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Abstract—We introduce the notion of the metabelian rank of a group and study non-Abelian groups
of finite metabelian rank. We prove the following result: If G is the extension of a locally finite group
by a locally nilpotent-by-finite group and the metabelian rank of G is finite then the special rank of
G is finite too.
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1. INTRODUCTION

One of important directions in group theory is studying classes of groups with restrictions on ranks
for systems of their subgroups. The notion of the rank of a group appeared in the theory of Abelian
groups as an analog of the notion of the dimension of a vector space. Mal’tsev extended this notion to
the case of arbitrary groups; namely, he introduced the notions of the general and special ranks [26]. By
definition, the general rank of a group is finite and equal to r if r is the least number such that each finitely
generated subgroup of this group is included in a subgroup with at most r generators. The special rank
of a group is finite and equal to r if r is the least number such that each finitely generated subgroup of
this group admits a system of generators with at most r elements. The notion of a group of finite special
rank became widespread. Now the special rank is usually called simply “the rank.”

Numerous articles of Soviet and foreign authors were devoted to studying groups of finite rank.
Mal’tsev’s article [27] played a fundamental role. In that article, linear solvable groups were studied
and, on their basis, a program was formulated (and mostly implemented) for studying various classes of
solvable groups of finite rank. In particular, the famous theorem was proven on the almost triangulability
of a solvable matrix group over an algebraically closed field (later called the Kolchin–Mal’tsev theorem)
and a series of other well-known results was obtained. Solvable groups of finite rank and their
automorphism groups were studied in [17, 23, 28, 3–7, 35–37]. Kargapolov [23] proved his deep theorem
saying that the rank of a solvable group is finite if the rank of each Abelian subgroup is finite. Later this
result was generalized by Baer and Heineken to radical groups [1]. Gorchakov showed that a similar
result is valid for periodic locally solvable groups [18]. Shunkov proved the corresponding theorem for
locally finite groups [34]. On the other hand, Merzlyakov constructed an example of a locally solvable
group of infinite rank such that the rank of each Abelian subgroup is finite (moreover, these subgroups
are finitely generated) [29].

Notice that the class of solvable groups of finite rank includes the classes of polycyclic groups,
solvable minimax groups (i.e., groups admitting a subnormal series whose factors are Abelian and satisfy
either the minimum condition or the maximum condition), groups admitting a finite rational series, etc.
These types of groups are closely connected with groups of finite rank. For example, Robinson proved
that a finitely generated solvable group of finite rank is a minimax group [30].

For a more complete survey of results on groups of finite rank, the reader is referred to [24, Sec. 25;
32]. Requirement that the rank of a group be finite is now widely used in various group theoretical
problems.
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Comparing the requirement that the rank be finite with other finiteness conditions (for example,
the minimum and maximum conditions on subgroups), it is not difficult to observe that the latter were
considered for subgroups of various types (for example, Abelian, normal, non-Abelian, primary, etc.). In
this connection, Zaı̆tsev introduced the notion of the F-rank of a group, see [9].

Definitinon 1. Let G be a group and let F be a nonempty system of its finitely generated subgroups.
The F-rank of the group G is the least number r such that each subgroup belonging to F admits
a generating set with at most r elements. If such a number r does not exist then the F-rank of
the group G is infinite.

In [9, 10], non-Abelian groups of finite F-rank were studied, where

(1) the system F consists of all non-Abelian finitely generated subgroups of a non-Abelian group
(i.e., groups of finite nоn-Abelian rank);

(2) the system F consists of all non-Abelian non-periodic finitely generated subgroups of a non-
periodic non-Abelian group (i.e., groups of finite non-Abelian 0-rank).

In [11–13], generalizations of groups of finite F-rank were studied. Notice that rank restrictions for
systems of subgroups were widely used in studying linear groups of infinite dimension [14–16].

