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Abstract—The paper presents a polynomial-time algorithm for rescheduling traffic when one
track of a double-track railway becomes unavailable, the remaining track has a siding, and there
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1. INTRODUCTION

Disruptions such as accidents or track damages often lead to the temporary blockage of a track
of a double-track railway segment. In such situations, it is necessary to schedule traffic in both
directions on the remaining track with the goal to minimise the impact of the blockage. Railway
rescheduling remained an area of active research over several decades [2]. The paper contributes to
this research a polynomial-time dynamic programming based optimisation procedure for the case
when the remaining track has a siding and there are two categories of trains—priority trains such
as passenger trains and ordinary trains such as the majority of freight trains.

More specifically, consider a double-track railway between two points, A and B, where one track
is blocked and all trains must be rescheduled on the remaining track. The available track has a
siding, i.e. a segment, allowing a train to pass another train. In this case, this another train must
be stationary in the siding, whereas the passing train cannot stop in the siding. At most one train
can be stationary in the siding at a time. All trains have the same constant speed. The time
required for a train to cover the distance between point s ∈ {A,B} and the siding will be denoted
by ps. Without loss of generality, assumed that pA � pB.

For the safety reason, two trains can not arrive at the siding simultaneously. Let β be the
minimal time between such arrivals. For the same reason, for each end point of the considered
segment of the track, any two arrival times at this point, as well as any two departure times, and
any pair of arrival time and departure time must differ at least by β. In contrast, two trains can
leave the siding simultaneously if they move in different directions. The assumption that all these
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safety requirements have the same minimal time β simplifies the presentation but is not essential.
It is also assumed that β < pB.

The set of trains is comprised of two categories—the priority trains and the ordinary trains.
For each s ∈ {A,B}, let s̄ = {A,B} \ {s}. Denote by Np

s and No
s the sets of priority and ordinary

trains that are to travel along the track in the direction from point s to point s̄. It is assumed that,
for each s ∈ {A,B}, Np

s ∪No
s �= ∅, because otherwise the rescheduling problem does not exist.

The original timetable, designed under the assumption that both tracks are operational, allocates
to each train j ∈ Nα

s a time window [rs,αj , ds,αj ] within which j should pass through the considered
double-track segment of the railway network. According to this initial timetable, one track is
allocated to all trains, priority and ordinary, moving from A to B, and another track is allocated
to all trains, priority and ordinary, travelling in the opposite direction, from B to A. Therefore, for
any two trains j ∈ Nα

s and j′ ∈ Nα′
s , moving from s to s̄, the corresponding time windows satisfy

the condition

rs,αj �= rs,α
′

j′ and rs,αj > rs,α
′

j′ implies ds,αj > ds,α
′

j′ . (1)

As a result of rescheduling, each train j ∈ Nα
s is assigned the point in time Ss,α

j when this train
should enter the remaining railway track, which will be referred to as its departure time from s,
and the point in time Cs,α

j when this train should leave the track, which will be referred to as
its arrival time at s̄. Any such new schedule must satisfy the following condition, imposed by the
initial time windows:

(s1) for each s ∈ {A,B}, each α ∈ {p, o} and each train j ∈ Nα
s , the departure time Ss,α

j of this
train satisfies the inequality Ss,α

j � rs,αj .

The goal is to find a schedule that minimises the objective function

max
s∈{A,B}

max
j∈Np

s

[
Cs,p
j − ds,pj

]
(2)

and that minimises the objective function

∑

s∈{A,B}

∑
j∈No

s

[
Cs,o
j − rs,oj

]
(3)

on the set of all schedules that are optimal for (2).

The objective function (3) is only one of the possible measures of the impact of the blockage
on the ordinary trains. Thus, the optimisation procedure below can be easily modified to the case
when instead of (3) is used

max
s∈{A,B}

max
j∈No

s

[
Cs,o
j − ds,oj

]
. (4)

There exist a number of publications on scheduling and rescheduling on a single-track railway
(some references can be found in [2, 3]). Among them, the publications [1, 4, 5] are the most
closely related to this paper. Similar to this paper, [1] is concerned with rescheduling when the
original schedule for the fully operational double-track segment of the railway network specifies a
time window for each train and considers several categories of trains. In contrast to this paper, [1]
assumes that there is no siding and reflects the existence of different types of trains by introducing
weights in the objective function.

