
Chapter 1
The Ammann-Beenker Tilings Revisited

Nicolas Bédaride and Thomas Fernique

Abstract This paper introduces two tiles whose tilings form a one-parameter family
of tilings which can all be seen as digitization of two-dimensional planes in the four-
dimensional Euclidean space. This family contains the Ammann-Beenker tilings as
the solution of a simple optimization problem.

1.1 Introduction

Having decided to retile your bathroom this week-end, you go to your favorite
retailer of construction products. There, you see an unusual special offer on two
strange notched tiles (Fig. 1.1): “Pay the squares cash, get the rhombi for free!”

Fig. 1.1 Two notched tiles.

Fearing that this might be a scam, you try to figure out how your bathroom could
be tiled at little cost. After careful consideration, you see that the possible tilings
are exactly those where any two rhombi adjacent or connected by lined up squares
have different orientations (see Fig. 1.2). In particular, rhombi only do not tile, so
you would have to buy at least some squares. You could of course tile with squares
only (on a grid), but this would be missing this special offer!

We will show that the cheapest (if not the simplest) way to tile your bathroom is to
form a non-periodic tiling, namely an Ammann-Beenker tiling. Furthermore, we will
show that the set of all possible tilings form a one-parameter family of tilings which
can all be seen as digitization of two-dimensional planes in the four-dimensional
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Fig. 1.2 Two rhombi match only if they have different orientations. This still holds with lined up
squares between them, since those just carry the notching.

Euclidean space. Fig. 1.3 depicts some possible tilings, with the rightmost one being
an Ammann-Beenker tiling.

This is of course not only of interest to tile bathrooms, but it could provide a
new insight into the theory of quasicrystals. Indeed, digitizations of irrational planes
in higher dimensional spaces (also called projection tilings) are a common model
of quasicrystals, and the above results give an example of how very simple local
constraints can enforce long range order, with the non-periodicity simply coming
from tile proportions. In particular, slight variations of tile proportions around those
of a non-periodic tiling can lead to close periodic tilings, reminding approximants
of quasicrystals.

Fig. 1.3 Three different possible tilings (notching are not depicted).

The rest of the paper is organized as follows. Section 1.2 briefly recalls the his-
tory of Ammann-Beenker tilings. Sections 1.3 and 1.4 introduce the main notions,
Section 1.5 makes a simple but powerful connection with classic results of algebraic
geometry, and the technical part of our proof is exposed in Section 1.6. We conclude
in Section 1.7 by formally stating our main result (Theorem 1).
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1.2 Ammann-Beenker tilings

Ammann-Beenker tilings are non-periodic tilings of the plane by a square and a
rhombus with a 45◦ angle. Enjoying a (local) 8-fold symmetry, they became a popu-
lar model of the 8-fold quasicrystals [10]. They were introduced by Ammann in the
1970s and Beenker in 1982, independantly and from different viewpoints.

On the one hand, Ammann defined these tilings as the ones that can be formed
by two specific notched tiles and a “key” tile, with the non-periodicity deriving from
the hierarchical structure enforced by the notching. This can be compared to the first
(and concomitant) definition of Penrose tilings [9].

On the other hand, following the algebraic approach of de Bruijn for Penrose
tilings [3], Beenker defined these tilings as digitizations of parallel planes in R4,
with the non-periodicity deriving from the irrationality of the slope of these planes,
calling them Grid-Rhombus tilings [2]. Unfortunately, Beenker was unaware of the
work of the amateur mathematician Ammann, published only some years later [6,
1], and he was unable to find notched tiles which can form only these tilings. Instead,
he introduced the notching of Fig. 1.1, called Arrowed-Rhombus tilings the tilings
which can be formed, and proved that they strictly contain the Grid-Rhombus tilings.

To conclude this short review, let us mention that Ammann-Beenker tilings can-
not be characterized by their local patterns, that is, for any r≥ 0, there exists a tiling
whose patterns of radius r all appear in an Ammann-Beenker tiling but which is
not itself an Ammann-Beenker tiling [4]. Suitable notchings of tiles must thus carry
some information over arbitrarily long distances!

1.3 Octagonal tilings and planarity

Let v1, . . . ,v4 be pairwise non-collinear unitary vector of the Euclidean plane. We
define the six rhombi {λvi + µv j | 0 ≤ λ ,µ ≤ 1}, for 1 ≤ i < j ≤ 4, and we call
octagonal tiling any covering of the Euclidean plane by translated rhombi, where
rhombi can intersect only on a vertex or along a complete edge (Fig. 1.3).

Let e1, . . . ,e4 be the canonical basis of R4. A lift of an octagonal tiling is ob-
tained by mapping its rhombi onto faces of unit hypercubes Z4 so that any two
rhombi adjacent along vk are mapped onto unit faces adjacent along ek. This is a
two-dimensional surface of R4 which is uniquely defined up to translation.

