УДК 544.47

СИНЕРГЕТИЧЕСКИЙ ЭФФЕКТ ЗОЛОТА И МЕДИ В ПРЕВРАЩЕНИИИ ЭТАНОЛА В ЛИНЕЙНЫЕ α-СПИРТЫ

© 2016 г. С. А. Николаев, ^{1,2} А. В. Чистяков, ^{3,4} П. А.Жарова, ³ М. В. Цодиков ^{3,4}, И. Н. Кротова, ¹ Д. И. Эзжеленко ¹

¹ Московский Государственный Университет имени М.В. Ломоносова, Москва ² Институт проблем химической физики РАН, г Черноголовка МО ³ Институт нефтехимического синтеза имени А.В. Топчиева РАН, Москва ⁴ Институт химической физики им. Н.Н. Семенова РАН, Москва, E-mail: serge2000@rambler.ru

Поступила в редакцию 11.02.2016 г.

Изучены закономерности протекания реакции прямого превращения этанола в бутанол-1 и гексанол-1 в присутствии моно- и биметаллических активных компонентов на основе Au и Cu, нанесенных на γ -Al₂O₃. Установлено, что в условиях, обеспечивающих сверхкритическое состояние этанола, скорость и селективность реакции в присутствии Au-Cu/Al₂O₃ катализатора резко возрастает. При этом наблюдается эффект синергизма: выход целевых продуктов на Au-Cu-катализаторе в 6 и 14 раз выше такового для Au- и Cu-монометаллических аналогов. Различия в каталитическом поведении Au-Cu, Au- и Cu-систем обсуждаются с учетом особенностей их структуры и механизма реакции.

Ключевые слова: золото, медь, наночастицы, синергизм, бутанол, этанол, катализ.

Поиск альтернативных источников углеводородов и развитие способов получения энергоносителей и органических мономеров в значительной степени ориентируется на конверсии продуктов биомассы [1, 2]. Наиболее доступным и распространенным продуктом, получаемым из биомассы, является этанол. Его годовое производство в 2013 г. составило 85.3 млн. т [3]. Наряду с этанолом усиленными темпами развивается производство и других низкомолекулярных спиртов C_1 , C_3 – C_6 . За истекшее десятилетие химия существенным образом обогатилась новыми реакциями превращения этанола и гомологов в различные классы углеводородов, являющихся важными компонентами моторных топлив и ценными мономерами нефтехимии, а также использующихся в качестве растворителей и компонентов ПАВ [1-4]. Один из перспективных процессов, которому сейчас уделяется большое внимание, - прямая каталитическая реакция, приводящая к высокомолекулярным спиртам за счет конденсации углеводородного скелета этанола и/или алкилирования (кросс-сочетания) этанола с другими низкомолекулярными спиртами [1-5]. Однако, следует отметить, что основное количество исследований в этом направлении проводится в области гомогенного катализа, что обусловливает трудность их промышленной реализации по известной причине сложности выделения и регенерации каталитических систем.

Золото долгое время не воспринималось всерьез как каталитический металл, до тех пор, пока японский химик М. Харута в 1989 г не продемонстрировал, что частицы Аи размером 2–5 нм проявляют высокую активность в низкотемпературном окислении СО [6]. Позднее было установлено, что наночастицы Аи являются эффективными катализаторами и других реакций: гидрирования [7, 8], изомеризации [9, 10], гидродехлорирования [11, 12] и конверсии углеводородов [13, 14]. В недавних публикациях сообщается, что нанесенные на оксидный носитель биметаллические композиции из кластеров золота, промотированных медью, проявляют высокую активность и селективность в паровом риформинге метанола [15] и восстановлении *п*нитрофенола до *п*-аминофенола [16]. Таким образом, разработка катализаторов конверсии этанола в линейные α-спирты на основе систем Au—Cu представляется крайне перспективной.

В работе представлены результаты исследования основных закономерностей каталитического действия нанокомпозиций из Au—Cu, Au, Cu, осажденных на оксид алюминия, в конверсии этанола в бутанол-1 и гексанол-1 в условиях, обеспечивающих сверхкритическое состояние этанола, и в обычных субкритических условиях, при которых органические субстраты находятся в газообразном состоянии.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Катализатор Cu/Al₂O₃, содержащий 0.07 мас.% Cu, готовили пропиткой носителя по влагоемкости [17]. Для этого рассчитанное количество Cu(NO₃)₂×6H₂O (Sigma-Aldrich, 98%) растворяли в воде. Полученный раствор добавляли к прокаленным при 400° C в течение 3 ч гранулам γ -Al₂O₃ (AO "Ангарский завод катализаторов и органического синтеза", $160 \text{ m}^2/\text{г}$, диаметр гранул 0.5 мм). Далее влажные гранулы сушили при 25° C в течение 24 ч и прокаливали при 400° C в течение 6 ч.

