simplified proof of the theorem of
Tikhonov for the case of a piecewise-constant distribu-
tion of the conductivity. Let o(z) be a piecewise-con-
stant function of the depth z:

olz)=0, at z,_; <2<z,
ne [LLN], 53=0,zy=92, M, =z,—
where ¢, and h, are the conductivity and thickness of
the nth layer and z, is the depth of its lower boundary.
The model rests at the depth z= zy_, on an infinite

homogeneous basement having the conductivity gy =

const. The admittance ¥(z, @) in this homogeneously
layered model satisfies the Riccati equation

d¥Y(z, w)
dz

Sn=1e

+iop,Y(z, @) = -0(z2), o7

ze [0,zy_,], we [0, =]

with the boundary conditions

[Y(z. 0)]s = 0, Y(zy_;, @) = (1 +i}a.’23:lﬂ.'
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A recurrent formula expressing ¥, _, = ¥i(z,_,, ©)
through ¥, = ¥(z,, ®) is easily derived from the Riccati
equation:

ok (But Vo) — (B, = Yo)e
B+ Y + (B, - Ve

where k, is the wavenumber of the nth layer,

(28)

by = (141) [—E0%n
and
k G
. RPN ET Y S
P WLy 2wy

Inverting (28), we obtain a formula determining ¥,
through ¥, _; (converting the admittance from the upper
boundary of the nth layer to its lower boundary):

{Bu"‘rn-l:'_{ﬁu_ Ym-lje
':Bn'i' }’H-*]}'!-{BMHYIT-lje

Let the admittance ¥, = ¥{0, ®) be known at the Earth’s
surface. Then, the successive application of (29) pro-
vides the admittance ¥, = ¥{(z,, ®) at any depth z, if the
distribution &(z) is known in the interval 0 < z < z,,.
Now, we prove the theorem of uniqueness, which is
formulated as follows. If ¥''){(z, @) and ¥**)(z, w) are the
solutions of problem (27) for o'V(z) and o**)(z), then

Yo' (@)= Yy (w) implies that ''(z) = 0(z). This the-

orem is easily proven ad absurdum. Assume that

ik b,

Y.,=B (29)

2ik "

i (@)=Y (), (30a)
d"(2)=0"(z) at 0<z<z,_,, (30b)
6(2)#6P(z) at z>z,_,. (30¢)

Then, applying (29) to (30a) and (30b) and extending

Yo' and Yy to the depth z,_,, we obtain Y.’ (w) =

Yﬂ. (w). The high-frequency asymptotics of ¥ f,'_' (@)
and Y'”| () are described, according to (28), by the

Fo (@)= B, = (14) 520

formula
Thus, the assumption Ff,'_'][m] = Yf,z_' (w) leads to

af,” = Uf}, which contradicts assumption (30c). Suc-

cessively increasing n, we reach the model basement

and obtain a''(z) = ¢'*(z). The theorem of uniqueness
is proven.
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The next step was made by Weidelt [1978], who
proved the theorem of uniqueness for a 2-D model
excited by an E-polarized field. The electrical conduc-
tivity in this model is described by an analytical func-
tion oy, z). The conductivity o(y, z) was proven to be
uniquely determined by simultaneous observations of
horizontal components of electric and magnetic fields
in the entire frequency range 0 < w < e along a y-profile
of a finite length.

The theorem of Weidelt was generalized by Gusarov
[1981], who considered a 2-D E-polarized model with
a piecewise-analytical distribution of conductivity ofy, 2).
The theorem proven by Gusarov states that the piece-
wise-analytical function o(y, ) is uniquely determined
by MT inversion of the longitudinal impedance Zl=Z_,
specified in the entire frequency range 0 < @ < = on an
infinite y-profile —es < y < oo,

The idea underlying all these proofs is based on the
properties of the skin effect. The latter implies the exist-
ence of a high frequency such that the feld or imped-
ance can be approximated by a high-frequency asymp-
totics depending on a local value of 6. Comparison of
high-frequency asymptotics for various geoelectric
structures suggests that different distributions of con-
ductivity o correspond to different fields and different
impedances. Unfortunately, the realization of this sim-
ple idea encounters significant mathematical difficul-
ties due to the complexity of the determination of high-
ﬁ'f:?ll._lﬁ‘.nl:}" asymptotics of the field in heterogeneous
media.

Resorting to intuition, the above proofs of unique-
ness can be extended to the general case of MT inver-
sions. Intuition suggests that the ® dependence of the
impedance tensor (the skin effect) ensures the determi-
nation of wvertical variations in the conductivity,
whereas the horizontal variations in the conductivity
can be determined from the dependence of the imped-
ance tensor on x and y. Thus, it appears evident that
measurements of the MT impedance made in a wide
frequency range on sufficiently long profiles or in a suf-
ficiently large area can provide information adeguate
for the reconstruction of the geoelectric structure of the
region studied.

