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The results of calculations of the spatially-resolved density of states (DOS) in an S(F/N) bilayer are presented
(S is a superconductor, F is a metallic ferromagnet, N is a normal metal) within quasiclassical theory in the dirty
limit. Analytical solutions are obtained in the case of thin F, N layers which demonstrate the peculiar features
of DOS in this system. The dependences of the minigap and the DOS peak positions on the exchange energy
and parameters of the layers are studied numerically. © 2005 Pleiades Publishing, Inc.
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In the past few years, there was a noticeable interest
to the Josephson junctions with ferromagnetic barriers
due to possibility to realize the π-junctions having the
phase difference π in the ground state. The π-states in
SFS junctions were first predicted by [1–3] and realized
experimentally by Ryazanov et al. [4, 5] in
Nb/CuNi/Nb structures and later by other groups [6–
10] using different ferromagnetic barriers. These exper-
iments stimulated further theoretical activity (see [11]
for the review). In particular, Josephson structures com-
posed from arrays of 0- and π-Josephson junctions
should exhibit extraordinary characteristics [12, 13].
Such arrays were recently realized in zigzag HTS/LTS
structures [14].

The purpose of the present paper is to study spatially
resolved electronic density of states (DOS) in the struc-
ture of S(FN) type (S is superconductors, F is a metallic
ferromagnet, N is a normal metal), consisting of a bulk
superconductor with ferromagnetic and normal layers
on the top of it, which is a generic system for 0- and
π-junctions connected in parallel.

DOS in SF bilayers (a ferromagnet coupled to a
superconductor) was studied quite extensively before.
Two new features were predicted compared to SN sys-
tems: spin splitting and spatial oscillations of DOS in a
ferromagnet [15–21]. The effect of spatial oscillations
was quite extensively discussed in the theoretical liter-
ature in different models [15–18] and observed experi-
mentally [22]. This effect is closely related to 0–π tran-
sitions. The effect of splitting is relevant for thin ferro-
magnetic layers and was studied theoretically in [19,
20]. In the present work, we discuss an interplay
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between the oscillations and splitting in a more com-
plex S(F/N) structure.

The geometry of the structure is shown in Fig. 1. We
assume that the dirty limit conditions are fulfilled in all
metals, F is a weak monodomain ferromagnet with the
exchange energy H much smaller than the Fermi
energy, and the interfaces are not magnetically active.
In this case, spin-dependent corrections to the resistivi-
ties can be neglected and the S(F/N) structure is
described by the following spin-independent suppres-
sion parameters:

(1)

(2)

(3)

Here, RBF, RBN, and RB are the specific resistivities of the
SF, SN, and NF interfaces, respectively; ρS, F, N, DS, F, N,
and ξS, F, N are the resistivities, the diffusion constants,
and the coherence lengths of the S, F, and N layer and

γBF RBF!BF/ρFξF, γF ρSξS/ρFξF,= =

γBN RBN!BN/ρNξN , γN ρSξS/ρNξN ,= =

γB RB!B/ρNξN , γ ρFξF/ρNξN .= =

Fig. 1. The geometry of the structure.
 2005 Pleiades Publishing, Inc.
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the coherence lengths, where ξS, F, N = 
and Tc is the critical temperature of the superconductor.

Under the above assumptions, the problem can be
solved in the framework of the Usadel equations [23].
To simplify it further, we assume that S is a bulk super-
conductor and γN ! γBN, γF ! γBF so that the rigid
boundary conditions

are valid for superconductor. Here, ∆ is the magnitude
of the order parameter in S electrode, FS and GS are the
Green’s functions, ω = πT(2n + 1) are the Matsubara
frequencies.

Let us choose the x, y axes as shown in Fig. 1 and use
the θ parametrization G = cosθ, F = sinθ, then the
Usadel equations have the form

(4)

where  = ω + iH in F and  = ω in N.

