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Simple theory is proposed to explain the observed multiple oscilla-
tions in the reflection and transmission coefficients for surface 
Rayleigh waves at the edge of an elastic w e d g e , which are dependent 
on the vertex a n g l e . 

Surface Rayleigh wave reflection from the edge of an elastic wedge is im-
portant in ultrasonic flow detection, seismology, and acoustoelectronics [1] . 
Although there are many papers (see review [2]), no exact solution has so far 
been obtained. Existing solutions are based on various approximations in per-
turbation theory [2-4] and apply only for fairly blunt w e d g e s , while they give 
a poor description of the observed multiple oscillations in the reflection and 
transmission coefficients as functions of the wedge angle 0 [1]. 

Here we propose a simple theory that describes these oscillations closely. 
A difference from most existing approximate approaches, which apply for 6 $ тг, 
the theory takes the other limiting case 9 > 0. The wedge is considered as a 
set of two coupled surface-wave guides, while a Rayleigh wave incident normal 
to the edge is represented as the sum of symmetric and antisymmetric modes in 
this system. If the wedge is sufficiently sharp, these are the lowest symme-
trical (quasi-longitudinal) and antisymmetrical (bending) Lamb waves m a Diate 
of variable thickness 2h, and one can represent the surface displacements in 
the incident Rayleigh wave to a first approximation by means of the following 
phase integrals (the factor exp(-iwt) is omitted), with the x axis directed from 
the edge along the wedge face: 

Here u Q is the amplitude of the incident Rayleigh w a v e , while x Q is the point 

at which the reflection coefficient is determined, with к (x, 6) and k„(x, 8) 

the wave numbers of the symmetrical and antisymmetrical m o d e s , whose dependence 
on x ana 6 is via h(x, 9) = x tg(9/2), since к = k„(h) and к = к (n). For О d d 
sufficiently large x < x Q , namely for 2h(x, 0) > A R , where A R Is uhe length of 

the Rayleigh wave at the given freauency ш, one has noted closely that к = к = > s а п. 
© 1985 by Allerton Press, Inc. 

X 

(I) 

88 



where is the wave number of the Rayleigh w a v e , with both modes in (1) propa-
rt 

gating in p h a s e . On approach to the e d g e , i.e., for 2 h ( x , 0) < k s ana k a 

becdme different one from the o t h e r , which results in a phase difference between 
the two m o d e s . W h e n each of the modes has been reflected from the e d g e , the 
process is repeated in the opposite d i r e c t i o n . C l e a r l y , the phase difference 
between the reflected symmetric and antisymmetric modes at x = x Q is dependent 

on 9 in this m o d e l , and it is the reason for the oscillations in the reflection 
and transmission coefficients as 9 v a r i e s . Of c o u r s e , this applies on the as-
sumption that the reflection coefficients for the symmetric and antisymmetric 
modes are close to one in m o d u l u s , i . e . , there is virtually no energy transfer 
from these lowest Lamb modes to higher o n e s , which can be treated as a conse-
quence of emission into the bulk of the w e d g e . This assumption is quite obvious 
for a sharp w e d g e . 

On the above b a s i s , the reflection coefficient R and transmission coeffici-
ent T can be put as 

R=sin -Ц?— exp (i\J>+—in/2), 
( 2 ) 

7=®=costJ)_exp (t4|)+), 

X, 
where ij»±= \[ka{x, 0) ±ks(x, 0)] dx + (я + Фв ± Ф,)/2, while S> and Фо are the phase shifts 

о s a 

for the symmetric and antisymmetric modes arising from r e f l e c t i o n . The 
theory of oscillations in a thin plate shows [5] that Ф0 = 0 and Ф_ = тг/2 for a 

b d 
plate of constant t h i c k n e s s . To extend this theory to the case of not exces-
sively sharp a n g l e s , it is necessary to determine the dependence of Ф and Ф 

о a. 
on 8. This can be done most simply by interpolation with a straight line join-
ing the values of and Ф0 for 9 = 0 and 9 = ir. The values of Ф and Ф for s • 3. s d 

6 = it are readily obtained by considering the colliding motion of two identi-
cally polar Rayleigh waves (symmetrical m o d e ) and two oppositely polar ones 
(antisymmetric m o d e ) on the surface of a h a l f - s p a c e . C l e a r l y , for 9 = тг -we 
have Ф = 0 and Ф = ir, so the Ф_(9) and Ф (9) relationships in this approxi-S 3 . S 3 , mation will take the form Ф_(9) = 0, Ф„(9) = (ir + 9)/2. Then we replace inte-

s a 
gration with respect to x by integration with respect to h in (2) to get the 
m o d u l i of the reflection and transmission coefficients for x Q which are 
the ones of interest: 

|Я| = |sin[6/tg(8/2) —(л—9)/4] |, 

17*1 = |cos[6/tg(9/2) — (л—0)/4] I, ( 3 } 

where 6 = j [ka (h) — ks (Л)] dh is a dimensionless parameter dependent on Poisson's ra-
0 

tio a for the m e d i u m . As analytic expressions in explicit form for ana 

k 0 ( h ) are l a c k i n g , it is convenient to calculate 6 by approximating the corre-

sponding dispersion curves derived from numerical calculations [6]. We do not 
consider this simple but fairly cumbersome procedure here and give the value 
of б for duralamin (a = 0.35); б ~ 2. 7 5 . 

Figure 1 shows the observed |R| and |T| for duralamin specimens [1], while 
the solid lines show the dependence of these calculated from (3). On the w h o l e , 
the theoretical relationships describe the experimental results quite well; in 
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F i g . I . Dependence of |R| and |T| for a Rayleigh 
wave on wedge angle 9. 

p a r t i c u l a r , they reflect the observed reduction in the oscillation period as 
9 decreases and the correspondence between the peaks in the r e f l e c t i o n coeffic 
ent and the minima in the t r a n s m i s s i o n o n e , and vice v e r s a . Good qualitative 
agreement is also obtained for large 9, where the theory is certainly not ap-
p l i c a b l e , in particular because it does not incorporate the fairly considerabJ 
bulk emission occurring at these angles (according to (.2) and (3), |R| 2 + |Tj: 

= 1 , a l w a y s ) . The deviation of this sum from one reflects the accuracy of t' 
approximate a p p r o a c h . E x p e r i m e n t a l data [1] indicate that |R| 2 + I T I 2 devia 

from one at angles greater than 50°, which approximately sets the 
to this t h e o r y . As regards very small 9, we consider that there 
experimental points for a detailed comparison of theory and experi-
the oscillation periods become comparable with or less than the 
steps. 

-l л 
es 

appreciably 
upper limit 
are too few 
m e n t , since 
measurement 

We now consider a new effect that this simple theory p r e d i c t s , namely that 
inclined incidence at an angle a for a Rayleigh wave can be reduced to the abovs 
case of normal incidence for a wedge with an equivalent vertex angle 0'' = 2arctg-
• [tg (0/2) cos a].. Therefore there should be oscillations in |R| and |T| as the angle 
of incidence a varies even for a fixed 9. 
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