Another closely related publication is [5], which is concerned with the optimisation of the ordered
objective functions, but in contrast to this paper, assumes that all trains are available simultane-
ously (such situation may occur after the complete blockage of the considered segment of the
railway). Furthermore, [5] assumes that there is no siding.
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Finally, [4] is concerned with scheduling on a single-track railway which has a siding, but similar
to [5] assumes that all trains are available simultaneously. Furthermore, in contrast to the opti-
misation procedure below, which is designed for two categories of trains and the ordered objective
functions, all algorithms, presented in [4], have been designed for a single objective function and
assume that all trains have the same type. Despite the mentioned above significant differences
between [4] and this paper, several results on the structure of optimal schedules, obtained in [4],
allow a straightforward generalisation to the case when the original schedule specifies for each train
a time window. Furthermore, the main insight of [4] that there exists an embedded Bellman de-
cision process associated with the departure times of certain trains remains valid for this paper,
although the set of states and the implementation of the general scheme of dynamic programming
are different.

2. EXPRESSES AND NON-EXPRESSES

Consider an arbitrary schedule for the track that remained available after the blockage. As
in [4], a train that does not stop at the siding will be referred to as an express, whereas a train
that stops at the siding will be called a non-express. The notions of express and non-express are
unrelated to the notions of priority and ordinary trains. In other words, any priority train as well
as any ordinary train can be either an express or a non-express depending on the schedule. The
set of all expresses that pass the same non-express will be called a batch. For any point in time t,
a train j ∈ Nα

s will be called active at t if

Ss,α
j � t � Cs,α

j .

If trains j ∈ Nα
s and j′ ∈ Nα′

s̄ , i.e. two trains that are moving in the opposite directions, are
active simultaneously at some point in time, then they are moving towards each other at the point

in time max[Ss,α
j , S s̄,α′

j′ ]. Consequently, these two trains must be an express and a non-express that
this express passes at the siding.

Since, at any point in time, at most one train can be stationary at the siding, if train j ∈ Nα
s

passes any train j′ that travels in the same direction as j, i.e. from s to s̄, then, in the time interval
[Ss,α

j , Cs,α
j ], there are no active trains, moving from s̄ to s. Hence, instead of waiting for j, the

train j′ can leave the siding at least at the point in time Ss,α
j + ps − β which can only improve the

value of the objective function because this function is nondecreasing.

Since both objective functions, (2) and (3), are nondecreasing, the discussion above implies that
without loss of generality it suffices to consider only schedules that in addition to (s1) satisfy the
conditions:

(s2) For each s ∈ {A,B} and each α ∈ {p, o}, for any two trains j ∈ Nα
s and j′ ∈ Nα

s , the inequality
rs,αj > rs,αj′ implies Ss,α

j > Ss,α
j′ .

(s3) For any non-express, there exists at least one express that passes this non-express.
(s4) All expresses that pass the same non-express travel in the opposite direction to the direction

of this non-express.
(s5) A non-express leaves the siding simultaneously with the last express that passes this non-

express.

Two expresses, travelling in the opposite directions, cannot be active simultaneously. Further-
more, two expresses, travelling in the same direction, say from s to s̄, can depart from s only at
points in times that are at least β apart. Hence, all departure times of the expresses are different.

Several factors determine the minimal possible difference between two consecutive departure
times of expresses. If, as in [4], all trains are available simultaneously, these factors are the directions
in which the expresses travel and the situations at the siding when these expresses arrive at it. All
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possible combinations of these factors are specified in [4] by associating with each express a pair
(s, b), referred to as its type. Here, s indicates that the express travels in the direction from s to s̄,
whereas b reflects the situation at the siding and assumes the following values:

• 0, if the express goes through an empty siding;
• 1, if the express is part of a batch and is not last in this batch;
• 2, if the express is the last in a batch.