Катализатор Au/Al_2O_3 , содержащий 0.2 мас.% Au, готовили ионным обменом [18, 19]. Для этого рассчитанное количество $HAuCl_4$ (Sigma-Aldrich, 98%) растворяли в воде. С помощью NaOH (Реахим, 0.1 M) доводили pH раствора до 7.0, приливали раствор к гранулам Al_2O_3 в воде и перемешивали при $50^{\circ}C$ в течение 1 ч. Далее гранулы отделяли от маточного раствора, промывали 4 л воды, сушили при $25^{\circ}C$ в течение 24 ч и прокаливали при $400^{\circ}C$ в течение 3 ч. После 1-го прокаливания часть предшественника Au/Al_2O_3 использовали для получения $Au-Cu/Al_2O_3$ катализатора, а оставшуюся часть прокаливали еще раз при $400^{\circ}C$ в течение 3 ч, чтобы получить катализатор Au/Al_2O_3 .

Катализатор Au– Cu/Al_2O_3 , с содержанием Au и Cu, равным 0.2 и 0.07 мас.% соответственно, готовили пропиткой по влагоемкости. Для этого часть предшественника Au/Al_2O_3 , полученного после 1-го прокаливания при $400^{\circ}C$, пропитывали раствором нитрата меди в воде, сушили при $25^{\circ}C$ в течение 24 ч и прокаливали при $400^{\circ}C$ в течение 3 ч.

Каталитические тесты проводили на мультиреакторной установке автоклавного типа Parr 5000 Series с объемом реактора 45 мл. В стандартном эксперименте по конверсии этанола в сверхкритическом состоянии в реактор помещали 25 мл этанола и 5.6 г катализатора. Реактор закрывали и продували аргоном для удаления кислорода. Далее откачивали аргон до остаточного давления в 0.1 атм. Реакцию проводили при температуре 245, 275 и 295°С в течение 5 ч. Перемешивание реакционной смеси обеспечивали магнитной мешалкой (частота вращения 1200 об./мин). Для указанных выше условий начальное давление этанола в реакторе составляло 100 атм и за время эксперимента (5 ч) увеличивалось до 110–120 атм.

В стандартном эксперименте по конверсии этанола в субкритическом состоянии в реактор помещали 5 мл этанола и 1.1 г катализатора. Реактор закрывали, продували аргоном, после стравливали аргон до остаточного давления равного 0.1 атм. Далее нагревали реактор до 275°С и включали перемешивание реакционной массы. Время реакции составляло 5 ч. Для приведенных условий начальное давление этанола в реакторе составляло 50 атм. и за время эксперимента (5 ч) увеличивалось до 55–60 атм.

По завершении каждого каталитического эксперимента реактор охлаждали водой до комнатной температуры, отбирали весь объем реакционного газа в газгольдер и проводили качественный и количественный анализ газовой смеси. Далее вскрывали реактор и отбирали для анализа жидкую реакционную смесь.

Газообразные продукты реакции анализировали методом ГХ: газообразные углеводороды C_1 — C_5 — на приборе "Кристалл-4000М" (ПИД, колонка HP-PLOT); СО, CO_2 и H_2 — на приборе "Кристалл-4000" (детектор по теплопроводности, колонка СКТ). Качественный состав жидких органических реагентов определяли методом хроматомасс-спектрометрии на приборах "Agilent MSD 6973" (колонка HP-5MS) и "Delsi Nermag Automass-150" (колонка CPSil-5) с EI равной 70 эВ. Количественное содержание жидких реагентов определяли методом газо-жидкостной хроматографии на приборе "Varian 3600" (колонка Xромтэк SE-30, 0.25×250 см, Df=0.3 мм, 50°C (5 мин),

10 град/мин, 280°С, $t_{\text{инж}}$ =250°С, $P_{\text{инж}}$ =1 бар, деление потока 1/200, ПИД, внутренний стандарт – μ -октан).

