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ABSTRACT:
For the acoustic characterization of materials, a method is proposed for interpreting experiments with finite-sized

transducers and test samples in terms of the idealized situation in which plane waves are transmitted through an infi-

nite plane-parallel layer. The method uses acoustic holography, which experimentally provides complete knowledge

of the wave field by recording pressure waveforms at points on a surface intersected by the acoustic beam. The

measured hologram makes it possible to calculate the angular spectrum of the beam to decompose the field into a

superposition of plane waves propagating in different directions. Because these waves cancel one another outside the

beam, the idealized geometry of an infinite layer can be represented by a sample of finite size if its lateral dimensions

exceed the width of the acoustic beam. The proposed method relies on holograms that represent the acoustic beam

with and without the test sample in the transmission path. The method is described theoretically, and its capabilities

are demonstrated experimentally for silicone rubber samples by measuring their frequency-dependent phase

velocities and absorption coefficients in the megahertz frequency range. VC 2021 Acoustical Society of America.
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I. INTRODUCTION

The acoustic properties of media are usually defined by

the speed of sound and the attenuation coefficient. These

parameters are introduced for a plane harmonic wave with a

waveform described as exp ð�ix tþ ikzÞ, where x is the

angular frequency of the wave, t is time, k is the wavenum-

ber, and z is the coordinate in the direction of wave propaga-

tion. Such a wave in its pure form is never realized, in

practice, because of the need for unlimited extent in space

and time. However, it is customary to consider the behavior

of such an idealized wave when characterizing the acoustic

properties of propagation media.

The specific properties of the medium are determined

by the dispersion law k ¼ kðxÞ. The quantity k in the gen-

eral case is complex, k ¼ x=cþ i a. With this expression in

mind, the structure of the plane wave takes the form

exp ð�azÞexp ½�ix ðt� z=cÞ�, where c is the phase velocity

and a is the wave attenuation coefficient. The dependences,

c ¼ cðxÞ and a ¼ aðxÞ, and the density, q, completely

determine the linear acoustic properties of the homogeneous

isotropic media.

Since an idealized plane harmonic wave cannot be gen-

erated experimentally, in order to measure c and a, condi-

tions are usually created that bring the acoustic field closer to

the desired plane-wave form. Experimental determination of

the speed of sound and attenuation coefficient is a traditional

task of acoustics research. To date, various methods have

been developed for measuring these parameters in solids,

liquids, and gases. Notably, biological tissues are often con-

sidered as a separate type of medium with regard to such

characterization methods. A detailed review of relevant work

is given in a number of publications, including Refs. 1–3.

Because acoustic waves exhibit a very weak depen-

dence of the phase velocity on frequency, in practice, it is

often assumed that there is no dependence, i.e., signals of

any waveform propagate at the same speed (speed of sound).

In this approximation, the speed of sound measurement does

not require a plane harmonic wave but can be performed

based on the time delay of a pulsed signal. With such an

approach, the speed of sound can be measured with an accu-

racy on the order of one percent or better using relatively

simple experimental configurations.

Measurement of the attenuation coefficient depends

more on the structure of the acoustic field and the homoge-

neity of the medium; therefore, the accuracy of the

corresponding measurements is noticeably lower than the
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accuracy of the speed of sound measurements. One of the

traditional methods for measuring attenuation is the inser-

tion loss method, which involves the introduction of a sam-

ple into a reference medium.4 It is based on a comparison of

the amplitudes of two received signals: one is recorded

when the test sample is introduced between the source and

the receiver, and the other is recorded when there is only a

reference medium (e.g., see Ref. 5). To reduce diffraction

effects that lead to a strong spatial inhomogeneity of the

acoustic field in the near field of typical ultrasonic sources,

insertion loss measurements usually employ either a config-

uration with a small receiver positioned in the far field of

the transducer or a flat radiator and a large receiver that are

parallel to each other.6 Although diffraction effects can be

partially taken into account by introducing certain correction

factors,7 the accuracy of such measurements is usually low,

especially when there are inhomogeneities in the structure

of the test material. In addition, the lateral dimension of the

sample must exceed several times that of the diameter of

both the source and receiver,6 which is not always possible.