Let i ∈ Nα
s and i′ ∈ Nα′

s′ be two consecutive expresses of types (s, b) and (s′, b′) respectively. Let
the departure time of i be equal to t. Assume that b �= 1, b′ �= 0, and that express i′ passes some
non-express g′ ∈ Nγ

s̄′ . According to [4], the departure time of express i determines the following
earliest possible departure time of non-express g′:

τ̂ =

⎧
⎪⎨
⎪⎩

t+ pA + pB + β, if s = s′

t+ β, if s �= s′, b = 0
t+ 2ps + β, if s �= s′, b = 2.

(5)

Indeed, if s = s′, then g′ traverses the track from s̄ to s. By virtue of b �= 1, trains g′ and i cannot
be active simultaneously. Hence, g′ can depart from s̄ only β after the arrival of i, which arrives
at s̄ at t+ pA + pB. If s �= s′, then both, i and g′, move from s to s̄. Therefore, if b = 0, then the
departure times of g′ and i can differ only by β, whereas if b = 2, then g′ can leave s only β after
the arrival at s of the train that i passes in the siding. The latter leaves the siding at the same
time as i, that is at t+ ps, and after that needs ps time units to reach s.

In contrast to [4], which assumes that all trains are at the respective endpoints of the track
simultaneously, this paper is concerned with the rescheduling problem which takes into account
the time windows assigned to trains by the initial timetable. So, there exists one more restriction
on the earliest possible departure time imposed by the train’s original time window. Hence, the
earliest possible departure time of g′ from the corresponding endpoint of the track is

τ = max
{
τ̂ , rs̄

′,γ
g′

}
. (6)

If the time window for i′ is not considered, then, according to [4], the departure times t and τ
(if train g′ exists) determine the following earliest departure time of i′:

t̂ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t+ β, if s = s′ and b = 1
t+ β, if s = s′ and b = b′ = 0
max{t+ 2ps + β, τ + ps̄′ + β − ps′}, if s = s′, b = 2, b′ �= 0
t+ 2ps + β, if s = s′, b = 2, b′ = 0
τ + ps̄′ + β − ps′ , if s = s′, b = 0, b′ �= 0
t+ pA + pB + β, if s �= s′, b′ = 0
max{t+ pA + pB + β, τ + ps̄′ + β − ps′}, if s �= s′, b′ �= 0.

(7)

Taking into account the restriction, imposed by the time window for i′, its earliest possible departure
time is

max
{
t̂, rs

′,α′
i′

}
. (8)

Let express i of type (s, b) have the earliest departure time among all expresses. Let g be a train
which departs earlier than i. Then, g is a non-express. This, by virtue of (s3) and (s4), implies
that g departs from s̄ and is stationary in the siding when i goes through the siding. Hence, i is
the first train from s. Furthermore, since any express can pass at most one non-express, g is the
first train from s̄.
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For each s ∈ {A,B} and each α ∈ {p, o}, let nα
s be the cardinality of the set Nα

s and number all
trains j ∈ Nα

s in the decreasing order of rs,αj or equivalently in the decreasing order of ds,αj . Let the
first express in the sequence of expresses has type (s, b) and is a train of category α which passes a
non-express of category γ (if it exists). Then, taking into account the condition (s2), the departure
time of this first express is

t =

⎧⎨
⎩

rs,αnα
s
, if b = 0

max
{
rs,αnα

s
, rs̄,γ

nγ
s̄
+ ps̄ + β − ps

}
, if b �= 0.

(9)

Using the same reasonings as above, it is easy to see that if express i of type (s, b) has the latest
departure time among all expresses and g is a train which departs later than i, then i is the last
train from s, g is the last train from s̄, and g is stationary in the siding when i goes through the
siding.

Let i and i′ be two consecutive expresses of types (s, b) and (s′, b′), respectively, where the
departure time of i′ is greater than the departure time of i. As has been shown above, the types
of these expresses together with the departure time of i completely determine the earliest possible
departure time of i′. Furthermore, if i passes a non-express g and b = 2, then (s, b) and the departure
time of i completely determine the time when g arrives at s; and if i′ passes a non-express g′ and
b �= 1, then the departure time of i and the types of these two expresses completely determine the
earliest departure time of g′ from s̄′. In addition, as has been shown above, the type of the first
express completely determines the earliest departure time of this express and the earliest departure
time of the train which this express passes in the siding if such train exists. These observations
permit to construct the desired schedule by considering only the departure times of expresses and
by assigning to each train the earliest possible departure time from the corresponding departure
point.