The boundary conditions at the SF (y = 0, –∞ < x ≤
0), SN (y = 0, 0 ≤ x < ∞), and FN (x = 0, 0 ≤ y ≤ dF, dN)
interfaces have the form [24]

(5)

(6)

where sinθS = ∆/  and cosθS = ω/ . At
the free interfaces, the boundary conditions are

(7)

(8)

We will consider the limit of thin F and N layers
dF, N ! ξF, N. In this case, one can neglect both the deriv-
ative on x and nongradient items in Usadel equations (4)
and substitute the resulting solutions

DS F N, , /2πTc

FS
∆

ω2 ∆2+
----------------------, GS

ω

ω2 ∆2+
----------------------= =

ξF N,
2 πTc

ω̃
--------- ∂2

∂x2
--------θF N,

∂2

∂y2
--------θF N,+

 
 
 

θF N,sin– 0,=

ω̃ ω̃

γB F N,( )ξF N,
∂
∂y
-----θF N, θS θF N,–( ), ysin– 0,= =

γBξF
∂
∂x
------θF θN θF–( ),sin=

x 0, 0 y dF dN ,,≤ ≤=

ξN
∂
∂x
------θN γξF

∂
∂x
------θF, x 0, 0 y dF dN ,,≤ ≤= =

ω2 ∆2+ ω2 ∆2+

∂
∂y
-----θF N, 0, y dF N, ,= =

∂
∂x
------θF N, 0, 0 y dF, x ∞.+−≤ ≤=

θF N, x y,( ) θF N, x( )=

– KF N, x( )
dF N,

ξF N,
2

----------y KF N, x( ) y2

2ξF N,
2

-------------,+
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into boundary conditions (5). Then, the problem is
reduced to the one-dimensional equations for lateral
variations of θN, F in the x-direction:

(9)

where

(10)

the decay lengths ζN and ζF are

(11)

and we have taken for simplicity equal barrier parame-
ters for F and N

(12)

The general solution of Eq. (9) has the form

(13)

The integration constants θN(0) and θF(0) in (13) have
to be determined from the boundary conditions (6) at
x = 0 and can be found analytically in the limit of large
transparency of the FN interface when θ(x) is continu-
ous at x = 0:

From (11), it follows that the effective decay length
in normal metal, ζN, is a real quantity and equals to ζN =

ξN  for small ω and tends to ζN = ξN  with ω
increase. The effective decay length ζF in ferromagnet
at low ω ! ∆, H/  is given by ζF =

ξF , i.e., it becomes complex for

sufficiently strong exchange field H > πTc/ .

Below, we consider several limiting cases.

Identical F and N metals. Assume for simplicity
that the F and N materials differ by the existence the

KF N, x( ) ω̃
πTc

--------- θF N,sin ξF N,
2 ∂2

∂x2
--------θF N,–

 
 
 

,=

ζ N F,
2 ∂2

∂x2
--------θN F, θN F, θN F, ∞±( )–( )sin– 0,=

θN F, ∞±( )
πTc θSsin

ω̃γ̃ πTc θScos+
-------------------------------------,arctan=

ζ N F, ξN F,
πTcγ̃ θN F, ∞±( )cos

ω̃γ̃ πTc θScos+( )
---------------------------------------------,=

γBN

dN

ξN

------ γBF

dF

ξF

----- γ̃.≡=

θN F, x( ) θN F, ∞±( )=

+ 4
θN F, 0( ) θN F, ∞±( )–

4
---------------------------------------------tan 

  x
ζ N F,
----------+−

 
 
 

exp .arctan

θN 0( ) θF 0( ) θ 0( ).= =

γ̃ πTc/ω

γ̃

γ̃/ 1 γ̃2 H/πTc( )2–

γ̃
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exchange field in F (γ = 1, ξF = ξN = ξ), then, from (6)
for θ(0), we have

(14)

Identical F metals with antiparallel direction of
magnetization. The results can be easily generalized to
the case of an S(F/F) structure with two identical ferro-
magnetic films having opposite magnetization direc-
tions (antiferromagnetic configuration)

(15)

Using the solutions obtained above, one can calcu-
late the spatially resolved DOS in S(F/N) and S(F/F)
structures.

