ORIGINAL PAPER

Carbon Dioxide Hydrogenation on Au Nanoparticles Supported on TiO₂, ZrO₂ and Sulfated ZrO₂ Under Supercritical Conditions

V. I. Bogdan^{1,2} · A. E. Koklin¹ · S. A. Nikolaev² · L. M. Kustov^{1,2}

Published online: 25 July 2016 © Springer Science+Business Media New York 2016

Abstract Hydrogenation of CO_2 into CO and CH_4 was studied for the first time on Au and Au–Ni catalysts supported on ZrO_2 , TiO_2 and sulfated ZrO_2 under supercritical conditions. The extremely high selectivity to CO exceeding 96–98 % was found with a quite good stability of the catalytic activity. Surprisingly, almost no methanation reaction was observed, this reaction being typical for nickel-based catalysts.

Keywords Carbon dioxide hydrogenation \cdot Carbon monoxide \cdot Supercritical CO₂ \cdot Zirconia \cdot Titania \cdot Gold \cdot Nickel \cdot Bimetallic metal nanoparticles

1 Introduction

One of the partial solutions to the problem of CO_2 utilization is its conversion into intermediates that can be further easily transformed into high value-added products. The first option is CO_2 hydrogenation. Among the primary products of CO_2 hydrogenation, carbon monoxide, methane (synthetic natural gas) and methanol are the key intermediates that can be further transformed by the known technologies into aldehydes, ketones, higher alcohols, liquid hydrocarbon fuels or energy. The methanation reaction is known to proceed quite efficiently on Ni- or Ru-con-

L. M. Kustov lmk@ioc.ac.ru taining catalysts, while Cu-based catalysts can transform CO_2 into methanol, with some other metals capable of converting carbon dioxide into CO [1–3]. Heterogeneous catalysts are more preferable compared to homogeneous counterparts in terms of stability, separation, handling, recyclization, reactor design to decrease CAPEX and OPEX costs for large-scale productions. Excellent reviews devoted to CO_2 reactions have been published recently [4–7].

The catalytic conversion of CO_2 to CO via reverse water gas shift reaction (1) is considered as the first step of CO_2 reduction with hydrogen, with the possibility of occurrence of methanol formation (2) as the second step, with the final product being methane (3).

$$CO_2 + H_2 = CO + H_2O, \Delta H_{298K} = 41.2 \text{ kJ/mol}$$
 (1)

$$\begin{array}{rcl} {\rm CO}_2 \ + \ 3{\rm H}_2 \ = \ {\rm CH}_3{\rm OH} \ + \ {\rm H}_2{\rm O}, \Delta {\rm H}_{298{\rm K}} \\ & = -49.5 \ {\rm kJ/mol} \end{array} \tag{2}$$

$$\begin{array}{rcl} CO_2 &+& 4H_2 &=& CH_4 &+& 2H_2O, \Delta H_{298K} \\ &=& -252.9 \ \text{kJ/mol} \end{array} \tag{3}$$

The catalysts for CO_2 methanation have been reviewed in [8]. For instance, Ru-containing catalysts supported on a ceramic sponge (1 wt% Ru, Ru particle size 5–20 nm) were studied [9].

Martin et al. investigated Ni- and Ru-containing catalysts (5 wt%) in CO₂ hydrogenation at 350–400 °C, 1–20 bar, molar ratio of H₂/CO₂ = 4:1, with a gas hourly space velocity 6000 h⁻¹ [10]. The Ru/ZrO₂ catalysts with a Ru particle size of 4 nm were found to be much more active as compared to Ni/ZrO₂ catalysts with a Ni particle size of 20–30 nm. The methane yields above 70 % were obtained at an ambient pressure, whereas at elevated pressures the yields increased to 93 % for Ni and 96 %

¹ N.D. Zelinsky Institute of Organic Chemistry, RAS, Leninsky pr. 47, Moscow, Russia 119991

² Chemistry Department, Moscow State University, Leninskie Gory 1, Bldg. 3, Moscow, Russia 119992

for Ru with the methane selectivity exceeding 99.9 %. Zirconia-based Ru–Ni bimetallic nanoparticles (3–5 wt% of metals) were shown [11] to provide a complete CO₂ conversion at 300–400 °C, 10 bar, and space velocities up to 36,000 h⁻¹ with the selectivity to methane being 100 %. Noteworthy that the gas mixture was significantly diluted with H₂ and N₂ (a 4–7 times excess over CO₂).