The problem of uniqueness of the solution of the
MYV inverse problem requires a special consideration.
At first glance, it seems that the tipper characterizes
horizontal heterogeneity of the medium and cannot
provide information on its normal structure G,/(z)
because we have W, = W_, = 0 in a horizontally homo-
geneous model. However, if the medium is horizontally
inhomogeneous, MV sounding can be considered as
ordinary frequency sounding utilizing the magnetic
field of a local embedded source. The latter can be rep-
resented by any inhomogeneity Ac(x, v, z) in which an
excessive electric current is induced that spreads into
the host medium. It is evident that the distribution of
this current and its magnetic field depend not only on
the structure of the inhomogeneity Ac(x, v, z) but also
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Oplz)

Fig. 5.

on the normal structure g,(z). Thus, the solution of the
MV inverse problem o(x, y, 2) = gz) + Ac(x, y, =
exists and we should elucidate whether it is unique.

The theorem of uniqueness for the MV inversion
was proven by Dmitriev [Berdichevsky er al., 1997].
The model shown in Fig. 5 is considered. In this model,
a homogeneously layered Earth with the normal con-
ductivity

U{z}! ﬂ“: < H
ﬂ'". H"'-:."__

Gylz) = {
contains a 2-D inhomogeneous region S of an excess
conductivity Ac(y, z) = 6(y, z) — Gy(z). The inhomoge-
neity is elongated along the x axis, and the maximum
size of its cross section is d. The functions &{z) and
Ac(y, z) are piecewise-analytical. An infinite homoge-
neous basement with a conductivity Gy = const occurs
at depths greater than H.

Dmitriev's theorem states that the piecewise-analyt-
ical distribution of conductivity

GH{:} Megs8

Oy(z) + Ac(y, z)

G{M}={ MeS§

is uniquely determined by exact values of the tipper

H.(y,z=0)
H/(y.z=0)

given at the Earth’s surface z = 0 at all points of the y
axis from —e to == in the entire range of frequencies
from 0 to =,

This theorem of uniqueness is proven in two slages.
The asymptotics of the tipper W_(v) at a great distance
from the inhomogeneity § is first derived, and the fre-

W,(y) = —sogy<en, (S@WSeo,
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quency dependence of this asymptotics is shown to
uniquely determine the distribution of the normal con-
ductivity Gp{z). Then, it is proven that, with the known
conductivity Gy(z), the tipper uniquely determines the
impedance of the inhomogeneous medium.

The anomalous magnetic field at the Earth’s surface
can be represented as the field produced in a horizon-
tally homogeneous layered medium by excess currents
of density j, induced in the region S:

_Hi(nz=0) _
Hy(z=0)

e H'J' gz 0
H(y) = ff—] = fjr:Mn:rh:t:.-. M,)ds,
Hy(z=0) 1

[ieMo)hy(y, Mo)s,
: G1)

where h(y, My) and h.(v, My) are magnetic fields pro-
duced at the surface of a horizontally homogeneous
medium by an infinitely long linear current of unit den-
sity flowing at the point My(yy, Z) € S. The functions
h,(v, Mg) and h.(y, My) have the form [Dmitriev, 1969,
Berdichevsky and Zhdanov, 1984]

hy(y, My) = m%ﬂ!i_rpuj-msl{y — ¥o)
0

(32)
x e UM, z =0, z5)AdA,
£ Fodoo
h.(y, M) = _m_l.i.;.!l-inn{hml{} - ¥o) G3)

x e=U(M, z = 0, zp)AdA,

where the factor £ relates to the upper half-space z <0
and the function U(A, z, zp) is the solution of the bound-

ary problem
U 2 2)

HE(L:}U{L %, 2) = -B(z-2p),

.'.':ZqE EﬂrHl:

n{i, z) = .f'?f-:'munﬁnt:}. Ren>0;

52 (34)
ﬂ%’_j’_.ﬂ'}J,lumazn} SOV
dU(A, z, 2
(;:;z n}-rlﬂ{l}u[j"nzqin] =0 at : = H:

Ma(A) = JA — ooy, Reny>0.