In the present article, we study non-Abelian groups of finite F-rank, where F is the system of all
metabelian (i.e., non-Abelian 2-step solvable) finitely generated subgroups of a group (i.e., groups of
finite metabelian rank). Investigation of this class was initiated in [8].

The main results of the present article are Theorems 1–3 and Corollary 2.

2. PRELIMINARIES

Throughout the article, we consider non-Abelian groups only. By a metabelian group we always
mean a non-Abelian 2-step solvable group. We denote the metabelian rank of a group G by rma(G). We
call the special rank of a group G the rank of G and denote, as usual, by r(G).

Recall that the 0-rank of an Abelian group is the rank of its quotient group modulo the periodic part.
The 0-rank of a solvable group is the sum of the 0-ranks of the factors of its subnormal series with
Abelian factors. The 0-rank of a solvable group G is denoted by r0(G) and is an invariant of G. By
the 0-rank of an almost solvable group we mean the 0-rank of its normal solvable subgroup of finite
index.

Solvable groups of finite 0-rank are called solvable A1-groups in Mal’tsev’s classification [27]. As is
known, the quotient group G/t(G) of a solvable group G of finite 0-rank modulo its periodic radical t(G)
(i.e., the greatest normal periodic subgroup) is a solvable A4-group, i.e., a group of finite rank admitting
a finite subnormal series with Abelian factors whose periodic parts are finite [27]. This condition holds if
and only if G/t(G) is an almost torsion-free group; moreover, in this case, there is a subgroup H/t(G)
of finite index admitting a finite rational series, i.e., a subnormal series whose factors are isomorphic to
suitable subgroups of the additive group of rational numbers.

In our study of groups of finite metabelian rank, we will need a series of lemmas.

Lemma 1. Let G be a metabelian group and let G ′ denote its commutant. Then the inequality
r(G/G ′) ≤ rma(G) holds.

Proof. If H/G ′ is a finitely generated subgroup of G/G ′ then H is included in a suitable sub-
group H1 = KG ′, where K is a metabelian finitely generated subgroup. Since K is generated by at
most rma(G) elements, so are the Abelian group H1/G

′ and its subgroup H/G ′.

Lemma 2. Let K be a non-Abelian normal subgroup of a metabelian group G. Then the in-
equality r(G/K) ≤ rma(G) holds.

Proof. Let H/K be a finitely generated subgroup of G/K. We represent H as the product H = SK,
where S is a metabelian finitely generated subgroup. By the definition of the metabelian rank of G,
the subgroup S admits a generating set with at most rma(G) elements. Since H = SK, the quotient
group H/K is generated by at most rma(G) elements. This finishes the proof of the inequality r(G/K) ≤
rma(G).
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Corollary 1. If a metabelian group G can be represented as the product of a central subgroup Z
and a metabelian subgroup K then we have

r(Z) ≤ r(Z ∩ K) + rma(G).

Proof. Since G/K 'Z/Z ∩K, we have r(Z)≤ r(Z ∩ K)+r(G/K). Taking into account the rela-
tion r(G/K) ≤ rma(G) from Lemma 2, we obtain the required inequality.

Lemma 3. Let G be an almost solvable group. Then the inequality r
(

Z(G)
)

≤ 3 + rma(G)
holds.

Proof. We begin with the case in which G is a finite group. We choose a minimal non-Abelian
subgroup F of G (a Miller–Moreno subgroup). Taking into account the description of finite minimal

non-Abelian groups
(

see [22, pp. 285 and 309]
)

, we conclude that F is a metabelian subgroup and

the rank of its center is at most 3. Applying Corollary 1 to the subgroup Z(G)F , we obtain

r
(

Z(G)
)

≤ r
(

Z(G) ∩ F
)

+ rma(G) ≤ 3 + rma(G).