3. MINIMISATION OF THE MAXIMAL LATENESS

This section shows how to find the optimal value of the objective function (2). The objective
function (2) involves only one category of trains, and therefore this optimisation problem is similar
to that in [4] with one essential difference—in contrast to [4], the considered rescheduling problem
takes into account time the windows, assigned to the trains prior to the occurrence of the blockage.
This necessitates the inclusion of time into the definition of a state, which in turn changes the
implementation of the general dynamic programming framework for the maximum lateness problem.

Consider an arbitrary schedule (recall that this section is concerned only with the priority trains
and the existence of all ordinary trains is ignored) and an arbitrary express in this schedule. Let
(s, b) be the type of this express and t be its departure time. The number of priority trains that
enter the considered railway track at or after the point in time t and that traverse the track from s
to s̄ will be denoted by ks. Let ks̄ be the cardinality of the set of priority trains each of which is
either the train that the considered express passes in the siding, or that traverses the track from s̄
to s and departs from s̄ at or after t, or both. The departure of the considered express is associated
with the tuple (t, kA, kB , s, b). According to the terminology of dynamic programming, this tuple
will be referred to as a state. It is easy to see that if the departure of an express is associated with
state (t, kA, kB , s, b), then this express belongs to the set Np

s and, by virtue of (s2) and the way in
which the trains were numbered, is the train number ks.

State (t, kA, kB , s, b) allows to compute

Cs,p
ks

− ds,pks
= t+ pA + pB − ds,pks
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and, in the case of b = 2,

C s̄,p
ks̄

− ds̄,pks̄
= t+ 2ps − ds̄,pks̄

.

Denote

L(t, kA, kB , s, b) =

{
max

{
t+ pA + pB − ds,pks

, t+ 2ps − ds̄,pks̄

}
, if b = 2

t+ pA + pB − ds,pks
, otherwise.

Each schedule induces the sequence of states where the states are listed in the increasing order
of the corresponding departure times. Consider all schedules which sequences of states contain
(t, kA, kB , s, b). Let F (t, kA, kB , s, b) be the minimal value of

max
s∈{A,B}

max
j∈{1,...,ks}

[
Cs,p
j − ds,pj

]

on the set of all these schedules. Denote by Ω(t, kA, kB , s, b) the set of all states such that each of
them immediately follows (t, kA, kB , s, b) in at least one of the above mentioned sequences.

According to the Section 2, the last express is also the last train traversing the railway track
in the respective direction. Furthermore, after the departure of this express, at most one train
can traverse the track in the opposite direction and the last express passes this train in the siding.
Therefore, if state (t, kA, kB , s, b) is associated with the departure of the last express, then kx in
(t, kA, kB , s, b) is

kx =

⎧
⎪⎨
⎪⎩

1, for x = s
0, for x = s̄ and b �= 2
1, for x = s̄ and b = 2.

(10)

This implies that

F (t, kA, kB , s, b) = L(t, kA, kB , s, b). (11)

If in some schedule, which sequence of states contains (t, kA, kB , s, b), the express ks ∈ Np
s is not

the last express in this schedule, then it is not the last express in all schedules which sequences of
states contain (t, kA, kB , s, b). Hence

F (t, kA, kB , s, b) = max

{
L(t, kA, kB , s, b), min

(t′,k̂A,k̂B,s′,b′)∈Ω(t,kA,kB,s,b)
F (t′, k̂A, k̂B , s′, b′)

}
. (12)

As has been discussed in Section 2, the first express is also the first train traversing the railway
track in the respective direction and its departure time can be computed using (9). Let X be the
set of all states associated with all possible choices of the first express and its type. Then, the
optimal value of (2) can be written as

min
(t,np

A,np
B,s,b)∈X

F (t, np
A, n

p
B , s, b) . (13)

So, taking into account (11), (12), and (13), the optimal value of (2) can be obtained by dynamic
programming. Further details are provided in Section 5.
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4. MINIMISATION OF THE TOTAL TIME IN SYSTEM

This section is concerned with the problem of minimising (3) on the set of all schedules that are
optimal for (2). Let F ∗ be the optimal value of (2). Any schedule is optimal for (2) if and only if

Cs,p
i � ds,pi + F ∗, for each s ∈ {A,B} and each i ∈ Np

s . (14)

In other words, it is necessary to find a schedule that has the smallest value of (3) among all
schedules satisfying the condition (14). Therefore, in this section, only schedules that satisfy (14)
will be considered.