Note that the components H’f and H. of the anom-
alous magnetic field can be found from values of the
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tipper W.,, known at all points of the y axis. To dﬂlcr—

[

mine HJ: , we solve the integral equation . §

(35)

H il
FI::I }H-A{1]+ j [vn]d Yo = -W. \-{"}1
Yo~

after which H. is found from the known value of H, :

H. = W,(1+Hy). (36)

Now, we find the asymptotics of the functions f,(y, My)
(32) and Jr.(y, My) (33) at |y — yo| —= e=. Harmonics of
low spatial frequencies A make the major contribution
to (33) at large [y — yp| Expanding U(A, z = 0, z) in
powers of small &, we have

U(hz=0,z) = U(A=0,2=0,2)
+34U(A =0, z)
dA A=D

hence, upon the substitution into (33) and integration,
we obtain

+ .l

i UAL=0,2=0,z)

h(y, Mg) = — -
wp-u i :
I (¥y—yo) @7
+O( ‘J.
(¥=a)
Similarly, we obtain from (33)
ho(y, M) = mz—f———l dU®,z =0, z)
l'll:l{y Vﬂ} dl L= {33]
+u( ‘ )
(¥ = ¥o)

In order to write the relations between H, and H.
in the form containing the MT impedance, we intro-

duce the functions
V(z) = Uk =0,z z),
dU(M, =, %)
dh fi-o
The function V,(z) is the solution of problem (34) at
A= 0. The problem for the function V,(z) is obtained by

differentiating (34) with respect to A and setting A = 0.
Then,

Viz) = Fo)

1|'.l"_ =
VL) | iouo(z)Viz) = 0 ze [0, H),
dv.a)|  ~ _y 0y, (40)
dz .- :
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di;:(ﬂ - J-iop,e,V.(H) = 0.
< |:=#
In this notation,
Al e ) o 1Y
¥ m z =
Ho(y— ) (¥=yo) @n
2i V.(0) 1
(M) = —=o==g 4 0 )
4 OHg(y - y,) (L‘-' - ¥o)’

Returning to (31), we determine the asymptotics of
the anomalous magnetic field. At |y — yy| —= ==, we
have

f:{Mﬂ}
H. = -——-P’ 0) | ———dS
B ) WHo [ }'[ (y=>0)
_i V(o) i3 V(ﬁ}
- | J(Mg)dS
T Ol (y— ) % ~ OHtg(y - J’sl i
H.(y) = —vm}_[ Jx(Mo) 22700 yg
Al o)’
_ 2 vu}]j _ 2 VA0) J.
= Bitogy gy M OHo(y— y5)
where

Jo = [idMo)ds
5

is the total excess current in the inhomogeneity and yg is

the coordinate of the central point of its cross section S.
Thus, with regard for (38), we have

H) __2 VO _ 2 VO .
By -0 (r-y5)dV(2)
dz |:a0

in a region sufficiently far from the mhumﬂgcnmty
S ([(y — v¢| = d, where d is the maximum size across the
inhomogeneity).

In order to show that the ratio H./H, can be
expressed through the normal impedance of the Earth,
we introduce the function

Z(z) = iopy d,,;{{ }}

dz

According to (40), this function satisfies the Riccati
equation

(44)

dZ(z)

~i (45)

-0z ]zi ) = iy,
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with the boundary condition

w7
Z(H) = / U”“.
M

We obtained the known problem (4) for the impedance
of a 1-D medium having the conductivity Gy{z). The
function Z(z) in the model under consideration evi-
dently represents the normal impedance Z,(z). Setting
Z(2) = Z,{z) and taking into account (43)—(46), we find
the far-field asymptotics

(46)

_im”ﬂ[.“ £8 }'S} F':Ur}
2

Z,(0) = £
° HW

(47)

e

coinciding with the known expression for the field of a
remote infinitely long linear current [Vanyan, 1965].
The normal impedance Zy is connected with the ratio of

the anomalous magnetic field components H. and Hf.',
which can be determined, according to (35) and (36),
from values of the tipper W., known at all points of the
y axis from —ee to ==. Knowing the tipper W_, all along
the y axis, we synthesize the anomalous magnetic field

(H., Ff;:' ) and calculate the normal impedance Z, from
the far-field asymptotics. Knowing the anomalous mag-
netic field (H., Hy ) and the normal impedance Zy, we
integrate the second of the Maxwell equations (the

Faraday law) and continue the longitudinal impedance
ZI to the entire y axis:

E

H,(y)

l ¥ (48)
=3 HH{ZN-imuﬂIﬁ;{y}dy}.
+

¥

Thus, we find Z' from values of W.,. A one-to-one cor-

respondence exists between W_, and Z'. Therefore, we
can apply the theorem of Gusarov [1981], stating that
inversion of Z! has a unique solution, and extend this
result to inversion of W,. The theorem of uniqueness
for 2-D MV inversion reduces to that for 2-D MT inver-
sion (the TE mode). Both methods, MV sounding and
MT sounding, have a common mathematical basis. The
2-D conductivity distribution is uniquely determined
from exact values of impedances or tippers given at all
points of the Earth's surface in the entire frequency
range.