DOS in S(F/N) and S(F/F) proximity systems.
The DOS for each spin direction is given by

(16)

where N0 is the total DOS for both spins at the Fermi
surface in the normal state and G(ε – iδ) = cosθ(ε – iδ)
is the retarded Green’s function. The total DOS is found
by summing over both spin projections, i.e., Ntotal =
N(H) + N(–H).

DOS in N and F metals far from the F/N inter-
face. In a normal metal far from the F/N interface
(x = ∞), the total DOS is given by

θ 0( ) 2

θN ∞( )
2

--------------- g
θF ∞–( )

2
------------------sin+sin

θN ∞( )
2

--------------- g
θF ∞–( )

2
------------------cos+cos

--------------------------------------------------------------,arctan=

g
ζ N

ζF

-----.=

θ 0( ) 2
g*

θF* ∞–( )
2

------------------- g
θF ∞–( )

2
------------------sin+sin

g*
θF* ∞–( )

2
------------------- g

θF ∞–( )
2

------------------cos+cos

------------------------------------------------------------------------.arctan=

N ε( )
N0

2
------ReG ω iε– δ+( ),=

Fig. 2. The total DOS in an SF bilayer for various values of
h as indicated in the figure.γ̃
(17)

It is well known (see [25, 26]) that DOS in a F/N bilayer
has a minigap at εg < ∆, which depends on the value of

, and NN(ε) has the peaks at ε = εg and ε = ∆. The mini-
gap εg characterizes the strength of superconducting
correlations induced into N metal due to the proximity
effect.

In SF bilayers, modifications of DOS due to spin
splitting of energy levels were investigated in [19, 20].
The DOS per spin projection in the F layer has the form

(18)

which demonstrates the energy renormalization due to
the exchange field. In particular, it follows from (18)
that now there are two minigaps in the spectrum εg↑ and
εg↓ and εg↑ ≤ εg ≤ εg↓.

The total DOS in a F/N bilayer Ntot(ε) = NF↓(ε) +
NF↑(ε) is shown in Fig. 2. It is clearly seen that, at h =
H/πTc < 1/ , there are three peaks in DOS located at
εg↓, εg↑, and ∆, respectively. At h = 1/ , the low-energy
singularity is shifted to the Fermi level, and for h > 1/ ,
the first peak disappears resulting in only two singular-
ities in the DOS at ε = εg↑ and ε = ∆. Note that the total
DOS at low energies depends nonmonotonously on H
even in a thin F-layer, even though spatial oscillations
are absent across the layer. Equation (18) yields

NF↑ , F↓(ε = 0) = (N0/2)Re( hsgn(h)/ ). For
h < 1, the total DOS N(0) = 0 due to the minigap in F,

while for h ≥ 1, the total low-energy DOS increases
sharply, exceeds unity, and saturates at N(0) = N0 for

h @ 1.
DOS at the F/N interface. At x = 0 and for identical

transport parameters on the F and N metals from (14),
(16), we obtain

(19)

where

(20)

and ΩN,  and ΩF↑ , F↓,  are defined by (17) and
(18), respectively.

NN ε( ) N0Re
ε̃N

ΩN

-------, ΩN ε̃N
2 ∆2– ε( ),sgn= =

ε̃N ε 1 γ̃ ∆2 ε2– /πTc+( ).=

γ̃

NF↑ F↓, ε( )
N0

2
------Re

ε̃F↑ F↓,

ΩF↑ F↓,
----------------,=

ΩF↑ F↓, ε̃F↑ F↓,
2 ∆2– ε H+−( ),sgn=

ε̃F↑ F↓, ε γ̃ ε H+−( ) ∆2 ε2– ,+=

γ̃
γ̃

γ̃

γ̃ γ̃2h2 1–
γ̃

γ̃

γ̃

NF↑ F↓, ε( )
N0

2
------Re

iε̃N– iε̃F↑ F↓,– 2ε̃FN+

ΩF↑ F↓, ΩN 2 ∆2 ε̃FN
2–+ +

----------------------------------------------------------------,=

ε̃FN
ΩNΩF↑ F↓, ε̃N ε̃F↑ F↓,– ∆2–

2
---------------------------------------------------------------,=

ε̃N ε̃F↑ F↓,
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It follows from Eq. (19) that, similar to the case of
the SF bilayer considered above, the minigap exists if

h < 1. With increasing exchange field, the total DOS
at ε = 0 becomes nonzero if h > 1 is given by simple
expression