In contrast to Section 3, which was concerned only with the priority trains, now all trains are
considered. So, more information is associated with the departure of each express and the definition
of a state is changed accordingly. Now a state is a tuple (t, kpA, k

o
A, k

p
B , k

o
B , s, b, α, γ), where, as in

Section 3, t and the pair (s, b) are the departure time and the type of the corresponding express,
but in addition, α is the category of this express and γ is the category of the train (if such train
exists) that this express passes in the siding. If such train does not exist, then γ assumes any value
from {p, o}. Whether or not the express passes a train, kγs̄ is the cardinality of the subset of Nγ

s̄

that is comprised of all trains that arrive at s after t. Each other kux in (t, kpA, k
o
A, k

p
B , k

o
B , s, b, α, γ)

is the number of trains that depart from x at or after the point in time t. In particular, by virtue
of (s2), state (t, kpA, k

o
A, k

p
B , k

o
B , s, b, α, γ) is associated with the departure of the train from Nα

s which
number is kαs .

If α = o, then state (t, kpA, k
o
A, k

p
B , k

o
B , s, b, α, γ) provides information for computing

Cs,o
ks

− rs,oks
= t+ pA + pB − rs,oks

,

and if γ = o and b = 2, then this state also allows to compute

C s̄,o
ks̄

− rs̄,oks̄
= t+ 2ps − rs̄,oks̄

.

Hence, the contribution to the value of the objective function (3) of the express, which departure
is associated with (t, kpA, k

o
A, k

p
B , k

o
B , s, b, α, γ), and the train that this express passes in the siding

(if such train exists) is

R(t, kpA, k
o
A, k

p
B , k

o
B , s, b, α, γ) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2t+ 3ps + ps̄ − rs,oks
− rs̄,oks̄

, for α = o, b = 2, γ = o

t+ pA + pB − rs,oks
, for α = o, b = 2, γ �= o

t+ pA + pB − rs,oks
, for α = o, b �= 2

t+ 2ps − rs̄,oks̄
, for α �= o, b = 2, γ = o

0, otherwise.

(15)

Being based on the same concepts of dynamic programming, the optimisation procedures for
(2) and (3) have many similarities despite of the several important difference—the different objec-
tive functions; the condition (14); and the different sets of trains. Furthermore, the optimisation
approach, described in this section, is applied only after the conclusion on the minimisation of (2).
Therefore, the use of the same notations Ω and F below will not cause any confusion but rather
will stress the similarity and will facilitate the presentation in Section 5.

Consider all schedules, which induced sequences of states contain some state (t, kpA, k
o
A, k

p
B , k

o
B ,

s, b, α, γ). Recall that in this section only the schedules satisfying (14) are considered. As before,
in each induced sequence of states, the states are listed in the increasing order of the corresponding
departure times. Denote by Ω(t, kpA, k

o
A, k

p
B , k

o
B , s, b, α, γ) the set of all states such that each of them

immediately follows (t, kpA, k
o
A, k

p
B , k

o
B , s, b, α, γ) in at least one of the above mentioned sequences.

If koA + koB > 0, then define F (t, kpA, k
o
A, k

p
B , k

o
B , s, b, α, γ) as the minimal value of

∑

s∈{A,B}

∑
j�kos

[
Cs,o
j − rs,oj

]
(16)
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on the set of the considered schedules. If koA + koB = 0, then assume that

F (t, kpA, k
o
A, k

p
B , k

o
B , s, b, α, γ) = 0.

In what follows, it is convenient to use, for any α ∈ {p, o}, the notation ᾱ = {p, o} \ {α}. If state
(t, kpA, k

o
A, k

p
B , k

o
B , s, b, α, γ) is associated with the departure of the last express, then, according to

Section 2, kux in (t, kpA, k
o
A, k

p
B , k

o
B , s, b, α, γ) is

kux =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, for x = s and u = α
0, for x = s and u = ᾱ
0, for x = s̄ and u = γ̄
0, for x = s̄, u = γ and b �= 2
1, for x = s̄, u = γ and b = 2.