On the Instability of Inverse Problems
of Magnetotellurics

Inverse problems of magnetotellurics are unstable.
The set Z;, characterized by small misfits of the imped-
ance tensor and tipper, can contain equivalent solutions
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that arbitrarily differ from one another and from the
exact model solution.

We consider this property of inverse problems of
magnetotellurics using, as an example, the 1-D inverse
problem. The analysis is based on the theorem of stabil-
ity of the S-distribution proven by Dmitriev in [Ber-
dichevsky and Dmitriev, 1991, 2002].

Recall that the S-distribution is the function

S(z) = _[m::]d;‘
L]

determining the conductance of the Earth on the inter-
val [0, z]. The conductivity @ is connected with the con-
ductance S through the differential relation o(z) =
dS(z)/dz.

The theorem of stability of the S-distribution con-
sists of two statements.

(1) The admittance ¥(w) = ¥(z = 0, @) measured at
the Earth's surface depends continuously on 5(z). Thus,
the condition

Is" (@) - s (@)lc<e

(49)

(50)
implies that
Iy (@) - ¥ (o). < 8ce),

where § —= Qatg —= 0.

(2) The conductance S(z) is stably determined from
the admittance Y(w) = ¥(z=0, w) specified at the Earth’s
surface. Thus,

Is (@) - s (@)le —0

(31)

(52)

¥ () - ¥* (@)l — 0. (53)

The set of conductivity distributions obtained from
the inversion of 1-D admittance is

o5€ Iy = {0(2): [¥(w) - Y[w, 6(2)]], <8}, (54)

where ¥ (®) is the measured admittance, Y[, o(z)] is
the operator calculating the admittance from a given
distribution ©(z), and &y is the error in the admittance
values. The theorem of stability of the S-distribution

implies that, for any two distributions o (z) and

ot () from the set Z;, the following condition is valid:

= E[a}'}t
c

(35)

_:[ﬁ‘ﬁ' "2)dz - jagl‘:; )z
o [i]

where € —= 0 at 8, —= 0. If the distributions o}’ ()

and cr‘an (z) meet condition (55), they are equivalent;

i.e., they are characterized by close S-distributions and
cannot be resolved by MT observations performed with
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the uncertainty 8y Such distributions of the conductiv-
ity are called S-equivalent distributions, so that X is the
set of S-equivalent distributions of the conductivity. In
the case of 1-D magnetotellurics, we can formulate the
following generalized principle of S-equivalence: the
conductance S(z) characterizes the whole set X; of
equivalent solutions of the 1-D inverse MT problem. To
specify the entire set I it is sufficient to know its
S-distribution.

Differentiating the conductance S(z), one intends to
find the conductivity o(z). However, the immediate
numerical differentiation of 5(z) is an unstable opera-
tion generating a scatter in the distributions o(z). The
determination of (z) from ¥(w) is evidently an unsta-
ble problem. As can easily be shown, there exist essen-
tially different distributions o''(z) and ¢*(z} corre-
sponding to close distributions §'(z) and $(z), and
thereby to close distributions ¥'"() and Y*)(w).

Now, we return to the 1-D model with an infinite
homogeneous basement at a depth h. Let, for example,

¢} P 0 at zg [2,2'+Ah]
¢ (z)-07(z) =
clJAh at ze [, +Ah),
where z' + Ah < . Then,
Sm{:}-Sm{:} = I[G“]{:}—G{!}{:]]d:
1]

0 at O0=sz=¢
= f{:—:'}fﬂ: at F <z +Ah
cJhh at Z+AhSz<h.
The norm of deviations is determined as

Ny = l6"(2)- 6Pl
& 2

= {I[G‘”{:}—ﬁ”'[:}]'d:} =,
o

N = I57(2) - 5Pl

I 12
={j{3“'(;}- .s“’.;;nzd:} = e JAh(h -z = 2AR/3).
L]

Choosing large ¢ and small Ah, the deviation N, can
always be made arbitrarily large, and the deviation Ng,
arbitrarily small. Consequently, arbitrarily close distri-
butions of the conductance and arbitrarily close admit-
tances can correspond to arbitrarily differing distribu-
tions of the conductivity. The inferred estimates have a
simple physical interpretation. Let the medium studied
contain a thin layer whose conductance S, is much
smaller than the conductance S of the overlying layers.
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The conductivity of the layer can vary within wide lim-
its constrained by the condition 5 < 5, but these varia-
tions affect only insignificantly the admittance mea-
sured at the Earth's surface.

