THE REFLECTION AND TRANSMISSION COEFFICIENT OSCILLATION MECHANISM FOR A RAYLEIGH WAVE IN AN ELASTIC WEDGE

V . G . Mozhaev and V . V . Krylov

Vestnik Moskovskog o Universiteta . Fizika , Vol . 40, No . 4 , pp . 76-79 , 1985

UDC 534.26

Simple theory is proposed to explain the observed multiple oscilla**tions in the reflectio n and transmissio n coefficient s for surface Rayleig h wave s at the edge of an elastic wedge , whic h are dependen t on the verte x angle .**

Surface Rayleigh wave reflection from the edge of an elastic wedge is important in ultrasonic flow detection, seismology, and acoustoelectronics [1]. **Although there are many papers (see review [2]), no exact solution has so far** been obtained. Existing solutions are based on various approximations in perturbation theory [2-4] and apply only for fairly blunt wedges, while they give **a poor descriptio n of the observe d multipl e oscillation s in the reflectio n and transmissio n coefficient s as function s of the wedg e angle 0 [1].**

Here we propos e a simple theor y that describe s these oscillation s closely . A difference from most existing approximate approaches, which apply for $\theta \leq \pi$, **t he theory takes the other limitin g case 9 > 0 . The wedg e is considere d as a set of two couple d surface-wav e guides , while a Rayleig h wave incident norma l** to the edge is represented as the sum of symmetric and antisymmetric modes in this system. If the wedge is sufficiently sharp, these are the lowest symme**trica l (quasi-longitudinal) and antisymmetrica l (bending) Lamb waves** m a Diat e **of variabl e thicknes s 2h , and one can represen t the surface displacement s in** the incident Rayleigh wave to a first approximation by means of the following **phas e integral s (the factor exp(-iwt) is omitted) , wit h the x axis directe d** from the edge along the wedge face:

$$
u_{inc}(x, \theta) = \frac{1}{2} u_0 \exp\left[-i\int_{x_0}^{x} k_s(x', \theta) dx'\right] +
$$

+
$$
\frac{1}{2} u_0 \exp\left[-i\int_{x_0}^{x} k_a(x', \theta) dx'\right].
$$
 (1)

Here u_0 is the amplitude of the incident Rayleigh wave, while x_0 is the point at which the reflection coefficient is determined, with $k_g(x, \theta)$ and $k_g(x, \theta)$ **t he wave number s of the symmetrica l and antisymmetrica l modes , whose dependenc e on x** and θ is via h(**x**, θ) = **x** tg(θ /2), since k_{s} = k_{s} (h) and k_{a} = k_{a} (h). For sufficiently large $x \le x_0$, namely for $2h(x, \theta) > \lambda_R$, where λ_R is the length of the Rayleigh wave at the given frequency ω , one has noted closely that $k_{\alpha} = k_{\alpha} = k_{\alpha}$, **© 1985 by Allerton Press, Inc.**

where k **_R** is the wave number of the Rayleigh wave, with both modes in (1) propa**gating in phase.** On approach to the edge, i.e., for $2h(x, \theta) \leq \lambda_R$, k_g and k_g **becdm e differen t one fro m the other , whic h result s in a phas e differenc e betwee n t he two modes . Whe n eac h of the mode s has bee n reflecte d from the edge , the proces s is repeate d in th e opposit e direction . Clearly , the phas e differenc e** between the reflected symmetric and antisymmetric modes at $x = x_0$ is dependent

on 9 in this model , an d it is the reaso n for the oscillation s in the reflectio n a nd transmissio n coefficient s as 9 varies . Of course , this applie s on the as sumptio n that th e reflectio n coefficient s for the symmetri c and antisymmetri c mode s ar e clos e to one in modulus , i.e. , ther e is virtuall y no energ y transfe r from these lowest Lamb modes to higher ones, which can be treated as a conse**quence of emission into the bulk of the wedge. This assumption is quite obvious f or a sharp wedge .**

On the abov e basis , the reflectio n coefficien t R and transmissio n coeffici ent T can be put as