Kwak et al. studied the Ru particle size effect on the catalytic behavior of Ru/Al_2O_3 [12]. The bimetallic catalysts (Ru–Ni/CeO₂–ZrO₂) demonstrated enhanced performance in methane formation [13].

Copper-catalysts were also used in CO_2 reduction to CO. Liu et al. developed bimetallic Cu–Ni/Al₂O₃ catalysts for CO₂ hydrogenation [14]. Whereas Cu is beneficial for CO formation, Ni is effective in CH₄ formation. The selectivities to CO and CH₄ depend on the Cu/Ni ratio in the catalyst composition and vary in a wide range.

Cu/ZnO and Cu–Zn/Al₂O₃ catalysts of methanol synthesis from CO to H_2 were also used for CO₂ reduction [15]. The highest activity was demonstrated by the system with the Cu/Zn ratio of 4:3 on alumina.

Chen et al. found that Cu/SiO₂ promoted with potassium showed the CO₂ conversion of 12.8 % at 600 °C. [16]. The selectivity to CO is rather high and approaches 100 % in the case of potassium-promoted samples. It was also demonstrated that the activity is improved upon modification of the catalyst with iron (0.3 wt% Fe added to 10 % Cu/SiO₂) without decreasing the selectivity to CO of around 98–100 % [17, 18].

Gold catalysts became one of the most intriguing area of research in catalysis in recent 20 years. The majority of publications of supported gold nanoparticles are related to oxide- and carbon-supported systems, with certain research being carried out with zeolites as the supports. Since the early works by Haruta [19, 20] and the book of Bond et al. [21], it is well recognized that the gold particles with the size of 2–5 nm are most active in the catalytic reactions of different nature, including CO oxidation and other reactions.

The water-gas shift reaction is one of the most important processes from the view point of production of H_2 :

$\mathrm{CO} + \mathrm{H}_2\mathrm{O} = \mathrm{CO}_2 + \mathrm{H}_2.$

Gold catalysts were considered as a versatile system for this reaction [22]. Obviously the opposite reaction of CO_2 hydrogenation can also be catalyzed by gold nanoparticles. The reasons behind the high efficiency of gold catalysts in this particular reaction are still elusive, but, as in the case of other Au-catalyzed reactions, the activity should be accounted for by several factors, not just one, including, but not limiting the scope:

- The possibility to prepare and stabilize gold nanoparticles with a small and uniform size, which can be tuned in between 1–2 and 15 nm, with larger particles being less active,
- The specific characteristics of the electronic structure of such tiny metal nanoparticles, including the density of *d*-electrons near the Fermi level and the flexibility of the electronic configuration capable of transforming from Au⁰ to Au^{δ-}, Au^{δ+}, Au⁺ or Au³⁺ states.

To the best of our knowledge, the use of supercritical CO_2 (sc CO_2) in the CO_2 hydrogenation reaction was the focus of only a few recent publications [23–25].

Synthesis of *N*,*N*-dimethylformamide (DMF) from CO₂, H_2 , and dimethylamine has been examined by several groups. Jessop et al. was the first who reported on the homogeneous RuCl₂[P(CH₃)₃]₄ catalyst for this reaction [26].

The only publication related to supercritical studies with heterogeneous catalysts is focused on Pd/Al_2O_3 catalysts and supercritical mixture of CO_2 and H_2 , with infrared spectra indicating the formation of surface species such as carbonate, formate, and CO [27]. However, no real catalytic tests were carried out in this work.

Earlier we have also studied this reaction in the gas phase using microwave activation of the catalysts (Fe- and Au-containing catalysts, LaNi₅ intermetallide) [28]. Also, we have revealed a synergy between gold and nickel in different reactions in our previous publications [29–33]. It was worth trying to study the Au–Ni catalyst of the already optimized composition and exhibiting the synergetic behavior in the new reaction of CO_2 hydrogenation.

Thus, the present paper is devoted to the first study of the CO_2 hydrogenation under supercritical CO_2 conditions on a series of monometallic (Au) and bimetallic (Au–Ni) catalysts prepared using ZrO_2 , SO_4/ZrO_2 , and TiO_2 as supports.