The 1-D inverse problem is unstable. Evidently, we
have every reason to extend this conclusion to 2- and
3-D inverse problems. Compare, for example, a model
with a smoothly varying boundary between two deep
layers and a model in which this boundary rapidly fluc-
tuates around an average smooth variation. Their MT
and MV response functions observed at the Earth’s sur-
face will virtually coincide, although these models are
largely different.

Inverse MT problems are unstable. An arbitrarily
small error in initial MT and MV data can lead to an
arbitrarily large error in the results of inversion of these
dala, i.e., in the conductivity distribution. Using the termi-
nology of Hadamard, we state that inverse problems of
magnetotellurics are ill-posed. A direct approach to the
solution of ill-posed (unstable) problems is geophysically
useless, because it can yield results far from reality.

4. INVERSE PROBLEMS
OF MAGNETOTELLURICS IN LIGHT
OF TIKHONOV'S THEORY
OF REGULARIZATION OF ILL-POSED
PROBLEMS

The cornerstone of MT and MV data interpretation
is the theory of regularization of ill-posed problems. Its
basic principles were formulated by Tikhonov [1963].
Presently, methods of this theory have been developed
rather comprehensively and are widely used in practice
[Tikhonov and Arsenin, 1977; Tikhonov and Gonchar-
sky, 1987; Zhdanov, 2002]. The Russian mathematical
school headed by A.N. Tikhonov gave rise to a new sci-
ence of interpretation of observations encompassing
various fields of science and technology.

In accordance with [Berdichevsky and Dmitriev,
1991, 2002; Zhdanov, 2002], we consider inverse prob-
lems of magnetotellurics in light of Tikhonov's theory,
which provides a basis for developing the strategy of
MT and MV inversions.

Conditionally Well-Posed Formulation of Inverse
Problems of Magnetotellurics

The interpretation of an unstable MT or MV inverse
problem is meaningful if a priori geological-geophysi-
cal information on the region under consideration is
used and certain restraints are imposed on its geoelec-
tric structure. This is a way to transform an unstable
problem into a stable one. In the absence of a priori
information restricting the scope of the search, we can
obtain only one of the equivalent models or, at best, a
model with a significantly smoothed distribution of
conductivity leveling out contrasts of sought-for struc-
tures.
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Thus, the transformation of an unstable problem
into a stable one is attained by imposing an additional
condition restricting the scope of the search. A compact

subset Eg containing the exact model solution and con-

sisting of solutions sufficiently close to the exact model
solution is chosen in the set X; of equivalent solutions.

_ (Recall that a functional set is compact if any sequence

of functions of this set contains a subsequence converg-
ing to a function also belonging to this set and that the
necessary condition of compactness of a set is its
boundedness.) The theory of regularization is based on
the theorem of Tikhonov on the stability of an inverse
problem defined on a compact subset [Tikhonov and
Arsenin, 1977; Berdichevsky and Dmitriev, 2002]. This
theorem is formulated as follows: if the error & of the
initial information tends to zero, the solution of the

- C
inverse problem on a compact subset 3 converges to

the exact model solution. An ill-posed inverse problem
that has a unigue solution and is stable on the compact

subset Xg is called conditionally well-posed (or well-

posed after Tikhonov), and the subset Ef is called a

correctness set. Thus, the inverse problem ill-posed
after Hadamard becomes well-posed after Tikhonov.

The compact subset E;: {the correctness set) is cho-

sen with the help of the generalization of a prior geo-
logical-geophysical information (experimental evi-
dence, reasonable hypotheses, and general ideas of the
origin and configuration of geoelectric structures). In
essence, this means that a new geoelectric model is con-
structed on the basis of previous geological and geo-
physical models. The solution of an MT or MV inverse
problem is effective if magnetotellurics provides new
information as compared to what was known before
MT and MV observations. Naturally, the solution of an
inverse problem should be preceded by analysis of a
priori information (in conjunction with the visualiza-
tion of MT and MV characteristics, which facilitates
the identification and localization of geoelectric struc-
tures),

In constructing the correctness set (the compact sub-

sel z‘g"}. i.e., in imposing restraints on the geoelectric
structure of the medium, one should keep in mind that
the condition & —= 0 is unrealizable in practice,
because initial information, which is obtained by pro-
cessing of field measurements, is never [ree from
uncertainties. Therefore, we speak of the practical sta-
bility of a conditionally well-posed problem. The prob-
lem is regarded as practically stable if the width of the
correctness set is such that, given real errors 8, it con-
sists of solutions that are sufficiently close to the exact
model solution.

The correctness set, in which the solution to the
inverse problem is sought, forms an interpretation
model. The latter should incorporate modern ideas
(hypotheses) on the stratification of the medium and on
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heterogeneities disturbing this stratification. The inter-
pretation models of magnetotellurics separate into two
classes: (1) layered models and (2) locally inhomoge-
neous models.