Весовое содержание металлов в катализаторах определяли с помощью атомной абсорбционной спектрометрии на приборе "Thermo iCE 3000" [17]. Относительная погрешность измерения содержания металлов этим методом не превышает 1%. Дифрактограммы катализаторов получали методом рентгенофазового анализа (РФА) на приборе Rigaku D/MAX2500 с использованием Си *Ка* источника. Микрофотографии катализаторов получали методом просвечивающей электронной микроскопии (ПЭМ) на приборе JEOL JEM 2100F/UHR с разрешающей способностью 0.1 нм. Перед исследованием 0.1 г образца помещали в 30 мл С₂H₅OH и обрабатывали ультразвуком в течение 300 с. Каплю полученной смеси помещали на стандартную сетку ПЭМ, покрытую углеродом, сушили 1 ч, помещали в микроскоп и проводили исследования. Размер частицы определяли как максимальный линейный размер. Средний размер частиц определяли путем статистической обработки данных по 250-300 частицам. Определение химического состава частиц проводили c помошью энергодисперсионного анализа (ЭДА) на приборе JED- 2300.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Закономерности каталитического действия Аи-Си, Аи и Си катализаторов. В сверхкритическом состоянии этанол (парциальное давление 120 атм) при 275 °C в присутствии Au-Cu-катализатора превращается в бутанол-1 и гексанол-1 с селективностями, в 2-3 раза превышающими достигнутые при газообразного этанола (табл. 1). Следует так же отметить, что выход продуктов на Аи-Си-катализаторе настоящей работы на порядок выше выхода целевых спиртов, в присутствии других гетерогенных катализаторов, исследования которых опубликованы в работах [20–22].

Из табл. 1 видно, что конверсия этанола и селективность образования спиртов на Аи–Си-катализаторе существенным образом зависят от температуры. Максимальные значения селективности по бутанолу-1 (74.4%) и гексанолу-1 (17.8%) достигаются при 275°С. Повышение температуры реакции с 275 до 295°С приводит к незначительному увеличению конверсии этанола с 33.4 до 35.1 %; при этом селективность по бутанолу-1 и гексанолу-1 снижается на 17.2 и 11.4 %, соответственно. Анализ продуктов превращения этанола (табл. 2) показывает, что снижение селективности при 295°С обусловлено, в первую очередь, развитием как внутримолекулярной, так и

внешнемолекулярной реакций дегидратации спирта, приводящих к увеличению выходов олефинов и простых эфиров (главным образом, диэтилового).

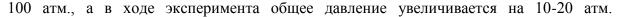
Таблица 1. Конверсия этанола и селективность по целевым продуктам, полученных в ходе превращения этанола в присутствии моно- и биметаллических катализаторов. Данные получены в условиях, обеспечивающих сверхкритическое состояние этанола

(Парциальное давление этанола в реакторе 100–120 атм).

Катализатор	Время, ч	T, °C	Конверсия этанола, %	Селективность, %	
				бутанол-1	гексанол-1
Au-Cu/Al ₂ O ₃	5	245	4.6	57.9	3
Au-Cu/Al ₂ O ₃	5	275	33.4	74.4	17.8
Au-Cu/Al ₂ O ₃	5	295	35.1	57.2	6.4
Au-Cu/Al ₂ O ₃ *	5	275	15.1	25.3	7.2
Au-Cu/Al ₂ O ₃ **	50	275	32.9	75.1	17.5
Cu/Al ₂ O ₃	5	275	11.5	0.2	0
Au/Al ₂ O ₃	5	275	30	15.9	0.5

^{*} Данные получены для газообразного этанола (парциальное давление этанола в реакторе 50–60 атм.). ** Данные получены в ходе десяти последовательных каталитических циклов по 5 ч каждый.

Понижение же температуры с 275 до 245°C приводит к резкому уменьшению конверсии этанола и селективности по бутанолу-1 и гексанолу-1 на 16.5 и 14.8%, соответственно (табл. 1). Важно отметить, что при 245°C в продуктах обнаруживается достаточное количество предполагаемых промежуточных соединений образования бутанола-1 (схема 1), таких как ацетальдегид и 2-бутен-1-ол (табл. 2). Их накопление в реакционной смеси свидетельствует о быстром протекании первых двух стадий, приведенных на схеме 1 и, вероятном, лимитировании скорости всего процесса стадией гидрирования 2-бутен-1-ола.


Схема 1. Образование бутанола-1 из этанола [1-3].

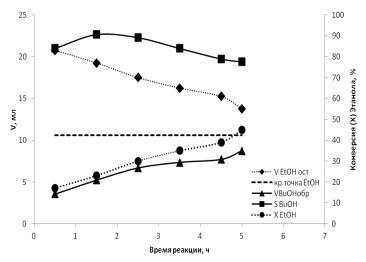
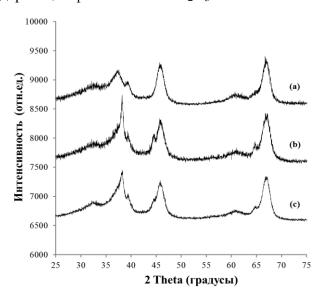

В течение 10 последовательных экспериментов по 5 ч каждый Au– Cu/Al_2O_3 система сохраняет свою активность и селективность (табл. 1). Высокая стабильность работы катализатора, вероятно, связана с устойчивостью Au-Cu частиц к спеканию. На это в частности указывает малый размер частиц, сохраняющийся в Au– Cu/Al_2O_3 по сравнению с его монометаллическим аналогом Au/Al_2O_3 (см. Раздел структурные особенности катализаторов).