2 Experimental

The monometallic (Au) and bimetallic (Au–Ni) catalysts were prepared by combination of deposition–precipitation and impregnation techniques as described in [29–33]. First gold was supported using an alkaline solution of HAuCl₄ × nH₂O (Sigma-Aldrich, Au = 41 wt%) with ZrO₂, 5 wt% SO₄/ZrO₂ (Magnesium Electron, S = 120 m²/ g, 0.2 mm grains) and TiO₂ (Degussa, 50 m²/g, 6.0 IEP, 0.5 mm grains) followed by calcination at 623 K in air for 3 h. Next, bimetallic Au–Ni catalysts were prepared by incipient wetness impregnation of the Au/support material with an aqueous solution of Ni(NO)₃ × 6H₂O (Sigma-Aldrich, 98–99 % pure) followed by calcination at 623 K in air for 3 h. The content of the supported metals in the catalysts was measured by atomic absorption spectroscopy using a ThermoiCE 3000 AA spectrometer as described in [30]. The actual gold and nickel contents were 0.21–0.06 wt%, respectively, that corresponds to the desired equimolar Au/Ni ratio.

The sulfated zirconia was prepared by incipient wetness impregnation of Zr hydroxide (MEL) with ammonium sulfate with further calcination at 600 °C. The content of sulfate groups on the surface of zirconia was 5 wt%.

The reaction of CO_2 with H_2 was studied under supercritical conditions in a plug-flow reactor. The $H_2:CO_2$ ratio was equal to 1:1 or 2:1. The catalyst loading in the reactor was 2 cm³. The reaction temperature was ranged from 300 to 450 °C. Carbon dioxide was supplied with a syringe pump under the pressure of 80 atm, hydrogen was fed via a mass flow controller. The pressure in the reactor was maintained at 80 atm using a back pressure valve. Analysis of products was performed with a Crystallux-5000 gas chromatograph with a thermal conductivity detector and Porapack Q and zeolite CaA packed columns. The conversions of CO_2 and H_2 were determined by the formula:

$$C = (n_{in} - n_{out})/n_{in} \times 100$$

 $n_{\rm in}$ and $n_{\rm out}$ —are the quantities of CO $_2$ or H_2 at the inlet and outlet of the reactor.

$$n = c \times V$$
,

c is the concentration and V is the gas flow rate. The carbon balance was closed at 99–100 %. The hydrogen conversion was calculated on the basis of the CO_2 conversion and selectivities to all the products:

$$C_{calc}(H_2) = C(CO_2) \times (S(CO) + 4 \times S(CH_4) + 3 \times S(CH_3OH) + 7 \times S(C_2H_6))/100.$$

3 Results and Discussion

According to the previous XPS, XAS, TEM and IR studies [29–33], 100 % of nickel species on the surface of the Au–Ni catalysts exist as 3–4 nm NiO particles. Gold species are presented in two forms: ≈ 20 % of gold species on the surface of the Au–Ni catalysts exist as isolated 12–16 nm Au⁰ particles, whereas ≈ 80 % of gold species exist as small 4–5 nm Au^{$\delta+$} clusters anchored to NiO particles. The difference between the Au-Ni/ZrO₂ and Au–Ni/TiO₂ catalysts is related to the size of Au nanoparticles: for the zirconia-based system the particles are somewhat smaller (around 4 nm) compared to the titania-containing sample (5–6 nm) [29–33].

Scheme 1 Main reactions occurring in the $CO_2 + H_2$ system

In a general case, the interaction between CO_2 and H_2 occurs with the formation of several products, with CO, methanol, and methane being the main products (Scheme 1):

The catalytic data on the gas mixture compositions and the conversions and selectivities to the main products on the Au-containing catalysts are presented in Tables 1 and 2. The yield of methanol is negligible (less than 1 vol%).

In the case of the Au/ZrO₂-SO₄ catalyst, some amount of methanol is formed at T = 220-300 °C. The selectivity to methanol ranges from 9 to 15 % at the conversion of CO₂ increasing from 6 to 15 %. When the reaction temperature rises from 300 to 450 °C, methane starts to form with the selectivity increasing from 11 to 28 % in this temperature interval. Such an increase in the CH₄ selectivity in this particular case of the sulfated gold catalyst containing no nickel, which is known to catalyze the methanation reaction of CO2, can be explained by possible participation of reduced sulfur species in the entire process. It is known that sulfur in sulfated zirconia starts to be reduced to H₂S at temperatures higher than 350 °C. Perhaps, the reduced surface forms of sulfur participate in CO₂ reduction thus competing to H₂ via, for instance, the reaction:

 $HS^- + CO_2 \rightarrow CH_4 + SO_x$

The dependence of the conversion and selectivity to the main products for this particular catalyst is presented in Fig. 1.