A layered model consists of a finite number of infi-
nite or wedging-out layers. This model class includes
horizontally layered models, consisting of homoge-
neous layers with horizontal boundaries, and quasi-hor-
izontally layered models, in which the electrical con-
ductivities of layers and their boundaries slowly vary in
horizontal directions. A very important feature of the
quasi-horizontally layered models is the presence (or
absence) of high-resistivity layers playing the role of
salvanic screens. This property, characterized by the
galvanic constant of the model, determines the extent of
near-surface galvanic anomalies and the sensitivity of
the model to deep conductive structures.

The locally inhomogeneous models are layered
models with breaks in their layers, sharp variations in
their conductivity and boundaries, and heterogeneous
inclusions of an arbitrary shape (for example, conduc-
tive bodies or conductive channels).

The construction of an interpretation model is based
on a priori geological and geophysical information and
qualitative constraints obtained from the analysis of
MT and MV characteristics determined directly from
field measurements. This analysis narrows the choice of
the correctness set and allows one to construct an inter-
pretation model described by a small number of param-
eters.

The interpretation model should meet the following
two requirements:

it should be informative, i.e., describe main proper-
ties of the geoelectric medium, including objective lay-
ers and structures; and

it should be simple, being determined by a small
number of free parameters that ensure the practical sta-
bility of the inverse problem.

It is evident that these conditions are opposite: the
more informative the model, the more complicated it is.
Thus, we have to choose an optimal model that will be
sufficiently informative and sufficiently simple. This is
a crucial point of the interpretation, predetermining
both the strategy of the inversion and, to an extent, its
results. It is at this stage of interpretation that the intu-
ition of a researcher and his or her professional skill and
academic qualification, understanding of the real geo-
logical situation and goals of the MT survey, and adher-
ence to traditions, as well as willingness to deviate from
them, become significant. Although the choice of an
interpretation model is subjective, it is nevertheless
limited by a priori information, results of qualitative
analysis of field measurements, and reasonable hypoth-
eses. It is in this sense that we state that the interpreta-
tion of MT and MV data is effective under the condition
of sufficiently complete a priori information constrain-
ing the search. Although the statement that the better
the geoelectric structure of the medium is known the

2004



INVERSE PROBLEMS OF MAGNETOTELLURICS: A MODERN FORMULATION

better it can be determined seems paradoxical, it actu-
ally means that, solving the inverse problem, we
improve and widen our knowledge of the structure of
the medium, and therefore, the better this structure is
known, the more meaningful and detailed the new
results will be.

The amount of a priori information required to con-
struct an optimal interpretation model depends on the
complexity of the medium studied and on the goals of
the interpretation. Whereas detailed a priori informa-
tion on the tectonics and geodynamics of a region is
required in rift or subduction zones, even very general
ideas on the stratification of the study medium are suf-
ficient in the case of stable platforms. Moreover, we can
reject altogether a priori information at the preliminary
stage of interpretation and perform the smoothed
Occam inversion, which is, in essence, a formal trans-
formation of experimental data. Such a transformation
provides a gross geoelectric regionalization helpful for
the identification of zones of interest for further inter-
pretation.

Tikhonov's theory of ill-posed problems offers two
basic approaches to the interpretation of MT and MV
data: (1) optimization method and (2) regularization
method [Berdichevsky and Dmitriev, 1991, 2002]. We
briefly describe these approaches.

Optimization Method

This approach is only effective in studying simple
media, described by a small number of parameters. Let
us return to inverse problem (3) and assume that we
have a priori information constraining a compact set M
of admissible solutions of this problem including the
exact model solution. If approximate values of the

impedance tensor [i] and the tipper W are known from
observations, the conductivity distributions G (x, y, 2)
and Erw{x. ¥, 2) minimizing the misfit functionals

(6"} = [1Z)-1Z{x», 2= 0,0,6%x, y, )}l
= inf [[Z1-[Z{x,y,2= 0,0, 6(x y, )},
"6} = IW-W{xyz2=00,6"y 21
= inf [W- Wi{x,»z:=0 0 0(x 4

oa M
are approximate solutions of problem (3). As a rule, the
misfit minimization procedure is iterative. A starting
model is constructed through the parametrization of the
interpretation model. The forward problem is further
solved and the misfits between model and experimental
values of the impedance tensor or the tipper are calcu-
lated. A new model, decreasing the misfits, is then cho-
sen. The iterations are performed until the misfits

approach the level of errors in the initial values of [Z]
or W.. If the misfits cannot be decreased to the level of
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errors in the initial data, this implies that the compact
set M was chosen to be overly narrow. In this case, we
test successively widening compacta (e.g., we increase
the density of subdivision of the model). A compactum
on which the equation misfit is equal to the uncertainty
of initial data is regarded as an optimal compact set.
However, an overly wide compactum makes the prob-
lem unstable and can yield a solution that differs
strongly from the exact model solution. This limits the
actual applicability of the optimization method.