We turn to the case in which G is a solvable group. Assume that r
(

Z(G)
)

> 3 + rma(G). We

consider a finitely generated subgroup Z of the center Z(G) of G satisfying the condition

r(Z) > 3 + rma(G). (1)

We choose a finitely generated metabelian subgroup H of G. The product H1 = ZH is a finitely
generated metabelian subgroup. Let p be a prime number such that

r(Z) = r(Z/Zp). (2)

From results of [20] it follows that a finitely generated group is residually finite if its commutant
is Abelian. Therefore, there exists a normal subgroup M of H1 of finite index such that the quotient
group H1/M is not Abelian and there exists a normal subgroup N/Zp of H1/Z

p of finite index with
Z ∩ N = Zp. The quotient group H1/M ∩ N is finite and metabelian. Since Z ∩ N = Zp, there exists
a subgroup Z(M ∩N)/(M ∩N) of its center that is isomorphic to the quotient group Z/(Zp ∩M). For
the metabelian subgroup H1, the inequality rma(H1/M ∩ N) ≤ rma(G) holds. Taking into account
the assertion for finite groups proven above, we conclude that the rank of Z/(Zp ∩ M) is at most
3 + rma(G); hence, we have r(Z/Zp) ≤ 3 + rma(G). According to (2), this contradicts assumption (1)
about the rank of Z.

We turn to the case in which G is an almost solvable group. We show that there exists a non-
Abelian solvable subgroup K of G. We choose a maximal normal solvable subgroup A of G. If A is
a non-Abelian subgroup then we put K = A. If A is an Abelian subgroup, we consider the non-Abelian
quotient group G/A and choose a minimal non-Abelian subgroup K/A. By [22, pp. 285 and 309],
the subgroup K is solvable; hence, the subgroup Z(G)K is non-Abelian and solvable. By the above

arguments for solvable groups, we have r
(

Z(G)
)

≤ 3 + rma(G).

Lemma 4. Let G be a non-Abelian group of finite metabelian rank and let A be an Abelian
normal subgroup of G. Then the rank of A is finite.

Proof. If A is a central subgroup of G then, by Lemma 3, we have r(A) ≤ 3 + rma(G). If
the subgroup A is not central then there exists an element g ∈ G such that the subgroup A〈g〉 is not
Abelian. Since the non-Abelian rank of A〈g〉 is at most rma(G), the rank of A is finite in view of results
of [9].

Lemma 5. Assume that a group G is represented as the product G = A〈g〉, where A is
an Abelian normal subgroup of G and gs ∈ CG(A) for a suitable natural s. If G is a non-Abelian
group then we have

r(A) ≤ rma(G)s + 1.

Proof. We consider an arbitrary finitely generated subgroup B of A that is a normal subgroup of G.
Since every finitely generated subgroup of A is included in such a subgroup B, it suffices to prove
the required inequality for B instead of A.
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If B〈g〉 is an Abelian subgroup then B ≤ Z(G). In view of Lemma 3, we have r(B) ≤ 3 + rma(G);
hence, r(B) ≤ rma(G)s + 3. If B〈g〉 is a non-Abelian subgroup then it is generated by r elements
x1, x2, . . . , xr, where r ≤ rma(G). We represent each element xi in the form xi = aigi, where ai ∈ B and

gi ∈ 〈g〉. We put B0 = 〈aG
1 〉 · · · 〈a

G
r 〉, where 〈aG

i 〉 denotes the normal closure of ai. Since gs ∈ CG(A),
there exist at most s elements of G that are conjugate to ai. We conclude that

r
(

〈aG
i 〉

)

≤ s, r(B0) ≤ rs ≤ rma(G)s, r(B) ≤ rs ≤ rma(G)s + 1.

3. COINCIDENCE OF THE SUBCLASSES OF GROUPS OF FINITE
METABELIAN RANK AND OF FINITE SPECIAL RANK

FOR SOME CLASSES OF GROUPS

Lemma 6. If the commutant of a group G is finite then there exists either an Abelian or
metabelian subgroup of G of finite index.