The non-sulfated catalysts, Au–Ni/TiO₂ and Au–Ni/ZrO₂, behave pretty much differently compared to the sulfated catalyst. First these two catalysts are less active than the sulfated counterpart. Second, the formation of methanol and methane is severely suppressed on the Au–Ni catalysts, with the selectivity to either of these products hardly exceeding 5–7 %. The comparison of the CO₂ conversion versus temperature for the Au–Ni catalysts is presented in Fig. 2.

The interaction of CO₂ and H₂ on both Au–Ni catalysts results mainly in the formation of CO by the reverse water– gas shift reaction. The selectivity to CO is 95–100 %, with methane being the second abundant product (0–5 %). No clear dependences were observed of the catalyst activity/ Table 1Composition of gasmixtures in the course of CO_2 hydrogenation on Au-containingcatalysts (80 atm)

Catalyst	T (°C)	Concentration in the gas mixture after the reaction (vol%)						
		H_2	СО	CH_4	CO ₂	H ₂ O	CH ₃ OH	
Au/ZrO2-SO4	150	49.1	0.0	0.0	50.9	0.0	0.0	
H ₂ /CO ₂ = 1:1	220	49.2	1.2	0.0	46.0	1.5	0.4	
	260	48.4	5.2	0.1	44.3	6.0	0.5	
	300	44.9	6.5	0.9	42.3	9.2	0.9	
	350	43.7	8.3	2.2	41.1	12.6	0.0	
	400	37.9	11.5	3.1	41.5	17.7	0.0	
	450	35.5	12.3	4.8	39.2	21.8	0.0	
Au-Ni/TiO ₂	350	47.2	0.8	0.0	41.2	0.8	0.0	
$H_2/CO_2 = 1:1$	380	44.1	3.6	0.1	41.4	3.8	0.0	
	400	44.4	6.0	0.1	40.1	6.2	0.0	
	420	41.9	8.3	0.2	35.2	8.8	0.0	
	450	40.5	11.3	0.4	35.3	12.1	0.0	
Au-Ni/ZrO2	280	43.6	0.0	0.0	44.8	0.0	0.0	
$H_2/CO_2 = 1:1$	300	44.4	1.1	0.0	43.0	1.2	0.0	
	320	46.6	1.8	0.1	40.9	2.0	0.0	
	350	40.1	7.2	0.3	40.9	7.9	0.0	
	400	40.3	13.9	0.3	36.9	14.6	0.2	
	450	34.0	18.8	0.6	37.9	19.9	0.0	
Au-Ni/ZrO2	320	57.6	0.0	0.0	28.9	0.0	0.0	
$H_2/CO_2 = 2:1$	350	58.2	1.6	0.0	28.5	1.6	0.0	
	380	55.7	4.9	0.1	25.9	5.4	0.4	
	400	55.5	8.0	0.1	23.9	8.5	0.4	
	420	54.1	10.8	0.2	21.6	11.2	0.0	
	450	53.2	14.2	0.4	20.6	15.0	0.0	

1107

selectivity on the H₂:CO₂ ratio and of the selectivity on the reaction temperature in the temperature range studied (180–450 °C). The higher activity of the zirconia-based catalyst in comparison with the titania sample can be explained by the smaller particle size (and thus better dispersion) of the bimetallic nanoparticles in the case of the Au–Ni/ZrO₂ catalyst (about 4 vs. 5–6 nm for Au–Ni/TiO₂) [29–33].

The stability of the operation was studied for the Au–Ni/ ZrO_2 and Au–Ni/TiO₂ catalysts at T = 450 °C. The activity of both catalysts was kept quite constant within 7 h (Fig. 3). The sulfated catalyst was tested at a lower temperature (300 °C) because of hydrogen sulfide evolutions at higher temperatures. The seeming "oscillation" of the conversion versus time on stream for the Au–Ni/ZrO₂ catalyst may be the result of the fluctuation of the super-critical CO₂ flux. Therefore 3–4 % variations in the conversion is rather the data spread than a kind of a dependence. The same seems to be true with the sulfated zirconia catalyst and the observed insignificant increase of the activity can be neglected and the catalyst performance can be treated as stable.