(21)

DOS at the F/F interface. At x = 0, we have

(22)

It can be shown that DOS at the F/F interface given
by Eq. (22) coincides exactly with the total DOS for the
F/N interface, NF↑(ε) + NF↓(ε), where NF↑(ε) and NF↓(ε)
are given by Eq. (19). In particular, the minigap exists
if h ≤ 1, and at h > 1, the DOS at F/F is determined
by Eq. (21).

The results of calculations from Eq. (19) at low tem-
peratures T ! Tc are shown in Figs. 3 and 4 for h = 0.5
and h = 2, respectively, together with the DOS for SF
(x  –∞) and SN (x  ∞) bilayers.

There are four characteristic energies in the system:
εg↓, εg, εg↑, and ∆. Here, εg↓ is the minigap for the spin-
down subband SF bilayer at x  –∞. It follows from
Eq. (19) that NF↓(ε) = 0 at ε ≤ εg↓ and becomes nonzero
at ε > εg↓, i.e., εg↓ is the minigap for the spin-down sub-
band in S(FN) at x = 0. However, contrary to SF case,
NF↓(ε) has no peak ε = εg↓ but grows continuously from
zero value.

For the spin-up subband, the minigap in NF↑(ε) is
not equal to the gap εg↑ in the spin-up subband in SF

γ̃
γ̃

N 0( ) N0 γ̃2h2 1– /γ̃h.=

N ε( )/N0 Re
2iε̃N– 2ε̃FF+

ΩF↑ ΩF↓ 2 ∆2 ε̃FF
2–+ +

-----------------------------------------------------------,=

ε̃FF
ΩF↑ ΩF↓ ε̃F↑ ε̃F↓– ∆2–

2
-----------------------------------------------------.=

γ̃ γ̃

γ̃
γ̃

Fig. 3. Spin-resolved DOS: comparison of FS, FN, and
S(FN) for h = 0.5.γ̃
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bilayer at x  –∞. Instead, NF↑(ε) the gap value is
determined by εg, the minigap in SN bilayer at x  ∞.
The formal reason is that, in the interval ε ≥ εg, ΩN

becomes an imaginary number and both numerator and
denominator in Eq. (19) are complex, thus leading to
nonzero DOS in this energy range. Similar to the spin-
down case, there is no peak in NF↑(ε) at the gap energy
ε = εg, while the peak occurs at ε = εg↑ (see Fig. 3). With
further increase of energy, there is a sharp peak in DOS
at ε = ∆ followed by saturation at N0/2 for ε @ ∆.

For h  > 1, the minigap at NF↓(ε) vanishes and the
structure of DOS becomes different, as illustrated in
Fig. 4 for the case h  = 2. The main qualitative differ-
ence from the previous case is that the spin-down and
total DOS are gapless for h  < 1.

The total DOS at the F/N interface at x = 0 (which
coincides with the total DOS in the F/F case), is shown

γ̃

γ̃

γ̃

Fig. 4. Spin-resolved DOS: comparison of FS, FN, and
S(FN) for h = 2.γ̃

Fig. 5. The total DOS in S(FN) for various values of h as
indicated in the figure.

γ̃
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in Fig. 5 for various values of h . One can see that the
gap is closed at h  = 1, and the broad zero-energy DOS
peak is formed with further increase of h until low-
energy states become continuously filled at h  @ 1.

In conclusion, we have studied theoretically the spa-
tially-resolved DOS in the S(FN) structures and in
S(FF) structures with antiparallel magnetization direc-
tions. Analytical solutions were obtained in the case of
thin F, N layers which demonstrate the peculiar features
of DOS in this system. We have illustrated the results
numerically and have studied the dependences of the
minigap and the DOS peak positions on the exchange
energy and parameters of the layers.

This work was supported in part by Russian Minis-
try of Education and Science and by the Russian Foun-
dation for Basic Research (project no. 04-02-17397a).
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