Таблица 2. Качественный и колличественный состав продуктов превращения этанола на Au—Cu-катализаторе в условиях, обеспечивающих сверхкритическое состояние этанола (парциальное давление этанола в реакторе 100—120 атм).

Температура, °С	245	275	295		
Конверсия этанола, %	4.6	33.4	35.1		
Вещество	Селективно	Селективность образования продуктов, %			
Ацетальдегид	3	0	0		
Бутен	4	0	5		
н-Бутан	1	0	1		
Диэтиловый эфир	5	1	16		
Бутанон-2	0	0	1		
Бутанол-2	0	0	1		
Этилацетат	5	0	2		
Олефины $C_x H_y$ ($x=6+$)	0	0	1		
Бутанол-1	58	74	57		
2-Бутен-1-ол	17	0	0		
Этилбутиловый эфир	0	0	3		
2-Этилбутанол-1	0	2	2		
Гексанол-1	3	18	6		
Этилгексиловый эфир	0	1	0		
Этиловый эфир капроновой кислоты	2	1	1		
Прочее	3	1	4		
Σ	100	100	100		

На рис. 1 представлена динамика изменения объема расходуемого этанола и образующегося в реакторе бутанола-1. Из рис. 1 видно, что этанол расходуется в ходе всего эксперимента, однако, его объема достаточно для поддержания сверхкритического состояния. Т.е. на протяжении времени эксперимента этанол действительно находится в состоянии флюида. Необходимо отметить, что начальное парциальное давление этанола эквивалентно общему давлению в системе и составляет

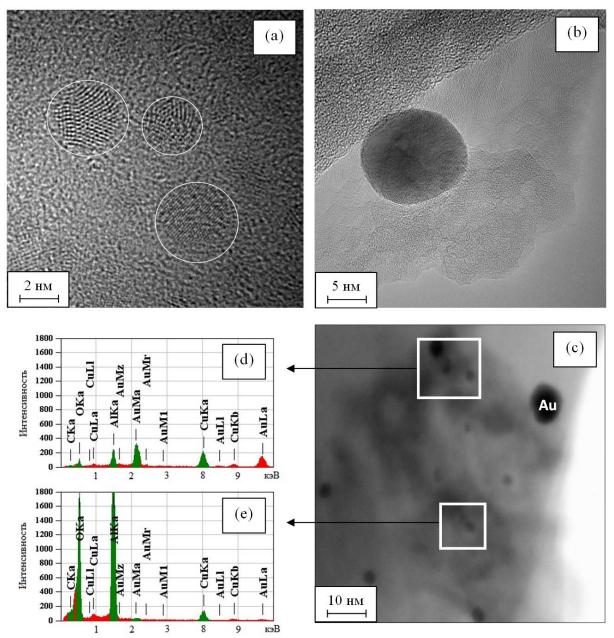

Рис. 1. Динамика изменения объемов этанола и бутанола-1 в ходе реакции (T=275°C, начальное парциальное давление этанола 100 атм). $V_{\kappa p^*}$ — объем этанола в реакторе, необходимый для обеспечения давления этанола выше критического (63 атм).

Кинетические исследования превращения этанола на Au–Cu-катализаторе показали, что реакция удовлетворительно описывается уравнением первого порядка. Обработка данных в координатах Аррениуса ($\ln(X)$ –1/T) в интервале от 245 до 280°C показала, что кажущаяся энергия активации превращения этанола в сверхкритических условиях равно 72 кДж/моль, а при газообразном состоянии этанола 13 кДж/моль. Полученные величины дают основания полагать, что одной из причин повышения конверсии этанола в условиях его сверхкритического состояния является снижение диффузионных затруднений. Согласно данным работ [23, 24], еще одной причиной роста конверсии этанола может быть увеличение поляризации О–H-связей и уменьшение количества водородных связей в сверхкритическом этаноле, что благоприятствует его адсорбции и активации спирта на активных центрах катализатора.

Сравнение конверсий и селективностей монометаллических аналогов Au-Cu катализатора в превращении этанола, находящегося в сверхкритическом состоянии, приведены в табл.1. Видно, что при 275° С в присутствии Cu/Al₂O₃ катализатора основным продуктом превращения этанола является диэтиловый эфир. Конверсии этанола и селективность по целевым спиртам составляет 11.5 и 0.2 %, соответственно (табл. 1). В присутствии Au/Al₂O₃ катализатора конверсия этанола равна 30 %, селективность по бутанолу-1 и гексанолу-1 составляет 15.9 и 0.5 %, соответственно (табл. 1). Таким образом, биметаллический катализатор является значительно более активным и селективным в превращении этанола в линейные α -спирты. Для

установления вероятных причин различного поведения Au-Cu, Au и Cu систем были проведены исследования структурных особенностей моно- и биметаллического катализаторов методами РФА, РФЭС и ПЭМ. Результаты приведены ниже.