It is evident that separate inversions of the imped-
ance and tipper are effective if the solutions 6° (x, y, 2)

and G (x, ¥, z) are close to each other. Otherwise, mag-
netotelluric and magnetovariational inversions should
be performed self-consistently. For example, we can
minimize the functional of the total misfit

'1'-'{!3{.1‘, W)

= Z1-1Z{x, y.2=0,0,0(x, v, 201" 57

+|W-Wi{x,y,:=0, 0 o0(x, s :]}Hz

and control the contributions of MT and MV inversions
by assigning them specific weights. Alternatively, we
can accomplish successive interrelated partial inver-
sions: starting with the MV inversion, which is free
from distorting effects of local near-surface inhomoge-
neities, we proceed to the MT inversion with a starting
model constructed from the results of the MV inver-
sion. This approach is advantageous in that it eliminates
near-surface distortions, forming geoelectric noise.

Regularization Method

Regularization of solutions substantially widens the
possibilities of interpretation. Given a sufficient
amount of a priori information, this approach provides
maximum geoelectric information consistent with the
accuracy of field observations. The main feature spe-
cific of the regularization method is that the criterion
for choosing an approximate solution is included
directly in the inversion algorithm. In solving the
inverse problem, the compactum M narrows around the
exact model solution. The regularization method
admits the input of any type of a priori information,
controls its influence on the solution of an inverse prob-
lem, and focuses the inversion on objective layers and
structures.

This approach is based on the regularization princi-
ple: the criterion for the selection of a solution should
be such that the inferred approximate solution should
tend to the exact model solution of the inverse problem,
when the errors in the initial information tend to zero.
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The regularization principle for MT (3a) and MV (3b)
inversions has the form

lim &(x, y,2) = Ez[_\; ¥, z) MT inversion,

Gy =l

T e —W B : : (38)
im6 (x,y,z) =0 (x,¥,z) MV inversion, -

By~

where 67, 6" and 6°, " are approximate and exact
model solutions of MT and MV problems and 8, &y are
errors in the initial information.

The regularization principle is implemented with
the help of a regularizing operator. A set of analytical
and numerical operations that allows one to obtain an
approximate solution satisfying the regularization prin-
ciple is called the regularizing operator R of the inverse
problem. In inverse problems of geophysics, it is
advantageous to use a regularizing operator R, depend-
ing on a numerical parameter ¢ > 0, which is called the
regularization parameter. As the level of errors in the
initial information & tends to zero, the regularization
parameter ¢ should also tend to zero:

Eﬁmﬂu —= 0 (MT inversion),

limo —0 (MV inversion),

By =+ 0

(59)

and the regularizing operator R,, when applied to the
approximate response function, should yield the exact
model solution of the problem:

B!iman[i] = &(x,»,2) (MT inversion,),
z 1 W {ﬁﬂ}
lim R,W = G (x,y,z) (MV inversion).

By =0

The determination of the approximate solution of an
inverse problem stable with respect to uncertainties in
the initial information reduces to the construction of the
regularizing operator R, and the determination of the
regularization parameter consistent with the accuracy
of observations. The approximate solution obtained in
this way is called a regularized solution.

Variational methods of constructing the regularizing
operator are most widespread in geophysics. A stabiliz-
ing functional (a stabilizer), providing a criterion for
the selection of admissible solutions, plays a key role in
this approach. The stabilizer is usually written in the
form

Qfo(x, 3, 2)} £C, (61)

where C is a positive constant. The functional
Q{o(x, y, z)] determines a compact set of functions
a(x, v, 2) € Z¢. The smaller the value of C, the narrower
the set . Introducing (61), inverse problem (3) is for-

mulated as a varational problem for a conditional
extremum:

infQ{alx, v,2)}
NZ1-1Z{x,y,2=0,0,0(x v 2} <8, (62a)
I|w ~ w': X, _}r‘ L= D, [ﬂ, ﬁ{-tr .1'r1l :}}" E‘ E'll’: {ﬁ?.b}

i.e., we find a minimum compactum Z consisting of
functions olx, y, z) that satisfy conditions (62a) and
(62b). The set £ of approximate solutions of such an
inverse problem is the intersection of the compactum

L with the sets Z;, and Z; of equivalent solutions of
MT and MV inverse problems:

E = E‘E‘ m Eﬁz m E-au_.

