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Abstract—A numerical simulation of the folding of a model polymer chain of 50 units with valence bonds of
a fixed length and fixed valence angle values has been performed using the strong friction approximation. The
rate of energy dissipation in the system has been analyzed for conformational motions along a trajectory
determined by the equations of mechanics and the trajectories characterized by random and variable devia-
tions from the mechanical path. The validity of the principle of the minimum average rate of the energy dis-
sipation for the conformational relaxation of a macromolecule in a viscous medium has been demonstrated.
A profile of the relaxation energy funnel for the folding of a macromolecular chain has been constructed. Slow
and rapid stages of folding could be distinguished in the energy funnel profile; the final state was separated
from the nearest conformations of the folded chain by an energy gap.
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Researchers have been working on the problem of
the formation of the spatial structure of proteins and
other biopolymers for more than 50 years; many bril-
liant ideas have been proposed during this time (see,
for example, [1–10]), but the physical processes
underlying this phenomenon remain incompletely
understood in details [8, 10, 11]. As an example, a
detailed theory that would explain the folding of pro-
tein chains into unique spatial structures on a micro-
scopic level has not been developed yet and the roles of
various structural and physical factors that affect the
formation of a unique spatial structure of a given bio-
polymer chain have not been investigated in sufficient
details. The general concept of the process of biopoly-
mer folding implies a specific structure of the multidi-
mensional energy landscape of the macromolecules
and proteins as well. The energy landscape is assumed
to form an energy funnel that determines the arrival of
a representative point to a site of global energy mini-
mum that corresponds to the native spatial structure
(see, for example [2, 3, 7, 10]). The physical causes of
the formation of the appropriate structure of this spe-
cial multidimensional energy funnel remain unclear.
The solution to this problem is of great importance for
practical applications (such as protein engineering
[12]). An additional problem arises because a repre-
sentative point does not become entangled in numer-
ous local and sufficiently deep minima during the

descent along the walls of the multidimensional
energy funnel, but rather reaches the point of the
absolute minimum of energy of the set of available
configurations. This problem is also closely related to
the general physical mechanisms that underlie the
conformational mobility of macromolecules and the
conjugation of conformational mobility and the func-
tional activity of biopolymers (see, for example [13–
17]).

The previous study [11] was apparently the first to
draw attention to the requirement for the minimum
rate of energy dissipation in the case of conformational
relaxation (and folding) of a macromolecular chain in
a viscous medium. The condition of the minimal rate
of energy dissipation upon conformational motions
and conformational relaxation brings about certain
dynamic effects as well. These effects are related to the
emergence of collective conformational motions and
the propensity of a representative point to avoid the
areas of the energy landscape characterized by sharp
changes in the potential energy for a limited number of
degrees of freedom (the “rookie skier” principle [11]).
The condition of the minimal rate of energy dissipa-
tion upon conformational motions in a viscous
medium is formally similar to the ideology that under-
lies the Onsager principle for weakly non-equilibrium
processes [18] and the concept of the minimum rate of
entropy production subsequently developed by
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Prigogine within the framework of nonequilibrium
thermodynamics [19]. Naturally, these thermody-
namic principles are true for the average state of mac-
roscopic systems. The principle of the minimal rate of
energy dissipation for the conformational motions
[11], in its turn, is somewhat different from the above
thermodynamic concepts, since it refers to the molec-
ular dynamics of macromolecular structures and
mechanisms of formation of collective conformational
motions due to the viscous resistance of the environ-
ment. These effects have not been analyzed on the
microscopic level, although such an analysis would be
of fundamental importance for the understanding of
the physics of conformational transitions in macro-
molecular systems and the folding of such systems.
The present study consisted of a computational analy-
sis of the validity of the principle of the minimal rate
of energy dissipation upon the conformational relax-
ation (folding) of a model polymer chain in a viscous
medium. Other regularities of the relaxation of a sys-
tem in a multidimensional space of configurations [11]
are discussed as well.

Let us consider a model homopolymer chain of 50
nodes with the values of covalent bond length and
valence angle fixed at 1.54 Å and 109°289, respectively
(the typical values for a single carbon-carbon bond).
Chain mobility is mediated by rotation of the nodes
around the bonds between the adjacent nodes (Fig. 1).