(17)

This implies that

F (t, kpA, k
o
A, k

p
B , k

o
B , s, b, α, γ) = R (t, kpA, k

o
A, k

p
B , k

o
B , s, b, α, γ) . (18)

If the express, associated with (t, kpA, k
o
A, k

p
B , k

o
B , s, b, α, γ), is not the last express in the schedule,

then

F
(
t, kpA, k

o
A, k

p
B , k

o
B , s, b, α, γ

)
= R

(
t, kpA, k

o
A, k

p
B , k

o
B , s, b, α, γ

)

+ min
(t′,k̂pA,k̂o

A
,k̂p

B
,k̂o

B
,s′,b′,α′,γ′)∈Ω(t,kpA,ko

A
,kp

B
,ko

B
,s,b,α,γ)

F
(
t′, k̂pA, k̂

o
A, k̂

p
B , k̂

o
B , s

′, b′, α′, γ′
)
. (19)

Denote by Y the set of all states that are the first in at least one sequence of states induced
by schedules, satisfying (14). Then, the minimal value of (3) on the set of all schedules optimal
for (2) is

min
(t,np

A,no
A,np

B,no
B,s,b,α,γ)∈Y

F
(
t, np

A, n
o
A, n

p
B, n

o
B , s, b, α, γ

)
. (20)

Observe that (13) and (20) are quite different. Indeed, in order to list all states in X, it suffices
to know only np

A, n
p
A, r

A,p
np
A
, and rB,p

np
B
, whereas the enumeration of all states in Y may require a

significantly more sophisticated procedure. This procedure is presented in the next section.

5. DYNAMIC PROGRAMMING

The optimisation procedure below requires a set T of points in time that contains all departure
times of expresses in all schedules where each express departs as early as possible for an express of
this type. One such set is described below.

Taking into account (5)–(9), it is easy to see that the departure time of any express is

t = rs,αi +m1pA +m2pB +m3β (21)

for some α ∈ {p, o}, s ∈ {A,B}, i ∈ Nα
s , and some integers m1, m2 and m3. Denote

n = np
A + np

B + no
A + no

B.

Observe that s and α in (21) are not necessarily the same as the corresponding parameters of the
considered express. If, for two consecutive expresses, α, s and i in (21) remain the same, then,
according to (7) and (9), m1 and m2 can not increase by more than 3 and can not decrease by more
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than 1, whereas m3 can not increase by more than 2. Thus, m1 and m2 do not exceed 3n and are
not less than −n, whereas m3 does not exceed 2n. Consequently, all possible departure times of
the expresses belong to the set

{
t| t � 0, t = rs,αi +m1pA +m2pB +m3β,

i ∈ Nα
s , s ∈ {A,B}, α ∈ {p, o}, m1 ∈ {−n, . . . , 0, 1, . . . , 3n},
m2 ∈ {−n, . . . , 0, 1, . . . , 3n},m3 ∈ {0, 1, . . . , 2n}

}
,

(22)

which cardinality is O(n4).

Consider the minimisation of (2) and assume that np
A > 0 and np

B > 0, because otherwise the
minimisation of (2) is trivial. Since this problem involves only priority trains, following the approach
adopted in Section 3, only the priority trains can be considered. Hence, instead of (22) only its
subset

{
t| t � 0, t = rs,pi +m1pA +m2pB +m3β, i ∈ Np

s , s ∈ {A,B},
m1 ∈ {−(np

A + np
B), . . . , 0, 1, . . . , 3(n

p
A + np

B)} ,
m2 ∈ {−(np

A + np
B), . . . , 0, 1, . . . , 3(n

p
A + np

B)} ,
m3 ∈ {0, 1, . . . , 2 (np

A + np
B)}

}
(23)

can be taken as T .