Структурные особенности Au–Cu-, Au- u Cu-катализаторов. Дифрактограммы Au–Cu-, Au- u Cu-катализаторов приведены на рис. 2a-b. U3 Puc.2a видно, что на дифрактограмме Cu/Al_2O_3 присутствуют рефлексы при $2\theta = 32.5$, 37.6, 39.5, 46.0, 61.1, 66.8° , которые относятся к отражению от граней (220), (311), (222), (400), (511), (440) γ - Al_2O_3 [17]. Отсутствие на дифрактограмме Cu/Al_2O_3 рефлексов от медь-содержащих фаз, вероятнее всего, обусловлено низкой концентрацией меди. На дифрактограмме Au/Al_2O_3 (рис. 2b) помимо рефлексов от Al_2O_3 присутствуют рефлексы при $2\theta = 38.1$, 44.4 u 64.6° , которые относятся к отражению от граней (111), (200) u (222) кристаллитов золота [19]. 2000 201 202 уширены, что указывает на более высокую дисперсность 202 203 203 204 203.


Рис. 2. Дифракотграммы: a –Cu/Al₂O₃, b– Au/Al₂O₃. c –Au-Cu/Al₂O₃.

В работах [25, 26] описаны примеры формирования на поверхности Au–Cu-, Au–Ni- и Pd–Ce-катализаторов новых фаз, состоящих из биметаллических сплавов. Авторы этих исследований отмечают, что образование сплавов сопровождается появлением новых рефлексов или сдвигом рефлексов от нанесенных фаз благородных металлов в сторону больших углов по шкале 20. Данные РФА настоящей работы указывают на отсутствие новых рефлексов или сдвигов рефлексов от Au на дифрактограммах образца Au–Cu, что позволяет с высокой долей вероятности исключить образование сплавов с

неограниченной растворимостью или интерметаллических соединений с регулярной структурой.

Электронное состояние металлов в Au-, Cu- и Au-Cu-катализаторах изучено нами ранее методом рентгеновской фотоэлектронной спектроскопии, результаты приведены в [17]. Установлено, что медь на поверхности Cu/Al_2O_3 присутствует в форме CuO (80 ат.%) и Cu_2O (20 ат.%). Золото в Au/Al_2O_3 находится в виде Au^0 (100 ат.%). Энергия связывания электронов Au 4f7/2 в $P\Phi$ Э-спектре Au- Cu/Al_2O_3 составляет 84.4 эВ [17]. Этот результат указывает на тот факт, что наряду с изначально нульвалентным золотом в Au- Cu/Al_2O_3 формируются катионы Au(+n), 0<n<1. Содержание Au(+n) невелико и составляет порядка 10-20 ат.%. Анализ $P\Phi$ Э-спектров Cu 2p [17] позволил сделать вывод о том, что в Au- Cu/Al_2O_3 уменьшается доля поверхностного оксида CuO и растет доля Cu_2O . Приведенные выше результаты указывают на тот факт, что в Au-Cu-катализаторе контакт фаз Au(0) и CuO приводит к переносу электронов с Au(0) на CuO. В результате происходит частичное восстановление CuO до Cu_2O , а выделяющийся кислород связывается с Au(+n) с образованием AuOy. Такая модель согласуется со структурными данными по Au-Cu катализаторам, приводимым в работах [27, 28].

Типичные микрофотографии ПЭМ моно- и биметаллических катализаторов приведены на рис. 3a—d. Из рис. 3a видно, что на поверхности образца Cu/Al_2O_3 присутствуют области упорядоченных атомов, относящиеся по данным ЭДА к Cu-содержащим частицам со средним размером 3 ± 1 нм. Малый размер нанесенных частиц в Cu/Al_2O_3 , установленный с помощью ПЭМ, согласуется с рентгеноаморфностью фаз меди в Cu/Al_2O_3 , установленный с помощью $P\Phi A$ (рис.2a). На поверхности Au/Al_2O_3 присутствуют области упорядоченных атомов, относящиеся по данным ЭДА к частицам золота, со средним размером 10 ± 2 нм (рис. 3b). Формирование в Au/Al_2O_3 относительно крупных частиц золота обусловлено слабым взаимодействием металлноситель, которое приводит к спеканию частиц благородных металлов на стадии прокаливания предшественника катализатора [19].

Рис. 3. Типичные микрофотографии ПЭМ: а $-\text{Cu/Al}_2\text{O}_3$, b $-\text{Au/Al}_2\text{O}_3$, c $-\text{Au-Cu/Al}_2\text{O}_3$. Спектры ЭДА (d) и (e) локаций, отмеченных на (c). Видно, что локации содержат либо биметаллическую композицию, либо частицы индивидуальных металлов.