The interaction of atoms that are not connected by
covalent bonds (the ith atom and the jth atom, where
j = i + n, n ≥ 3) is defined by the Lennard-Jones poten-
tial, which depends on the distance rij between the
nodes and the parameter uij that characterizes van der
Waals interactions and is the same for all nodes

uij = 4ε[(σ/rij)12 – (σ/rij)6]. (1)

The depth ε of the potential well is assumed to be
5 · 10–14 erg (or approximately 362 K) and the van der
Waals diameter of the node σ = 3.43 Å.

If the chain is stretched at the initial moment of the
observation period, it will fold due to non-covalent
interactions. The potential energy of the chain will
thus decrease and the excess of potential energy will
dissipate irreversibly due to viscous friction forces.

The equations of motion for the links of the chain
in a viscous medium will have the form

(2)

In this study, we will assign a value of 10–6 g/s to the
coefficients of friction γ in all nodes of the chain. This
corresponds to the friction coefficient of a particle of
3.43 Å in diameter in the medium with a viscosity of
approximately 3 P or to a particle with a diffusion coef-
ficient of the order of 4 · 10–8 cm2/s at 300 K. The
absolute value of γ does not have essential importance
for finding the solution of the system of equations (2)
for these effects, although γ defines the time scale for
the numerical simulation of the chain-folding kinet-
ics. As shown in [20], the inertial terms can be ignored
if movements with amplitudes that exceed 0.5 Å in
water or another condensed medium are considered.
Therefore, the respective inertial terms (the compo-
nents that included acceleration) were excluded from
the equation of motion (2). The potential energy of
the chain is the sum of pairwise atom–atom interac-
tions (1):

(3)

Since the values of covalent-bond lengths and
valence angles α are fixed in the chain, the respective
constraint force values Ri that emerge due to mechan-
ical conditions imposed on the system [21] are
included into the equations (2):

(4)

Constraint force values can be determined using
conventional methods, such as the method of unde-
fined Lagrange multipliers [22], which yields a system
of 5N – 3 (where N is the number of nodes) algebraic-
differential equations:

(5)

where λk are the Lagrange multipliers, f is the set of
numbers of mechanical constraints imposed on the
node i, and r is the set of coordinates of the nodes of
the chain. The system of equations (5) should be sup-
plemented by the initial conditions:

(6)

The initial coordinates of the links of the chain
used in the present study correspond to a fully
stretched configuration that is in a state of unstable
equilibrium and cannot undergo relaxation in accor-
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Fig. 1. The structure of the model of a macromolecular
chain. Valence bond lengths and valence angles are fixed.
Rotation along the dihedral angles φ provides conforma-
tional mobility.
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dance with the equations (2). Therefore, the relaxation
was initiated by little shifting of the positions of nodes
1 and 50 of the chain from the positions that corre-
sponded to the unstable equilibrium.

System (2) was different from the Langevin equa-
tions used in [11], since rigid constraints (4) were
imposed on the nodes of the chain and thermal noise
was eliminated. The latter condition means that a
purely relaxational process was considered and the
system would not be able to exit a local energy mini-
mum for the coordinates of all nodes (if the system
would enter such a minimum during relaxation) due to
the absence of thermal f luctuations. Therefore, the
energy depth of the relaxation process served as a test
for the smoothness of the relaxation energy funnel and
the validity of the “rookie skier” principle [11]. This
principle consists in the propensity of the representa-
tive point to pass around the areas that correspond to
sharp changes of potential energy along a relatively
small number of coordinates of the configuration
space due to the multidimensional character of the
energy landscape [11].

Let us also mention several mathematical relation-
ships  for the system of equations (2). These relation-
ships are almost identical to those reported in [11].
Multiplication of (2) by the velocity of the ith link and
summation for all particles will yield the following
relationship (since the work of the constraint forces is
zero) [21]:

 (7)

Since the sum of the forces that act inside the sys-
tem is zero, summation of the equations (2) yields:

(8)

The equation (8) means that the geometric center
of the system (that is identical to the center of mass in
this case) remains immobile if all friction coefficients
are equal.

Vector multiplication of the equations (2) by the
radius vector of the node i and summation for all
nodes (with the zero value of the sum of moments of
all internal forces taken into account) yields:

(9)

that is, the sum of the moments of the friction forces is
zero. In other words, the system will not acquire
torque during the relaxation. The relations (8) and (9)
are of a general character [11] and can be used to verify
the accuracy of the computational procedures.