The optimisation procedure, presented in this section, obtains the optimal value of (2) by gen-
erating a sequence of the sets V1, . . . , Vnp

A
+np

B
. Hence, the number of sets in this sequence is equal

to the number of trains, because, as in Section 3, only priority trains are considered. Each set is
comprised of tuples (t, kA, kB , s, b), which are candidates for being a state in an optimal schedule
for (2).

Each set Vk, 1 � k � np
A + np

B, contains only candidates satisfying the condition

kpA + kpB = k.

Thus, by virtue of (10), all candidates for being the state associated with the last express are only
in the sets V1 and V2. The set V1 contains only such candidates. More specifically, this set is
comprised of all tuples (t, 1, 0, A, 0), where t ∈ T and t � rA,p

1 , and all tuples (t, 0, 1, B, 0), where

t ∈ T and t � rB,p
1 .

The set V2 contains all candidates for being the state, associated with the last express and
satisfying the equality kA + kB = 2, but may also contain other candidates satisfying this equality.
The subset of V2 of all candidates for being the last state is comprised of all tuples (t, 1, 1, A, 2),
where t ∈ T and t � rA,p

1 , and all tuples (t, 1, 1, B, 2), where t ∈ T and t � rB,p
1 .

The sets V1, . . . , Vnp
A
+np

B
are generated one by one in the increasing order of their indices. After

the inclusion of all candidates for being the state, associated with the last express, for each set
the tuples are examined one by one. To be included in set Vk, a tuple (t, kA, kB , s, b), satisfying
kA + kB = k, must possess several properties. These properties include:

(p1) ks � ns,p
s for s ∈ {A,B};

(p2) t ∈ T and t � rs,pks
;

(p3) if b �= 0, then ks̄ � 1;

(p4) if b = 1, then ks � 2;

(p5) if kpA = np
A and kpB = np

B , then t is the same as computed by (9).
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Furthermore, the currently considered tuple (t, kA, kB , s, b), which satisfies (p1)–(p5), is included
in the set VkA+kB only if there exists a tuple (t′, k̂A, k̂B , s′, b′), which has been already included in

one of the previously generated sets and has t′ that can be computed, using (5)–(8); has k̂A and k̂B
satisfying (24) and (25) below; and satisfies (26) below:

k̂s = ks − 1; (24)

k̂s̄ =

{
ks̄ − 1, if b = 2
ks̄, otherwise;

(25)

if b = 1, then s = s′ and b′ �= 0. (26)

For every tuple (t, kA, kB , s, b) that possesses the required properties and therefore belongs to
VkA+kB , denote by W (t, kA, kB , s, b) the set of all tuples (t′, k̂A, k̂B , s′, b′) in the previously gener-

ated sets such that t′ is computed by (8); k̂A and k̂B satisfy (24) and (25); and (26) holds. If
(t, kA, kB , s, b) is selected as a state, then

W (t, kA, kB , s, b) = Ω(t, kA, kB , s, b).

Therefore, taking into account (13), the optimal value of (2) is

min
(t,nA,nB,s,b)∈V

n
p
A

+n
p
B

f(t, kA, kB , s, b),

where f is defined similar to the definition of F in (11) and (12), that is, by assigning to each
candidate (t, kA, kB , s, b) for being the state of the last express

f(t, kA, kB , s, b) = L(t, kA, kB , s, b), (27)

and by assigning to each other (t, kA, kB , s, b) in V2 ∪ . . . ∪ Vnp
A+np

B

f(t, kA, kB , s, b) = max

{
L(t, kA, kB , s, b), min

(t′,k̂A,k̂B ,s′,b′)∈W (t,kA,kB,s,b)
f(t′, k̂A, k̂B , s′, b′)

}
. (28)

Taking into account the cardinality of T (see (23)), the complexity of this optimisation procedure
is O((np

A + np
B)

6).

The procedure that constructs a schedule that has the smallest value of (3) among all sched-
ules that are optimal for (2) is similar to the minimisation of (2) with one important difference:
in order to ensure (14), each tuple must possess some additional properties (see (g6) and (g7)
below). According to this procedure, n sets V1, . . . , Vn are generated one by one in the increas-
ing order of their indices. Analogously to the above, set Vk, 1 � k � n, contains only tuples
(t, kpA, k

o
A, k

p
B , k

o
B , s, b, α, γ), satisfying

kpA + koA + kpB + koB = k.