Proof. We denote by C the centralizer of the commutant G ′ in the group G and by K the commutant
of the subgroup C. Since G ′ is finite, the index |G : C| is finite too. Since K ≤ C and K ≤ G ′, we have
K ≤ C ∩ G ′; hence, [K,C] = 1. We conclude that the commutant of the subgroup C is Abelian. Since
the index |G : C| is finite, we find that there exists a subgroup of G of finite index that is either Abelian or
metabelian.

Theorem 1. If G is a locally finite group of finite metabelian rank then the rank of G is finite
too.

Proof. We begin with the case in which G is a periodic locally solvable group. Assume that the rank
of G is infinite. By [21, 40], for every finite non-Abelian subgroup K of G, there exists a subgroup of G
of the form AK, where A is an Abelian subgroup of infinite rank that is normalized by K. We apply
Lemma 4 to the group AK and take into account the fact that the metabelian rank rma(G) is finite. We
find that the rank of the subgroup A is finite, which is a contradiction. Therefore, the rank of the group G
is finite.

We turn to the case in which G is a locally finite group (and the metabelian rank rma(G) is finite). We
show that each Sylow p-subgroup of G, where p is prime, is a Chernikov subgroup. Assume the contrary,
i.e., let there exist a prime p and a Sylow p-subgroup of G that is not a Chernikov subgroup. Then
there exists a countable infinite non-Abelian subgroup K of G with a Sylow p-subgroup that is not
a Chernikov subgroup. We represent K as the union of an increasing sequence of finite groups, i.e., let
K1 < K2 < · · · and let

⋃

∞

i=1
Ki = K. We construct a projection Sylow p-subgroup P of K, see [33].

The subgroup P is the union of the finite subgroups Pi = P ∩Ki. Since there exists a Sylow p-subgroup
of K that is not a Chernikov subgroup, we conclude that P cannot be a Chernikov subgroup. Notice
that P is an Abelian subgroup in view of the above arguments for the case of periodic locally solvable
groups. Since the rank r(P ) is infinite, the ranks of the finite subgroups Pi increase without bound. We
may assume that

r(Pi) > rma(G) + 3. (3)

If there exists a number i such that the Abelian subgroup Pi is not central in the normalizer NKi
(Pi) then

there exists an element h ∈ NKi
(Pi) such that the subgroup Pi〈h〉 is not Abelian. We choose a number j

such that j > i and

r(Pj) > rma(G)n + 1, (4)

where n is the order of h. If Pj 6= P h
j then the subgroup 〈Pj , P

h
j 〉 generated by two Sylow p-subgroups

of Kj is not Abelian. Since the subgroups Pj and P h
j are Abelian and the subgroup Pi = P h

i is included

in their intersection, we conclude that Pi is central in 〈Pj , P
h
j 〉. By Lemma 3, we have

r(Pi) ≤ rma(G) + 3,

which contradicts (3). We conclude that Pj = P h
j and the element h belongs to the normalizer NKj

(Pj).

By Lemma 5, we have

r(Pj) ≤ rma(G)n + 1,
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which contradicts (4).

We now assume that, for every i, the subgroup Pi is included in the center of the normalizer NKi
(Pi).

By a theorem of Burnside [19, Theorem 14.3.1], there exists a normal subgroup Mi of Ki such that
Ki = Mi h Pi. Since the quotient group Ki+1/Mi+1 is a p-group, its nontrivial subgroup KiMi+1/Mi+1

is a p-group too. Since KiMi+1/Mi+1 ' Ki/Ki ∩ Mi+1 and Mi is the least normal subgroup defining
a quotient p-group in Ki, we find that Mi ≤ Ki ∩ Mi+1; hence, Mi ≤ Mi+1. We denote by M the union
⋃

∞

i=1
Mi. Then M forms a normal subgroup of K; moreover, we have MP = K and M ∩ P = 1. We

conclude that K = M h P , the quotient group K/M is an Abelian p-group, and the subgroup M lacks
elements of order p.