It is convenient to replace the conditional extremum
problem by an unconditional extremum problem:

inf®,{a(x, y,2) 1, (63)
where @, is Tikhonov's regularizing functional,
.-.g ',L" = Cad | 1: ﬂ _’r'_;"'
®{o(x, y, 2} =M{o(x, y, 2) } + eQ{o(x, » }}{454}

consisting of the functional of the total misfit
M{o(x, v 2)}
= l1Z1-1Z{x,y,2= 0,0, 6(x, 3, D HI°

+ Iﬁ" -W{x, y,z=000(xy, ._'-'}}I1

and the stabilizing functional (). The solution of this
inverse problem reduces to the minimization of ®,(G),
i.e., to the minimization of M(c) and £2(g). Whereas the
initial problem (3) is unstable, the solution obtained by
minimizing the functional @, is stable with respect to

small variations in [Z] and W . This is due to the fact
that the functional £(c) narrows the class of possible
solutions and stabilizes the problem. Such a functional
is called a stabilizer.

The structure of the functional Q(g) depends on a
priori restraints imposed on the solution of an inverse
problem. This can be, for example, the requirement of
smoothness of o(x, y, z), satisfied by minimizing the
functional

Q(o) = j{ G—‘:] + G—;’): + (%’)z}dxdydz . (65)
.

or the requirement of closeness of a(x, v, z) to a hypo-
thetical model Gylx, v, z), satisfied by minimizing the
functional

Q(0) = [{0(x,y,2)~Go(x, . )Y 'dxdydz.  (66)
v
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The weight of the stabilizing functional, ie., the
amount of its effect on the solution of an inverse prob-
lem, is controlled by the regularization parameter o
(Fig. 6). At large o, the minimization of ®,(c) leads to
the predominant minimization of Q(c), i.e., smoothes
the solution too much or retains it near the a priori
hypothetical model, ignoring results of observations. At
small @, the minimization of ®.(g) leads to the pre-
dominant minimization of M(o): the stabilizing effect
of (o) is suppressed and an unstable incorrect solu-
tion is obtained. An optimum value of o providing a
sufficiently small misfit and ensuring sufficiently strong
stabilization of the solution should evidently be found.

The regularization parameter should be consistent
with the uncertainty of the initial information 8. The
optimum value of ¢ can be chosen by testing a mono-
tonically decreasing sequence @ > ¢ > ... > o, For
each «, variational problem (63) is solved and the iter-
ative sequence of solutions characterized by their misfit
values is determined. The parameter 0t = 0., at which
the misfit attains the uncertainty of the initial infor-
mation & is regarded as an optimum parameter. The
optimum parameter of regularization provides a con-
ductivity distribution fitting best the exact model
solution.

This simple technique is applicable if the uncer-
tainty & is well known. However, we commonly have a
more or less gross estimate:

N & (67)
In this case, solutions consistent with various values
of & from interval (67) are tested. Close solutions

selected from the resulting set are averaged, provid-
ing an approximation of the exact model solution.

If nothing is known of measurement and model
errors, the choice of the parameter ¢, cannot be based
on solution misfits. In this case, a quasi-optimal value
of the regularization parameter is determined. For
example, o, can be determined as a value o at which
the solution of the problem significantly deviates from
requirements of the stabilizer (smoothness or closencss
to the hypothetical model) but remains sufficiently sta-
ble. A similar method for the determination of o, was
proposed by Hansen [1998]. This heuristic method is
based on the so-called L-representation. A monotoni-
cally decreasing sequence of regularization parameters
o > Oy > ... > 0, is tested and the misfit M(c) and the
stabilizer Q(ct) are determined for various o and a fixed
minimum of Tikhonov’s functional ®(a:). Figure 7 pre-
sents, on a log-log scale, the () versus M(a) plot.
This curve has typically an L-shaped form, with a fairly
distinct bend separating a nearly horizontal branch with
large M(ct) and small £(ct) from a nearly vertical
branch with small M(ct) and large (o). The exact
model solution is best approximated by assuming that
the central point of the bend, characterized by the larg-

IZVESTIYA, PHYSICS OF THE S50LID EARTH  Vol. 40

291

Fig. 6.
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est curvature, defines the quasi-optimal parameter of
regularization .

We considered the regularization of the inverse
problem of magnetotellurics (3), based on the minimi-
zation of the functional M| o(x, y, 2)}, summarizing the
misfits of MT and MV inversions. An alternative
approach consists in a sequence of interrelated partial
inversions in which the MT inversion stabilizer is con-
structed on the basis of the solution obtained from MV
inversion. Note that such an approach gives more reli-
able results because it eliminates near-surface distor-
tions forming geoelectric noise.
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