An octagonal tiling is said to be planar if there are a two-dimensional plane
E ⊂R4 and t ≥ 1 such that it can be lifted into the “slice” E +[0, t]4. The plane E is
called its slope and the smallest suitable t its thickness (both are unique). A planar
octagonal tiling can be seen as a digitization of its slope.

For example, the Ammann-Beenker tilings are the planar octagonal tilings of
thickness one whose slope is generated by (cos kπ

4 )0≤k<4 and (sin kπ

4 )0≤k<4.
Planar octagonal tilings form a subclass of the so-called projection tilings. Those

of thickness one are periodic for a rational slope, quasiperiodic otherwise, i.e., any
pattern of radius r which appears somewhere in a tiling reappears in this tiling at
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a distance uniformly bounded in r. This perfect order weakens when the thickness
increases, but the long range order nevertheless persists.

1.4 Shadows and subperiods

The k-th shadow of an octagonal tiling is the orthogonal projection of its lift along
ek. Formally, a k-th shadow is a lift of an octagonal tiling, i.e., a two-dimensional
surface of R4, but since it does not contain unit faces with the edge ek, it can be
convenient to see it as a two-dimensional surface of R3.

A period of a shadow is a translation vector leaving invariant the shadow. The
subperiods of an octagonal tilings are the periods of its shadows.

Fig. 1.4 depicts the fourth shadows of the tilings of Fig. 1.3: they are periodic.
Actually, the alternation of rhombus orientations in these tilings, discussed in the
introduction, precisely enforces a period for each shadow. Formally, one checks that
with vk = ei kπ

4 (complex notation) for 1≤ k ≤ 4, the k-th shadow of any such tiling
admits the period pk defined by

p1 = e2− e4, p2 = e1 + e3, p3 = e2 + e4, p4 = e1− e3.

Fig. 1.4 Shadows of the tilings depicted on Fig. 1.3.
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1.5 Grassmann coordinates and Plücker relations

First, recall (see, e.g., [7], chap. 7) that a two-dimensional plane E of R4 generated
by (u1,u2,u3,u4) and (v1,v2,v3,v4) has for Grassmann coordinates the numbers
Gi j = uiv j−u jvi, 1≤ i< j≤ 4. Theses coordinates are unique up to a common mul-
tiplicative constant ; one writes E = (G12,G13,G14,G23,G24,G34). Conversely, any
Gi j’s not all equal to zero are the Grassmann coordinates of some two-dimensional
plane of R4 if and only if they satisfy the Plücker relation

G12G34 = G13G24−G14G23.

Then, it is not hard to see that if the l-th shadow of a planar octagonal tiling of
slope E admits a period (p,q,r), then the Grassmann coordinates satisfy

pG jk−qGik + rGi j = 0,

where l /∈ {i, j,k}. Indeed, if E is generated by (u1,u2,u3,u4) and (v1,v2,v3,v4),
then the l-th shadow can be seen as a digitization of the plane of R3 generated by
(ui,u j,uk) and (vi,v j,vk). If (p,q,r) is a period of this plane, it belongs to this plane
and thus has a zero dot product with the normal vector (G jk,−Gik,Gi j).

One can also use shadows to show that in any planar octagonal tiling of slope E,
the ratio between the proportions of tiles with edges vi and v j and those with edges
vk and vl is |Gi j/Gkl |.

Now, consider a tiling by tiles of Fig. 1.1: it is octagonal up to the notching. If
we assume that it is planar, then its subperiods yield

G23 = G34, G14 = G34, G12 = G14, G12 = G23,

and plugging this into the Plücker relation, a short computation shows that the slope
must be one of the planes

E0 := (0,0,0,0,1,0), Et 6=0 := (1, t,1,1,2/t,1), E∞ := (0,1,0,0,0,0).

Conversely, any planar octagonal tiling with one of these slopes and thickness one
satisfies the alternation of rhombi orientations (two rhombi with the same orienta-
tion would not fit into the slice), thus can be tiled by the tiles of Fig. 1.1.

For example, the tilings of Fig. 1.3 have respective slope E1/4, E1 and E√2. In the
latter case, which is an Ammann-Beenker tiling, there is thus

√
2 rhombi for each

square (since the square area is
√

2 times the rhombus area, each tile covers exactly
half of the plane). Tilings by squares only have slope E0 or E∞.
However, nothing yet ensures that tilings by Fig. 1.1 tiles are indeed planar!



6 Nicolas Bédaride and Thomas Fernique

1.6 Planarity

Lemma 1. Fig. 1.1 tiles form only planar tilings of uniformly bounded thickness.