По сравнению с Au/Al_2O_3 средний размер частиц в $Au-Cu/Al_2O_3$ сдвинут в сторону меньших размеров и равен 5 нм (рис. 3с). Сдвиг среднего размера частиц в $Au-Cu/Al_2O_3$ указывает на тот факт, что оксиды меди способствуют стабилизации на поверхности носителя малых частиц Au. Пример идентификации химического состава частиц в $Au-Cu/Al_2O_3$ -катализаторе приведен на рис. 3c, d, e. ПЭМ-ЭДА анализ выборки из 180 частиц, расположенных как в скоплениях частиц, так и находящихся на значительном удалении друг от друга, показал, что около 20% частиц в $Au-Cu/Al_2O_3$ состоят из индивидуальных частиц Au размером 12 нм и частиц оксидов Cu размером 3

нм, в то время как оставшиеся 80% представляют собой биметаллические композиции, состоящие из частиц оксидов меди (3 нм) и малых частиц золота (5 нм).

Причины различного поведения Au-Cu, Au u Cu kamanusamopa. Из данных ПЭМ следует, что активная фаза в Cu/Al_2O_3 и Au/Al_2O_3 представлена частицами размером 3 и 10 нм, соответственно. Известно, что теплота адсорбции этанола на поверхности Cu выше в сравнение c Au [29]. Так же известно, что теплота адсорбции спирта резко возрастает c уменьшением размера частиц от 4 до 1 нм [26]. Следовательно, есть основания полагать, что число молекул спиртов, прочно связанных c поверхностью катализатора, должно быть выше в Cu/Al_2O_3 и меньше в Au/Al_2O_3 . При этом должна наблюдаться дезактивация блокированных спиртом активных центров u снижение конверсии этанола. Сравнение данных катализа u морфологии активных частиц согласуется c этой гипотезой: при прочих равных условиях тестирования конверсия этанола на Au/Al_2O_3 составляет 30% против 11.5% на Cu/Al_2O_3 .

Больший размер частиц в Au/Al_2O_3 в сравнение с Cu/Al_2O_3 хорошо объясняет высокую селективность образования бутанола-1 и гексанола-1. Очевидно, что высокая скорость роста углеводородного скелета продуктов должна наблюдаться при координации двух молекул этанола на двух свободных и близкорасположенных активных центрах (схема 1), число которых в 10 нм частицах Au должно быть больше.

Рост конверсии этанола на Au– Cu/Al_2O_3 в сравнении с наиболее активным аналогом Au/Al_2O_3 обусловлен на наш взгляд двумя факторами. Во-первых, контакт оксида меди и золота, приводит к росту дисперсности кластеров золота с 10 до 5 нм, поэтому при равных содержаниях золота удельная поверхность золота должна быть выше в Au– Cu/Al_2O_3 . При этом дисперсность золота в образце Au–Cu видимо еще не становится настолько высокой, чтобы вклад механизма ингибирования катализатора сильно связанными с поверхностью металла молекулами углеводородов оказывал лимитирующее действие на процесс в целом.

Определенный вклад в высокую активность Au— Cu/Al_2O_3 может вносить формирование в Au— Cu/Al_2O_3 новых центров Au(+n), 0 < n < 1. Из схемы 1 видно, что рост углеводородного скелета целевых спиртов проходит через стадии дегидрирования—гидрирования. Известно, что эти процессы на металлсодержащих катализаторах сопровождаются изменением степени окисления с M(n) на M(n+2) [30]. Для Au/Al_2O_3 изменения степеней окисления металла можно представить циклом

 $Au(0) \rightarrow Au(+2) \rightarrow Au(0)$, который включает нехарактерную для золота степень окисления (+2). Поэтому процессы дегидрирования-гидрирования углеводородов на нуль-валентных кластерах Au в Au/Al₂O₃ должны протекать с относительно низкой скоростью. Действительно из данных [30] следует, что нуль-валентное золото проявляет низкую активность в реакции гидрирования. В том случае когда, на поверхности частиц золота формируются отдельные атомы в степени окисления, близкой к (+1), становится возможен быстрый цикл, состоящий из характерных для золота степеней окисления $Au(+1) \rightarrow Au(+3) \rightarrow Au(+1)$. При этом, как следует из данных [19, 31], наличие катионного золота приводит к росту активности золотых катализаторов в гидрировании ацетилена и в изомеризации аллилбензола, протекающей через цикл дегидрирования-гидрирования. Следовательно, есть основания полагать, что процессы дегидрирования-гидрирования углеводородов (а значит и образование высокомолекулярных спиртов по схеме 1) на катионах золота в Au-Cu/Al₂O₃ могут так же протекать с высокой скоростью. Конечно, стоит учитывать, что в сфере реакции присутствует водород и процесс проводиться нами при относительно высокой температуре, поэтому логично было бы ожидать восстановления катионов Au до Au⁰ и последующего снижения конверсии до уровня, достигаемого на Au/Al₂O₃. Однако, данные по стабильности Аи-Си-катализатора свидетельствуют об обратном – выход продукта не меняется в течение по крайне мере первых 10 циклов.