The advantage of the catalytic experiments under supercritical conditions is the high throughput, i.e. the productivity of the catalyst expressed in terms of grams of CO₂ passed or converted per gram of the catalyst per hour. Most gas-phase experiments described in the literature were performed in diluted gas mixtures, with H₂ or N₂ serving as diluents, including one of the best result obtained by Martin et al. who tested the Ni- and Ru-containing catalysts (5 wt%) in CO₂ reduction with H₂ at 350–400 °C, 1–20 bar, molar ratio of H₂/CO₂ = 4:1, with a gas hourly space velocity 6000 h⁻¹ [10]. Also, the productivity was quite limited (about 0.2 g/g h). In our tests, the productivity reached 1.54 g/g h, which is about 7–8 times higher compared to the literature data.

Thus, the gold-based catalysts can be used effectively for reverse water gas shift reaction (CO₂ hydrogenation). This process, even though does not provide a means for complete utilization of industrial wastes of CO₂ because of the huge scale of CO₂ released to the environment, does serve as a step forward to produce high added-value products via further CO conversion. The reaction of CO₂ hydrogenation is only slightly endothermal (ΔH_{298K} =

Catalyst	T (°C)	CO ₂ conversion (%)	Selectivity (vol%)		
			СО	CH_4	CH ₃ OH
Au/ZrO ₂ -SO ₄	150	0	_	_	-
$H_2/CO_2 = 1:1$	220	3	75	0	25
	260	12	89	2	9
	300	16	78	11	11
	350	20	79	21	0
	400	26	79	21	0
	450	30	72	28	0
Au-Ni/TiO ₂	350	2	100	0	0
$H_2/CO_2 = 1:1$	380	8	98	2	0
	400	13	98	2	0
	420	20	97	3	0
	450	25	97	3	0
Au-Ni/ZrO2	280	0			
$H_2/CO_2 = 1:1$	300	3	96	4	0
	320	5	95	5	0
	350	16	96	4	0
	400	28	97	2	1
	450	34	97	3	0
Au-Ni/ZrO2	320	0			
$H_2/CO_2 = 2:1$	350	5	100	0	0
	400	26	95	1	4
	420	34	98	2	0
	450	41	97	3	0

Table 2 Performance of the Au catalysts in CO_2 reduction with H_2

 $H_2/CO_2 = 1:1$ or 2:1, P = 80 atm

Fig. 1 Dependence of the CO₂ conversion (*1*) and selectivity to CO (2), CH₃OH (3) and CH₄ (4) versus the reaction temperature for CO₂ hydrogenation on the Au/ZrO₂–SO₄ catalyst, H₂:CO₂ = 1:1 (mol), catalyst loading 2 cm³

41.2 kJ/mol), therefore, the energy expenses for the CO_2 utilization may be expected to be covered by the value of the target products. Among the target products of further CO processing, one should consider first formic acid and

Fig. 2 CO₂ conversion in the CO₂ + H₂ reaction on the Au–Ni/ZrO₂ (*1*) and Au–Ni/TiO₂ (2) catalysts, H₂:CO₂ = 1:1, pressure 80 atm, catalyst loading 2 cm³

Fig. 3 Dependence of the CO₂ conversion on the time of stream for CO₂ hydrogenation: (1) Au–Ni/ZrO₂ (450 °C), (2) Au–Ni/TiO₂ (450 °C), (3) Au/ZrO₂–SO₄ (300 °C). H₂/CO₂ = 1:1, V = 2 cm³

its derivatives, hydroformylation and alkoxyformylation products and other organic compounds. Nevertheless, simple conversion of CO into fuel components and petrochemical products via Fischer–Tropsch synthesis and methanol production may be of immediate interest.