Proof. Let E := E√2. One checks that the orthogonal projection of the ei’s onto
E are pairwise non-collinear vectors. Let us identify E with the two-dimensional
Euclidean plane and the above projections (up to rescaling) with the vi’s which
define the tiles, so that the orthogonal projection onto E is a homeomorphism from
any lift of any tiling of the Euclidean plane by these tiles onto E. Let T be such a
tiling and S be a lift of it. Define

q1 = p1 +
√

2e1, q2 = p2 +
√

2e2, q3 = p3 +
√

2e3. q4 = p4−
√

2e4.

Those are pairwise non-collinear vectors of E. Let also ri be obtained by changing√
2 in −

√
2 in qi. The ri’s are pairwise non-collinear vectors of E ′ := E−

√
2. One

checks that E and E ′ are orthogonal planes, so that there exist two real functions z1
and z2 defined on E such that the lift S is the image of E under

ρ : x 7→ x+ z1(x)r1 + z2(x)r2.

Let πi denote the orthogonal projection along ei. One has πi(qi) = πi(ri) = pi. For
any x ∈ E, the plane πi(x+E ′) intersects the shadow πi(S ) along the curve

Ci(x) = {πi(x)+ z1(x+λqi)πi(r1)+ z2(x+λqi)πi(r2) | λ ∈ R}.

Since both πi(S ) and πi(x+E ′) are pi-periodic, so is Ci(x). In particular, it stays
at bounded distance from some line directed by pi. For i = 1, since π1(r1) = p1, this
ensures that λ 7→ z2(x+λq1) is uniformly bounded. In other words, z2 has bounded
fluctuations in the direction q1. Similarly, for i = 2, π2(r2) = p2 yields that z1 has
bounded fluctuations in the direction q2. For i = 3, one computes p3 = −π3(r1)−√

2π3(r2), what yields bounded fluctuations for z2−
√

2z1 in the direction q3. Since
q1 and q2 form a basis of E, let zi(λ ,µ) stand for zi(λq1 + µq2), i ∈ {1,2}, and
write f ≡ g if the difference of two functions f and g is uniformly bounded. The
bounded fluctuations of z1 and z2 in the directions q1 and q2 yield the existence of
real functions f and g such that z2(λ ,µ)≡ f (µ) and z1(λ ,µ)≡ g(λ ). Further, since
q3 =

√
2q2−q1, the bounded fluctuations of z2−

√
2z1 in the direction q3 yield the

existence of a real function h such that (z2−
√

2z1)(λ ,µ)≡ h(
√

2µ−λ ). Thus

f (µ)−
√

2g(λ )≡ h(
√

2µ−λ ).

Fix λ = 0 to get f (µ)≡ h(
√

2µ). Fix µ = 0 to get −
√

2g(λ )≡ h(−λ ). Hence

h(
√

2µ)+h(−λ )≡ h(
√

2µ−λ ).

From this easily follows that h, hence f , g, z1, z2 and ρ , are linear (up to bounded
fluctuations). The tiling T is thus planar. The thickness is uniformly bounded be-
cause the lifts are lipschitz surfaces with a constant which depends only on E.
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1.7 Conclusion

The following theorem summarizes the results obtained in the sections 1.5 and 1.6:

Theorem 1. Fig. 1.1 tiles can form only planar tilings with slope in {Et}t∈R∪{∞}
and uniformly bounded thickness, and they form at least those of thickness one.

Moreover, the Ammann-Beenker tilings have the slope which maximizes the area
covered by rhombi: they provide the cheapest way to tile your bathroom! Let us also
note that among the tilings by Fig 1.1 tiles, Ammann-Beenker tilings are exactly
(up to the thickness) those whose slope satisfies the relation G13 = G24, i.e., where
the squares appear with the same frequency in their two possible orientations. The
above mentionned result of [4] shows that this relation, although simple, cannot be
enforced by local patterns: when t tends towards

√
2, the tilings of slope Et and E√2

(and thickness one) become locally indistinguishable.

Acknowledgements We thank T. Q. T. Le for sending us the preprint [8] which inspired the proof
of Lemma 1, and the referee, notably for pointing us the highly relevant reference [5] (see below).

Addendum At the time we wrote this paper, we unfortunately were unaware of the reference
[5]. There, A. Katz already obtained Theorem 1, and moreover showed that the uniform bound on
the thickness of the tilings that can be formed is actually one. We however think that our proof
deserve to be published. Indeed, the proof in [5] relies on purely geometric considerations in the
four-dimensional space, what can be hard to follow by the reader (as acknowledged by the author
himself). Alternatively, the notions of shadows and subperiods we rely on reduce much of the
problem to the more usual three-dimensional space, while the use of Grassmann coordinates points
the way towards a purely algebraic way to solve a wide range of similar tiling problems.
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