The relation (7) connects the power (rate) of
energy dissipation and the rate of decrease of the
potential energy of the system. These values must be
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equal; therefore, the decrease of potential energy over
the time T can be expressed by the formula

U(0) – U(T) = (10)

The principle of the minimum energy-dissipation
rate for the conformational motions of a macromole-
cule in a viscous medium [11] discussed here implies
that the S value in (7) will be minimal upon movement
along a mechanical path that is the solution of equa-
tions (2) or (5) (of all alternative r(t) paths). The con-
dition for a minimum that can be obtained by varying
S is the following

(11)

The value of rate variation depends on  the devia-
tion of the velocity of a given node at a given time from
the velocity of this node defined by the mechanics
equations (2) or (5). If the deviation of the node veloc-
ity from the predefined value on the trajectory is con-
sidered as a random value with a mean of zero at each
time point, one can calculate the average value of δS
and automatically achieve a situation for which the
principle of the minimum rate of energy dissipation is
valid. Assessment of the average value of the variation
of the dissipation rate (or the average value of the devi-
ation of the energy-dissipation rate from the dissipa-
tion value determined by the equations of mechanics)
along the entire mechanical trajectory of chain folding
is usefull for the analysis of the validity of the principle
of the minimum rate of energy dissipation during the
folding of a macromolecular chain in a viscous
medium, as well as the assessment of the dependence
of the above named value on the parameter that
defines the scale of deviation of the perturbed trajec-
tories from the trajectory determined by the equations
(2) or (5):

(12)

where T is the length of the trajectory of chain folding.
Let us now consider the numerical solution of

equations (5). The solution was obtained using a newly
developed procedure based on the modified Euler’s
method [23] for numerical solution of differential-
algebraic equations. The local error of the procedure
was of the order Δ3, where Δ is the step of integration
over time for the system (10–2 ns in the present study).

Assessment of the accuracy of the procedure
showed that the geometric center of the chain shifted
by approximately 5 · 10–14 Å during approximately
450 ns; in other words, the sum of velocities (8) was on
the order of 0.5 · 10–14 Å/ns. The value of the total
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moment (9) was on the order of 10–7 Å2/ns; therefore,
the system as a whole is expected to make less (and
even much less) than 10–5 of a full turn during the time
used in the calculations. These tests demonstrate the
correctness of the algorithm and the good accuracy of
the computational experiment.

The comparison of the decrease of the potential
energy of the system and the work of friction forces is
illustrated by Fig. 2.

The deviation of the work of friction forces from
the decrease of the potential energy averaged by time
(10) is approximately 5 · 10–17 erg and the relative
accuracy of the coincidence of the curves is on the
order of 10–6. The overall decrease of the potential
energy of the system is approximately 850 · 10–14 erg,
or the energy gain of 170 full-fledged pairwise contacts
of the nodes of the chain, which corresponds to the
formation of a dense globule.

The profile of the relaxation energy funnel for the
folding of the system is visualized in Fig. 3; the profile
was constructed by mirroring the curve in Fig. 2 rela-
tive to the vertical axis that passed through the lowest
point.

The stepwise character of chain folding is apparent
from Figs. 2 and 3, and especially from Fig. 4. The rel-
atively slow initial (pre-folding) stage accounts for
approximately 60% of the time and is characterized by
an approximately 30% decrease in energy. The initial
stage and later more faster stages accompanied by
periods of temporary relative stabilization of the chain
energy. The steepness of the energy decrease curve
tends to increase during the later stages of the process,
whereas the energy amplitude of these stages progres-

sively decreases. The final stage of energy reduction is
the fastest, with an approximately 5% decrease of the
total energy value that takes approximately 5% of the
entire folding time. Interestingly, the resulting pattern
is very similar to that implied by the current concept of
protein folding [2, 3], which also includes the exis-
tence of an energy gap near the final (native) state [6,
10]. However, one should remember that the model
does not provide a faithful reproduction of the actual
structure of a polypeptide chain and the comparison
of the model to the processes that occur in actual bio-
polymer systems is beyond the scope of the present
study.

The stepwise character of chain folding is apparent
from the temporal pattern of the energy-dissipation
rate S (Fig. 4).

The contributions of the terminal atoms of the
chain to the energy-dissipation rate are shown in
Fig. 5 for comparison (one should note that the value
of the dissipation rate divided by the number of nodes
is shown in Fig. 4).