Thus, if there exist a prime p and a Sylow p-subgroup of K that is not a Chernikov subgroup then
p /∈ π(K ′). From [2] it follows that every Sylow q-subgroup of K ′, where q is prime, is a Chernikov
subgroup. Hence, the group K ′ is almost locally solvable. We denote by S the locally solvable radical
of the group K ′. Then S is a characteristic subgroup of K ′ and its index in K ′ is finite. We conclude
that the quotient group K/S is the extension of a finite group by an Abelian group and, consequently,
the commutant of K/S is finite. By Lemma 6, the group K/S is either Abelian-by-finite or metabelian-
by-finite; hence, the group K is almost locally solvable. By the above arguments for the case of periodic
locally solvable groups and Lemma 4, the rank of K is finite.

We have proven that, for every prime p, every Sylow p-subgroup of the locally finite group G is
a Chernikov subgroup. By [2], the group G is almost locally solvable; hence, the rank of G is finite.

Theorem 2. If G is a locally nilpotent group and its metabelian rank rma(G) is finite then
the rank of G is finite too. In particular, if the group G is torsion-free then its rank is bounded by

some number η
(

rma(G)
)

that depends on rma(G) only.

Proof. We begin with the case in which G is a metabelian nilpotent torsion-free group. Let H be
a finitely generated metabelian subgroup of G. Notice that every finitely generated nilpotent group is
polycyclic; hence, it is a minimax group. By [39, Lemma 5], there exist two characteristic subgroups K
and L of H of finite index such that K/L is an elementary Abelian group of rank r, where r is the length
of a rational series of H . Moreover, by [39, Theorem 1], the number r is equal to the rank of H , i.e., we
have r = r(H).

If L is an Abelian subgroup then the nilpotent torsion-free group H is Abelian-by-finite. Taking
into account [24, Theorem 16.2.8], we find that H is an Abelian group, which is a contradiction. We
conclude that the subgroup L is not Abelian. We apply Lemma 2 to the metabelian group H and its
subgroup L. We obtain the inequality r(H/L) ≤ rma(H). Since r(K/L) = r(H), we conclude that
r(H) ≤ rma(H). On the other hand, the reverse inequality rma(H) ≤ r(H) holds for every metabelian
group H . The inequalities r(H) ≤ rma(H) and rma(H) ≤ r(H) imply the equality

r(H) = rma(H). (5)

In particular, there exists a metabelian finitely generated subgroup of G generated by exactly rma(G)
elements. Since the subgroup H is arbitrary, from equality (5) it follows that

r(G) = rma(G). (6)

We turn to the case in which G is a locally nilpotent torsion-free group. Let A be a finitely generated
Abelian subgroup of G and let H be the first non-Abelian upper central factor of a finitely generated
non-Abelian subgroup that includes A. Since the nilpotent torsion-free subgroup AH is metabelian,
from equality (6) and the obvious inequality rma(AH) ≤ rma(G) it follows that r(AH) ≤ rma(G). We
conclude that r(A) ≤ rma(G). By [28], from the inequality r(A) ≤ rma(G) and the fact that A is
an arbitrary Abelian finitely generated subgroup it follows that the rank of G is finite and is bounded

by a number η
(

rma(G)
)

that depends on rma(G) only, i.e., we have

r(G) ≤ η
(

rma(G)
)

=
1

2
rma(G)

(

rma(G) + 1
)

.

We turn to the case in which G is a locally nilpotent group (and the metabelian rank rma(G) is finite).
We denote by T the periodic part of G, i.e., the subgroup consisting of all elements of finite order. If T is

SIBERIAN ADVANCES IN MATHEMATICS Vol. 30 No. 3 2020



GROUPS OF FINITE METABELIAN RANK 197

a non-Abelian subgroup then, by Theorem 1, the rank r(T ) is finite. If T is an Abelian subgroup then,
by Lemma 4, we have r(T ) < ∞.