$R = \sin \psi - \exp (i\psi + -i\pi/2),$

$T = \cos \psi - \exp(i\psi_+),$

X, **where** $\psi_{\pm} = \int_{0}^{x} [k_{a}(x, \theta) \pm k_{a}(x, \theta)] dx + (\pi + \Phi_{a} \pm \Phi_{s})/2$, while $\Phi_{\rm S}$ and $\Phi_{\rm a}$ are the phase shifts for the symmetric and antisymmetric modes arising from reflection. The **theory** of oscillations in a thin plate shows [5] that $\Phi_{\rm g} = 0$ and $\Phi_{\rm g} = \pi/2$ for a plate of constant thickness. To extend this theory to the case of not exces**blate e constant huming is the constant of the constant of** Φ **_s** and Φ ₂ **sivel y sharp angles , it is necessar y to determin e the dependenc e of Ф and Ф** rue form ing the values of $\Phi_{\mathbf{g}}$ and $\Phi_{\mathbf{g}}$ for $\theta = 0$ and $\theta = \pi$. The values of $\Phi_{\mathbf{g}}$ and $\Phi_{\mathbf{g}}$ for θ = π are readily obtained by considering the colliding motion of two identically polar Rayleigh waves (symmetrical mode) and two oppositely polar ones l (antisymmetric mode) on the surface of a half-space. Clearly, for $\theta = \pi$ we have $\Phi_S = 0$ and $\Phi_a = \pi$, so the $\Phi_S(\theta)$ and $\Phi_a(\theta)$ relationships in this approximation will take the form $\Phi_c(\theta) = 0$, $\Phi_c(\theta) = (\pi + \theta)/2$. Then we replace inte**s a gratio n wit h respec t to x by integratio n wit h respec t to h in (2) to get the modul i of the reflectio n and transmissio n coefficient s for x ^Q whic h are t he ones of interest :**

$$
|R| = |\sin[\delta/\text{tg}(\theta/2) - (\pi - \theta)/4]|,
$$

$$
|T| = |\cos[\delta/\text{tg}(\theta/2) - (\pi - \theta)/4]|,
$$
 (3)

 (2)

wher e 6 = j *[ka (h) — ks* **(Л)]** *dh* **is a dimensionles s paramete r dependen t on Poisson' s ra - 0 tio** σ **for the medium.** As analytic expressions in explicit form for k_{σ} (h) and **k ⁰ (h) are lacking , it is convenien t to calculat e 6 by approximatin g the corre spondin g dispersio n curve s derive d from numerica l calculation s [6] . We do not conside r this simpl e but fairl y cumbersom e procedur e her e and giv e the valu e of δ for duralamin (σ = 0.35); δ** \approx **2.75.**

Figure 1 shows the observed $|R|$ and $|T|$ for duralamin specimens [1], while the solid lines show the dependence of these calculated from (3). On the whole, the theoretical relationships describe the experimental results quite well; in

Fig. 1. Dependence of $|R|$ and $|T|$ for a Rayleigh **wave on wedge angle** θ **.**

particular, they reflect the observed reduction in the oscillation period as **9 decrease s and th e correspondenc e betwee n th e peak s in the reflectio n coeffic ent and th e minim a in the transmissio n one , and vic e versa . Goo d qualitativ e agreemen t is also obtaine d for larg e 9 , wher e the theor y is certainl y not ap plicable , in particula r becaus e it doe s not incorporat e th e fairl y considerabJ bulk emission occurring at these angles (according to (2) and (3),** $|R|^{2} + |\mathbb{T}|^{2}$ $=$ **1, always).** The deviation of this sum from one reflects the accuracy of this **approximate approach.** Experimental data [1] indicate that $|R|^2 + |T|^2$ deviates **from one at angle s greate r tha n 50°, whic h approximatel y sets the appreciabl y to thi s theory . As regard s ver y smal l 9 , we conside r that ther e uppe r limit experimenta l point s for a detaile d compariso n of theor y and experi - a r e too few t h e oscillatio n period s becom e comparabl e wit h or less tha n the ment , since** measurement steps.

W e no w conside r a ne w effec t that this simpl e theor y predicts , namel y that inclined incidence at an angle α **for a Rayleigh wave can be reduced to the above case of norma l incidenc e for a wedg e wit h an equivalen t verte x angl e 0'' = 2arctg-** \cdot [tg(θ /2) cos a]. Therefore there should be oscillations in $|R|$ and $|T|$ as the angle **of incidenc e a varie s eve n for a fixe d 9 .**

REFERENCE S

 . I . A . Vaktorov , Surfac e Acousti c Wave s in Solid s [in Russian] , Nauka , Moscow , 1981 . . L . Knopoff , in: Wav e Propagatio n in Solids , J . Miklowit z (Editor) , p . , ASME , New York , 1969- . K . Viswanathan , J . T . Kuo , and E . R . Lapwood , Geophys . J . Roy . Astron . Soc. , vol . 24 , no . 4 , p . 401 , 1971 . . T . Yoneyam a and S . J . Nishida , Acoust . Soc . Am. , vol . 59 , no . 1 , 0 . , 1976 . . E . Skuczik , Simpl e and Compoun d Oscillator y System s [Russia n transla tion] , Mir , Moscow , 1971 . . T . Meeke r and A . Meitzler , in: Physica l Acoustics , W . Maso n (Editor) , vol . 1 , part A , p . 140 , Mir , Moscow , 1966 . 29 Octobe r 1984 Acoustic s Department