The points of the time axis that correspond to
strong bursts of the energy dissipation rate are marked
in Figs. 4 and 5. The correlation between strong bursts
of the energy dissipation rate and quick movement of
the terminal links of the chain associated with consid-
erable structural remodeling of the entire chain is
apparent. The comparison of the ratio of the general
dissipation rate and the rate values in Fig. 5 shows that
a burst of the dissipation rate near 70 ns is largely due
to the movement of the terminal nodes only, since the
motions of these groups do not have to be correlated
with the movements associated with other nodes.

Fig. 2. The dependence of potential energy (1) and the
work of the friction forces (2) on time during the process of
chain folding. The dependences are slightly shifted along
the vertical axis for the sake of clarity, since the respective
energy changes are virtually identical.
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However, movement of the terminal groups alone
cannot account for the full power of the burst in the
intensity of energy dissipation around the time point
of 350 ns, but rather makes an approximately 20%
contribution to the overall effect. This observation is
in agreement with our earlier findings [24] and the
propensity of chain folding to start from the terminal
groups that can rotate without the requirement for
correlations with the rotation around the bonds
located at a distance from the ends of the chain (in the
case of a completely stretched initial configuration of
the chain), whereas the minimal rate of energy dissi-
pation in a macromolecule of a globular configuration
requires a tighter consistency between the turns
around all chains.

A typical pattern for the correlation of movements
along the conformational degrees of freedom is shown
in Fig. 6 (the pattern corresponds to the time point of
approximately 40 ns). The direction of the turns
around the bonds apparently varies, so that resistance
of the medium can be minimized.

Let us now consider the implementation of the
principle of the minimum rate of energy dissipation
(7) for the conformational rearrangements of macro-
molecules in a viscous medium. For this, we will con-
sider the variation δS of the rate of energy dissipation
upon the deviation of the relaxation trajectory from
that defined by the equations of mechanics (2) or (5).
Deviations from the mechanical path will be simulated
as follows: a perturbation represented by a random-

Fig. 4. The change of the specific rate of energy dissipation upon chain folding. Time points that correspond to f lashes of the
energy dissipation rate are marked on the axis (compare to Fig. 5).
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angle rotation around each bond will be introduced at
every 100th step of integration of the equations of
mechanics (5). The rotation angle φ follows a normal
distribution with a mean value of zero and the stan-
dard deviation σ (not to be confused with the symbol
in the formula (3)):

(13)

Independent sets of random-angle turns around
every bond with a distribution conforming to (13) were
used in each test. The number of tests for turns around
the angles was 100 for each point of the mechanical
trajectory at a predefined σ value. Selection of the
results of the statistical tests was performed to avoid
very large changes in spatial positions of chain nodes,
since these changes are devoid of physical meaning.
Such changes can occur upon rotation around the
bonds that are close to the center of the chain, even at
small rotation angles. The selection was based on the
Metropolis criterion [25] formulated as:

(14)

where M is the probability of the acceptance of the
result of the test, N = 50 is the number of nodes in the
chain, δri is the displacement of node i in a specific
test, b = 0.5 Å is the threshold value for node displace-
ment, and M0 is the normalization multiplier that
depended on the set of 100 test results in each point. As
a result, perturbed configurations were obtained after
every 100 steps of integration of the mechanical equa-
tions for the relaxation of the initial conformation of
the chain. The configurations were used as the starting
conditions for solving the equations of mechanics (5).
These equations were further integrated to simulate
the area of the perturbed trajectory within the 100-step
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interval; the procedure of perturbation of the mechan-
ical trajectory was then repeated. The value of the vari-
ation of the rate of energy dissipation (11) was calcu-
lated at each time point. The structure of these varia-
tions is characterized by rapid oscillations; therefore
averaging over two variation intervals (that is,
200 neighboring points) was performed. Analysis of
the set of results obtained for the variation of energy-
dissipation rate at the values of the parameter σ rang-
ing from 0.01 to 5° revealed the following: the δS(t)
dependence was close to zero at σ values lower than
~0.1°, with the exception of the areas characterized by
sharp bursts of S(t). These areas (points) correspond
to a somewhat rapid downward movement of the rep-
resentative point along a steep slope of the energy fun-
nel. Rapid stochastic variation of the energy dissipa-
tion rate is characteristic of these areas and the average
value of the rate was is close to zero. The oscillation
amplitudes are correlated to the value of the energy
dissipation rate, but the former are six to eight orders
of magnitude lower than the latter. A tenfold increase
of σ (to 1°) resulted in an increase of the amplitude of
δS(t) oscillation in the areas of high energy dissipation
rates. An increase by approximately three orders of
magnitude was observed (Fig. 7), but the value still
remained lower than S(t) itself by approximately three
orders of magnitude. A characteristic plateau at time
points that correspond to the folded conformation of
the chain became apparent when σ exceeded 0.5°. The
average values of δS(t) within the intervals limited by
two consecutive perturbations were positive in all
cases, this being indicative of the validity of the princi-
ple of the minimum average rate of energy dissipation
along the trajectory determined by the equations of
mechanics (5).