Рост селективности образования бутанола-1 и гексанола-1 на Au-Cu/Al₂O₃ в сравнении с наиболее селективным аналогом Au/Al₂O₃ на наш взгляд можно объяснить изменением морфологии активного центра катализатора. Из рис. 3 также видно, что в биметаллическом катализаторе образуются протяженные скопления из кластеров Au_n- Cu_n - Au_n - Cu_n . Очевидно, такие скопления благоприятствуют близкой координации сразу нескольких молекул этанола, а, следовательно, облегчается рост более протяженного углеводородного скелета спиртов. В пользу этой свидетельствует и тот факт, что среди всех испытанных образцов только в присутствие Аи-Си-катализатора наблюдается образование следовых количеств высокомолекулярного спирта (октанола-1).

ЗАКЛЮЧЕНИЕ

Показано, что Au– Cu/Al_2O_3 композит является эффективным катализатором превращения этанола, находящегося в сверхкритическом состоянии, в линейные альфаспирты. Установлено, что в Au– Cu/Al_2O_3 -катализаторе формируются наноразмерные

биметаллические активные компоненты, в которых увеличивается концентрация ионов Au^{+n} (0 < n < 1) и Cu^{+1} по сравнению с монометаллическими катализаторами-аналогами (Au^0/Al_2O_3 и Cu^{2+}/Al_2O_3). Контакт золота и меди $Au-Cu/Al_2O_3$ -катализаторе так же приводит к резким изменением морфологии нанесенных частиц: средний размер частиц уменьшается; формируются скопления из кластеров $Au_n-Cu_n-Au_n-Cu_n$. Эти изменения приводят к заметному росту активности и селективности в образования бутанола-1 и гексанола-1 из этанола в сверхкритических условиях на Au-Cu-катализаторе. При этом условие сверхкритики этанола, вероятно, обеспечивает наиболее благоприятные условия для протекания реакции: образующиеся в условиях эксперимента продукты превращения этанола переходят в газообразное состояние, облегчая доступ флюидов этанола к активным центрам поверхности.

Работа выполнена при финансовой поддержке РНФ (грант №14-13-00574) с использованием оборудования, приобретённого в соответствии с Программой развития Московского Государственного Университета имени М.В. Ломоносова. Николаев С.А. выражает благодарность РФФИ (грант № 16-03-00073) за поддержку в синтезе и анализе структуры катализаторов настоящей работы.

СПИСОК ЛИТЕРАТУРЫ

- Biomass Conversion. The Interface of Biotechnology, Chemistry and Materials Science. Baskar C., Baskar S., Dhillon R.S. (Eds): Springer-Verlag. Berlin. 2012. e-book. DOI: 10.1007/978-3-642-28418-2. 465p.
- 2. Naik S.N., Goud V.V., Rout P.K., Dalai A.K. // Renewable and Sustainable Energy Reviews. 2010. V. 14. P. 578.
- 3. Sun J., Wang Y. // ACS Catalysis. 2014. V. 4. P. 1078.
- 4. Angelici C., Weckhuysen B.M., Bruijnincx P.C. // ChemSusChem. 2013. V. 6. № 9. P. 1595.
- 5. *Demirbas A*. Biofuels. Securing the Planet's Future Energy Needs: Springer-Verlag. L.. 2009. e-book. DOI: 10.1007/978-1-84882-011-1. 336p.
- 6. *Haruta M., Yamada N., Kobbayashi T., Iijima S. // J. Catal.* 1989. V. 115. P. 301.
- 7. Николаев С.А., Пермяков Н.А., Смирнов В.В., Васильков А.Ю., Ланин С.Н. // Кинетика и Катализ. 2010. Т. 51. № 2. С. 305. // Kinetics and Catalysis. 2010. V. 51. № 2. Р. 288.]