Each tuple in the sets V1, . . . , Vn is a candidate for being a state in the desired schedule. To
be included in a set a tuple (t, kpA, k

o
A, k

p
B , k

o
B , s, b, α, γ) must possess several properties. The first

group of properties

(g1) kεs � ns,ε
s for ε ∈ {p, o} and s ∈ {A,B};

(g2) rs,αks
� t and t ∈ T ;

(g3) if b �= 0, then kγs̄ � 1;
(g4) if b = 1, then kαs + kᾱs � 2;
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(g5) if kpA = np
A, k

o
A = no

A, k
p
B = np

B , and koB = no
B, then t is the same as computed by (9)

is analogous to (p1)–(p5). The second group

(g6) if α = p, then t+ pA + pB � ds,p
kps

+ F ∗;
(g7) if γ = p and b = 2, then t+ 2ps � ds̄,p

kps̄
+ F ∗

guarantees that the constructed schedule will satisfy (14).

In order for (t, kpA, k
o
A, k

p
B , k

o
B , s, b, α, γ) to be selected as a candidate for a state, there must exist

already selected (t′, k̂pA, k̂
o
A, k̂

p
B , k̂

o
B , s

′, b′, α′, γ′) such that

k̂αs = kαs − 1, k̂ᾱs = kᾱs and k̂γ̄s̄ = kγ̄s̄ , (29)

k̂γs̄ =

{
kγs̄ − 1, if b = 2
kγs̄ , otherwise.

(30)

The equalities (29) and (30) play the same role as (24) and (25) previously. More specifically, a tuple
(t, kpA, k

o
A, k

p
B , k

o
B , s, b, α, γ), which satisfies (g1)–(g7), is included in the set VkpA+koA+kpB+koB

only if

there exists an already included in one of the previously generated sets (t′, k̂pA, k̂
o
A, k̂

p
B , k̂

o
B , s

′, b′, α′, γ′)
such that t′ is the same as computed using (5)–(8); k̂pA, k̂

o
A, k̂

p
B , k̂

o
B satisfy (29) and (30); and (26)

holds. Denoting by W (t, kpA, k
o
A, k

p
B , k

o
B , s, b, α, γ) the set of all such tuples (t′, k̂pA, k̂

o
A, k̂

p
B , k̂

o
B , s

′, b′,
α′, γ′), the minimal value of (3) on all set of all schedules that are optimal for (2) can be written as

min
(t,kpA,koA,kpB,koB,s,b,α,γ)∈Vn

f(t, kpA, k
o
A, k

p
B , k

o
B , s, b, α, γ),

where f is defined as follows. For each candidate (t, kpA, k
o
A, k

p
B , k

o
B , s, b, α, γ) for being the state of

the last express,

f(t, kpA, k
o
A, k

p
B , k

o
B , s, b, α, γ) = R(t, kpA, k

o
A, k

p
B , k

o
B , s, b, α, γ).

For each element of V2 ∪ . . . ∪ Vn which is not a candidate for the state of the last express

f
(
t, kpA, k

o
A, k

p
B , k

o
B , s, b, α, γ

)
= R

(
t, kpA, k

o
A, k

p
B , k

o
B , s, b, α, γ

)

+ min
(t′,k̂pA,k̂oA,k̂pB,k̂oB,s′,b′,α′,γ′)∈W(t,kpA,koA,kpB,koB,s,b,α,γ)

f
(
t′, k̂pA, k̂

o
A, k̂

p
B , k̂

o
B , s

′, b′, α′, γ′
)
.

Taking into account the cardinality of T (see (22)), the time complexity of this optimisation pro-
cedure is O(n8).

6. CONCLUSION

The polynomial-time algorithms presented in this paper aim at the reduction of the direct impact
of blockage of one track of a double-track railway segment measured by the maximum lateness for
the priority trains and the total (and therefore average) time in system for the ordinary trains. The
directions of further extension of the presented approach may include the minimisation of other
measures of the impact of blockage; the reduction of the impact of blockage on a broader part of
the railway network; the planning of maintenance requiring possession of some parts of the railway
network; and the development of fast approximation algorithms.
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