Fig. 6. A typical instant distribution (at time ~40 ns) of the
velocity of angular rotation around the valence bonds as
dependent on the number of the bond in the chain. The
directions of rotation alternate; thus, the energy dissipa-
tion rate is minimized.
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The dependence of the mean value of the variation
of the energy dissipation rate on the intensity σ of ran-
dom perturbations of the trajectory along the entire
trajectory of chain folding (12) is illustrated by Fig. 8.
The variation of the energy dissipation rate is appar-
ently very close to zero in the case of slight variations
of the trajectory, as should be expected given the nec-
essary conditions for an extremum of the functional
(7). The increase of the perturbation scale for the
mechanical trajectory yields positive values for varia-
tion of the dissipation rate; this is indicative of the
existence of a minimum of this functional on the
mechanical trajectory.

Let us consider the physical meaning of the effects
of an increase of the variation of energy dissipation
rate in the areas associated with sharp acceleration of
the relaxation process and an area associated with an
equilibrium configuration of a folded chain. As follows
from the equation (7), the δS(t) value is proportional
to the variation of the rate of change of the potential
energy. Three situations that take place as the trajec-
tory is varied at points that correspond to different val-
ues of the rate of potential energy change in the system
are illustrated in Fig. 9. A random small increment of
the coordinates transports the representative point
into the close vicinity of a certain point that has some
position that corresponds to the mechanical trajec-
tory. If the initial point is located in an area character-
ized by a smooth change of the potential energy sur-
face (points 1 and 3 in Fig. 9), the variation of the
relaxation rate determined by the change in the poten-
tial gradient will be slight and weakly sensitive to the
direction of movement of the representative point.
The change in the relaxation rate (and thus in the rate
of energy dissipation) in an area characterized by a

sharp change in the profile of the energy landscape (a
steep gradient of potential energy) will be rather high
and strongly dependent on the direction of the change
of the location of the point in the multidimensional
configuration space (point 2 in Fig. 9). This phenom-
enon is observed in the time range of 300–350 ns in
Figs. 2, 4, and 7. Finally, any variation of the position
of a point relative to the minimum of the energy sur-
face  will increase the potential gradient and the rate of
energy dissipation at the final stage of the folding pro-
cess (point 4 in Fig. 9). It is observed at the time of
approximately 400 ns (Fig. 7).

Thus, the results of a numerical simulation of the
relaxation folding process are in agreement with the
general physical concept of the dynamics of the pro-
cess formulated in [11] and satisfy the  certain condi-
tions that define the regime of the conformational
changes related to rotation around bonds and the fold-
ing of macromolecular chains in a viscous medium.
Rotational movements around the bonds at every time
point occur in different  directions but occur in a way
that provides the minimal average rate of energy dissi-
pation. This is similar to the well-known principle of
non-equilibrium thermodynamics [18, 19], but that
principle was shown to be applicable to the micro-
scopic process of conformational motion in the pres-
ent study as well. The time course of relaxation folding

Fig. 8. The dependence of the average variation of the
energy dissipation rate on the standard deviation value for
the distribution function of the angles of rotation around
the bonds (a characteristic of the perturbation of the
mechanical trajectory) in increments of 0.5°.
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of the chain is non-uniform, with periods of relatively
rapid structural changes alternating with periods of
relatively slow conformational adjustment of the
structure to new conformational states that open up
new opportunities for relatively rapid and large-scale
changes of the conformation of the macromolecule.
The relaxation profile of the potential energy that
illustrates the kinetic stages of energy decrease during
the folding of the model chain is in good agreement
with the existing general concepts of the shape of
the energy funnel for the folding of protein structures
[2–4].
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