4 Conclusions

Thus, the use of supercritical CO_2 (sc CO_2) in the CO_2 hydrogenation reaction is quite a new approach. Actually CO_2 hydrogenation reaction was studied here in the supercritical conditions for the first time. Only the synthesis of formamide was the focus of recent publications devoted to supercritical tests starting, for instance, from CO_2 , H_2 , and dimethylamine [23–26] using homogeneous catalysts that are known to demonstrate very often poor recyclability. Gold nanoparticles supported on sulfated zirconia turned out to be most active, though the selectivity was inferior to the bimetallic Au-Ni/ZrO2 and Au-Ni/TiO2 catalysts. The latter demonstrated the CO selectivity close to 100 % (95-100 %) in the entire temperature range of 180-450 °C. All the studied gold-containing catalysts exhibited a rather good stability originating in the case of the Au-Ni supported catalysts from high selectivity towards CO. The main advantage of the process under supercritical conditions is the enhancement of the spacetime yield due to the use of the high-density media. The productivity in supercritical CO₂ reached 1.54 g/g h, which is about 7-8 times higher compared to the known literature data.

Acknowledgments This research was financially supported by Russian Science Foundation (Project No. 14-33-00001).

References

- 1. Wang W, Wang S, Ma X, Gong J (2011) Chem Soc Rev 40:3703–3727
- 2. Omae I (2006) Catal Today 115:33-52
- 3. Centi G, Perathoner S (2009) Catal Today 148:191-205
- Mikkelsen M, Jorgensen M, Krebs FC (2010) Energy Environ Sci 3:43–81
- Ma J, Sun NN, Zhang XL, Zhao N, Mao FK, Wei W, Sun YH (2009) Catal Today 148:221–231
- 6. Baiker A (2000) Appl Organomet Chem 14:751-762
- 7. Dai WL, Luo SL, Yin SF, Au CT (2009) Appl Catal A 366:2-12
- 8. Wang W, Gong J (2011) Front Chem Sci Eng 5:2-10
- 9. Hoekman SK, Broch A, Robbins C, Purcell R (2010) Int J Greenh Gas Control 4:44–55

- Schoder M, Armbruster U, Martin A (2013) Chem Eng Technol 85:344–352
- 11. Lange F, Armbruster U, Martin A (2015) Energy Technol 3:55-62
- 12. Kwak JH, Kovarik L, Szanyi J (2013) ACS Catal 3:2449-2455
- Ocampo F, Louis B, Kiwi-Minsker L, Roger AC (2011) Appl Catal A 392:36–44
- 14. Liu Y, Liu DZ (1999) Int J Hydrog Energy 24:351-354
- 15. Stone FS, Waller D (2003) Top Catal 22:305–318
- 16. Chen CS, Cheng WH, Lin SS (2003) Appl Catal A 238:55-67
- 17. Chen CS, Cheng WH, Lin SS (2001) Chem Commun 18:1770–1771
- 18. Chen CS, Cheng WH, Lin SS (2004) Appl Catal A 257:97-106
- Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 2:405–408
- Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B (1993) J Catal 144:175–192
- Bond GC, Louis C, Thompson DT (2006) Catal by gold. Imperial College Press, London, p 366
- Mohamed MM, Salama TM, Ichikawa M (2000) J Colloid Interface Sci 224(2):366–371
- 23. Zhang S, Chen Y, Li F, Lu X, Dai W, Mori D (2006) Catal Today 115:61–69
- 24. Sun JM, Fujita S, Arai M (2005) J Organomet Chem 690:3490–3497
- 25. Jessop PG (2006) J Supercrit Fluids 38:211-231
- Jessop PG, Hsiao Y, Ikariya T, Noyori R (1994) J Am Chem Soc 116:8851–8852
- 27. Arunajatesan V, Subramaniam B, Hutchenson KW, Herkes FE (2007) Chem Eng Sci 62:5062–5069
- Kustov LM, Tarasov AL (2014) Mendeleev Commun 24: 349–350
- Nikolaev SA, Pichugina DA, Mukhamedzyanova DF (2013) Gold Bull 45(4):221–231
- Nikolaev SA, Permyakov NA, Smirnov VV, Vasil'kov AY, Lanin SN (2010) Kinet Catal 51(2):288–292
- Nikolaev SA, Chistyakov AV, Chudakova MA, Kriventsov VV, Yakimchuk EP, Tsodikov MV (2013) J Catal 297:296–305
- Tkachenko OP, Kustov LM, Nikolaev SA, Smirnov VV, Klementiev KV, Naumkin AV, Volkov IO, Vasil'kov AY, Murzin DY (2009) Top Catal 52(4):344–350
- Nikolaev SA, Golubina EV, Kustov LM, Tarasov AL, Tkachenko OP (2014) Kinet Catal 55(3):311–318