Let A be an Abelian finitely generated torsion-free subgroup of G, let H be the first non-Abelian
upper central factor of a finitely generated non-Abelian subgroup that includes A, and let P denote

the periodic part of the subgroup AH . If P = 1 then from the inequalities r(AH) ≤ η
(

rma(H)
)

and

rma(H) ≤ rma(G) it follows that r(AH) ≤ η
(

rma(G)
)

. If P is a nontrivial subgroup then we consider

the quotient group AH/P . If this quotient group is Abelian then, by Lemma 1, we have r(AH/P ) ≤
rma(G). Since AP/P ' A, we find that r(A) ≤ rma(G). If the quotient group AH/P is not Abelian
then from (6) and the relations rma(AH/P ) ≤ rma(G) and AP/P ' A it follows that r(A) ≤ rma(G).

Thus, the rank of a finitely generated Abelian torsion-free subgroup A is at most rma(G). We
conclude that, for every Abelian subgroup B of G, the inequality r(B) ≤ rma(G) + r(T ) is valid.
According to [28], the rank of the group G is finite.

Lemma 7. Let S be a finitely generated group. Assume that there exists a normal locally
finite subgroup T of S of finite rank such that the quotient group S/T is nilpotent-by-finite. Then
the group S is nilpotent-by-finite too.

Proof. By [2, Corollary 13], the subgroup T is almost locally solvable. By [5, Theorem 1], every
periodic locally solvable group of finite rank admits an increasing characteristic series with finite factors.
By [31, Theorem 3.18], the group S locally satisfies the maximum condition. We conclude that T is
a finite subgroup. Since the quotient group S/T is nilpotent-by-finite, the group S is nilpotent-by-finite
too.

Theorem 3. If G is a locally nilpotent-by-finite group of finite metabelian rank then the rank
of G is finite too.

Proof. Let G be a locally nilpotent-by-finite group of finite metabelian rank and let T denote
the periodic radical of G. If T is a non-Abelian subgroup then, by Theorem 1, the rank of T is finite.
If T is an Abelian subgroup then, by Lemma 4, we have r(T ) < ∞.

We first prove the following assertion: The set of the 0-ranks of finitely generated subgroups of G is
bounded.

Let K be a finitely generated subgroup of G. We begin with the case in which there exists a finitely
generated subgroup H of G that is not Abelian-by-finite. Then the subgroup 〈K,H〉= M is not
Abelian-by-finite either. Since the subgroup M is nilpotent-by-finite and finitely generated, there exists
a normal nilpotent torsion-free subgroup M1 of M of finite index (in M ). Since the subgroup M
cannot be represented as the finite extension of an Abelian group and the index |M : M1| is finite,

we conclude that the subgroup M1 is not Abelian. By Theorem 2, there exists a number η
(

rma(G)
)

such that r(M1) ≤ η
(

rma(G)
)

. Hence, the 0-rank of the subgroup M satisfies the inequality r0(M) ≤

η
(

rma(G)
)

. Thus, we have r0(K) ≤ η
(

rma(G)
)

.

We turn to the case in which each finitely generated subgroup of G is Abelian-by-finite, i.e., admits
an Abelian subgroup of finite index. Let H be a finitely generated non-Abelian subgroup of G satisfying
the condition

r0(H) > rma(G) + 3. (7)

If such a subgroup does not exist then, for each finitely generated subgroup of G, the 0-rank is at most
rma(G) + 3. Let A be an Abelian subgroup of H of finite index (in H). From (7) and Lemma 3 it follows
that A is not central in H . Hence, there exists an element h ∈ H such that the subgroup A〈h〉 is not
Abelian; moreover, we have hn ∈ A for some n > 0. The subgroup 〈K,H〉 = H1 is the finite extension of
a suitable Abelian subgroup A1. We show that the subgroup A1〈h

n〉 is Abelian. We assume the contrary,

i.e., let A1〈h
n〉 be a non-Abelian subgroup. Since hn ∈ A, we have A∩A1 ≤ Z

(

A1〈h
n〉

)