- 8. *Николаев С.А., Кротова И.Н.* // Нефтехимия. 2013. Т. 53. № 6. С. 442. / Petrol. Chemistry. 2013. V. 53. № 6. Р. 394.
- 9. *Смирнов В.В., Николаев С.А., Тюрина Л.А., Васильков А.Ю.* // Нефтехимия. 2006. Т. 46. № 4. С. 316. / Petrol. Chemistry. 2006. V. 46. № 4. Р. 289.
- Смирнов В.В., Ланин С.Н., Васильков А.Ю., Николаев С.А., Муравьева Г.П., Тюрина Л.А., Власенко Е.В. // Известия АН. Серия Химическая. 2005. Т. 54. № 10. С. 2215. / Rus. Chem.l Bulletin. 2005. V. 54. № 10. Р. 2286.]
- 11. Keane M.A., Gómez-Quero S., Cárdenas-Lizana F. // ChemCatChem. 2009. V. 1. P. 270.
- 12. *Nutt M.O.*, *Heck K.N.*, *Alvarez P.*, *Wong M.S.* // Applied Catalysis B. 2006. V. 69. P. 115.
- 13. *Николаев С.А., Васильков А.Ю., Смирнов В.В., Тюрина Л.А.* // Кинетика и катализ. 2005. Т. 46. № 6. С. 915 / Kinetics and Catalysis. 2005. V. 46. № 6. Р. 867.
- Ланин С.Н., Пичугина Д.А., Шестаков А.Ф., Смирнов В.В., Николаев С.А., Ланина К.С., Васильков А.Ю., Фам Тиен Зунг, Белецкая А.В. // Журн. Физ. Химии. 2010. Т. 84. № 12. С. 2330 / Rus. J.1 of Phys. Chemistry A. 2010. V. 84. № 12. P. 2133.
- 15. Pojanavaraphan C., Luengnaruemitchai A., Gulari E. // Applied Catalysis A. 2013. V. 456. P. 135.
- 16. He R., Wang Y.-C., Wang X., Wang Z., Liu G., Zhou W., Wen L., Li Q., Wang X., Chen X., Zeng J., Hou J.G. // Nature Communications. 2014. V. 5. DOI: 10.1038/ncomms5327.
- 17. Nikolaev S.A., Golubina E.V., Krotova I.N., Shilina M.I., Chistyakov A.V., Kriventsov V.V. // Applied Catalysis B. 2015. V. 168-169. P. 303.
- 18. Nikolaev S.A., Chistyakov A.V., Chudakova M.V., Kriventsov V.V., Yakimchuk E.P., Tsodikov M. V. // J. of Catalysis. 2013. V. 297. P. 296.
- 19. *Nikolaev S.A.*, *Pichugina D.A.*, *Mukhamedzyanova D.F.* // Gold Bulletin. 2012. V. 45. № 4. P. 221.
- 20. Riittonen T., Toukoniitty E., Madnani D.K., Leino A.-R., Kordas K., Szabo M., Sapi A., Arve K., Wärnå J., Mikkola J.-P. // Catalysts. 2012. V. 2. № 1. P. 68.
- 21. Ogo S., Onda A., Iwasa Y., Hara K., Fukuoka A., Yanagisawa K. // J. of Catalysis. 2012. V. 296. P. 24.
- 22. *Tsuchida T., Sakuma S., Takeguchi T., Ueda W.* // Industrial and Engineering Chemistry Research. 2006. V. 45. № 25. P. 8634.

- 23. *Yang J., Zhang Y., Yu Y.-X., Li Y.-G.* // J. of Supercritical Fluids. 2005. V. 36. P. 145.
- 24. *Dellis D., Chalaris M., Samios J.* // J. of Physical Chemistry B. 2005. V. 109. №39. P. 18575.
- 25. Liu X., Wang A., Wang X., Mou C.-Y., Zhang T. // Chemical Communications. 2008. P. 3187.
- 26. *Jiang H.-L., Xu Q.* // J. of Materials Chemistry. 2011. V. 21. P. 13705.
- 27. Duh F.-C., Lee D.-S., Chen Y.-W. // Modern Research in Catalysis. 2013. V. 2. P. 1.
- 28. White B., Yin M., Hall A., Le D., Stolbov S., Rahman T., Turro N., O'Brien S. // Nano Letters. 2006. V. 6. P. 2095.
- 29. Tereshchuk P., Juarez L. F. Da Silva // J. of Physical Chemistry C. 2012. V. 116. P. 24695.
- 30. *Николаев С.А.*, *Занавескин Л.Н.*, *Смирнов В.В.*, *Аверьянов В.А.*, *Занавескин К.Л.* // Успехи Химии. 2009. Т. 78. № 3. С. 248 / Rus. Chem. Reviews. 2009. V. 78. № 3. Р. 231.
- 31. *Пичугина Д.А.*, *Николаев С.А.*, *Мухамедзянова Д.Ф.*, *Шестаков А.Ф.*, *Кузьменко Н.Е.* // Журн. Физ. Химии. 2011. Т. 85. № 4. С. 724/ Rus. J. of Phys. Chemistry A. 2011. V. 85. № 4. P. 646.