. By Lemma 3,

we find that r0(A∩A1) ≤ rma(G) + 3 because A1〈h
n〉 is not Abelian. Since the indices |A : A∩A1| and

|H : A| are finite, we obtain the inequality r0(H) ≤ rma(G) + 3, which contradicts (7). It is not difficult

to see that the subgroup A1〈h〉 cannot be Abelian. Indeed, if it is Abelian then A ∩ A1 ≤ Z
(

A〈h〉
)

,

where the subgroup A〈h〉 is not Abelian by construction. It remains to take into account Lemma 3 and
conclude that r0(A ∩ A1) ≤ rma(G) + 3, which (as is already mentioned) is impossible.
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We apply Lemma 5 to the non-Abelian subgroup A1〈h〉 and take into account the fact that A1〈h
n〉 is

an Abelian subgroup. We obtain the inequality

r(A1) ≤ rma(G)n + 1,

which implies the following relations:

r0(K) ≤ r0(H1) = r0(A1) ≤ r(A1) ≤ rma(G)n + 1.

Thus, we have proven that the set of the 0-ranks of finitely generated subgroups of G is bounded by some
natural number t.

We prove that the rank of the quotient group G/T is finite. We begin with the case in which
the group G/T is Abelian. Notice that G/T is a torsion-free group. We consider a finitely generated
subgroup B/T of the group G/T . We represent the subgroup B in the form B = B1T , where B1 is
a finitely generated subgroup of G. Since B1 is the finitely generated extension of the locally finite group
B1 ∩ T of finite rank by the Abelian group B1/B1 ∩ T , from Lemma 7 it follows that B1 is a nilpotent-
by-finite subgroup. Hence, there exists a normal nilpotent torsion-free subgroup B2 of B1 of finite index
(in B1). Since the set of the 0-ranks of finitely generated subgroups of G is bounded, we find that
r0(B2) ≤ t; hence, r(B2) ≤ t. Since B1T/T is an Abelian torsion-free group and the index |B1 : B2| is
finite, we obtain

r(B1T/T ) = r(B2T/T ).

Since r(B2) ≤ t and B = B1T , we obtain the inequality r(B/T ) ≤ t. Since the finitely generated
subgroup B/T is arbitrary, the rank r(G/T ) is at most t.

We turn to the case in which the quotient group G/T is not Abelian and the set of the 0-ranks of
finitely generated subgroups of G/T is bounded by t. By [38, Lemma 5], for every finitely generated
subgroup S/T of G/T , there exists a periodic normal subgroup F/T of S/T such that r(S/F ) is
bounded by some number f(t) that depends on t only. Since the subgroup S/T is almost torsion free,
the subgroup F/T is finite; moreover, the set of finite normal subgroups of S/T is finite. This allows us to
apply the well-known method of projections (see, for example, [25, Sec. 55]) and find a periodic normal
subgroup P/T of G/T with r(G/P ) ≤ f(t). Since the periodic radical of the group G/T is the trivial
subgroup, we conclude that r(G/T ) ≤ f(t).

Corollary 2. If a group G is the extension of a locally finite group by a locally nilpotent-by-
finite group and rma(G) < ∞ then the rank of G is finite.

Proof. The rank of the periodic radical of the group G is finite. This fact is established by
the arguments from the proof of Theorem 3. By Lemma 7, the group G is locally nilpotent-by-finite.
Therefore, the fact that the rank r(G) is finite is immediate from Theorem 3.

Notice that, even for periodic nilpotent groups, there is no function describing the dependence of
the rank of a group on the metabelian rank of that group. For example, consider the wreath product of
two cyclic groups of prime order p. The metabelian rank of this group is 2 while the rank is equal to p.
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