The decay in the amplitude of the propagating plane

wave is generally caused by absorption and scattering phe-

nomena, thus, the attenuation coefficient is the sum of the

absorption and scattering coefficients. Absorption is caused

by the conversion of acoustic energy into heat and, there-

fore, can be clearly defined. On the contrary, scattering,

which occurs only in an inhomogeneous medium, requires

more careful consideration. For a plane wave, scattering is

defined as the process of converting the energy of the initial

wave into the energy of scattered waves propagating in all

possible directions, including the original one. This makes it

difficult or even impossible to correctly measure the attenua-

tion coefficient.2 For example, if several plane waves of dif-

ferent directions propagate together, they partly exchange

energy due to scattering, then it is impossible to attribute the

attenuation coefficient to only one specific plane wave—this

coefficient will depend on the presence of waves of other

directions. This ambiguity is absent in a homogeneous

medium when there is no scattering and the only attenuation

mechanism is absorption. Only in this case can the plane

wave behave independently of other possible waves. For

clarity, in this paper, it is expected that the medium is homo-

geneous and, hence, the attenuation coefficient coincides

with the absorption coefficient.

In the present work, a new approach for measuring the

acoustic parameters of various materials is proposed as an

extension to the insertion loss method. It is based on the use

of acoustic holography, which allows for the experimental

recording of complete information about the spatial structure

of a wave beam such that the beam can be analytically decom-

posed into the plane waves it comprises. Consequently,

propagation of a beam through a sample of finite lateral

dimensions can be interpreted to represent the idealized

case of plane wave propagation through an infinite plane-

parallel layer of the test material. Due to this possibility,

accurate measurements of the acoustic characteristics of

materials can be performed.

II. THEORY

A. Transmission of an acoustic beam through a
plane-parallel layer

1. Description of the acoustic field in an absorbing
medium by the spatial spectrum method

Acoustic pressure pðr; tÞ in a linear medium can be

described by the wave equation

Dp� 1

c2
i

@2p

@t2
þ L̂p ¼ 0: (1)

Here, r ¼ ðx; y; zÞ is the position vector of the observation

point, t is time, D is the Laplace operator, ci is the speed of

sound in the approximation of an ideal medium, and L̂ is a

linear integrodifferential operator that takes into account the

nonideal environment. For example, for a classic viscous

fluid L̂ ¼ ðb=qc2
i ÞD @=@t, where b is the dissipative coeffi-

cient that accounts for the viscosity and thermal conductiv-

ity, and q is the density of the medium.8

The solution to Eq. (1) can be obtained using the spec-

tral approach by first representing the wave field pðr; tÞ as

an integral of harmonic signals,

p r; tð Þ ¼
1

2p

ð1
�1

P r;xð Þe�ixtdx; (2)

where

P r;xð Þ ¼
ð1
�1

p r; tð Þeixtdt: (3)

The wave equation (1) for pðr; tÞ then reduces to the

Helmholtz equation for the spectral amplitude Pðr;xÞ,

DPþ k2P ¼ 0; (4)

where k is the wavenumber. The form of the operator L̂
determines the dispersion law, i.e., the dependence of the

wavenumber on frequency, k ¼ kðxÞ. For an ideal fluid,

k ¼ x=ci.

It is assumed here that a source is present on the plane

z ¼ 0 and radiates into the half-space z > 0. The spectral

approach can be further extended to the spatial dependence

of Pðr;xÞ by calculating the Fourier transform in transverse

coordinates ðx; yÞ,

P x; y; z;xð Þ ¼
1

2pð Þ2
ð1
�1

ð1
�1

dkxdkyS kx; ky; z;xð Þ

� ei kxxþkyyð Þ; (5)

where integration is carried out over spatial frequencies kx and

ky. The inverse Fourier transform has the following form:

S kx; ky; z;xð Þ ¼
ð1
�1

ð1
�1

dx dy P x; y; z;xð Þe�i kxxþkyyð Þ:

(6)
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Taking into account the radiation condition, the

Helmholtz equation (4) yields the following solution for the

complex amplitude of the spatial spectrum Sðkx; ky; z;xÞ:

S kx; ky; z;xð Þ ¼ S0 kx; ky;xð Þei
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�k2

x�k2
y

p
z; (7)

where, according to Eq. (6),

S0 kx;ky;xð Þ¼
ð1
�1

ð1
�1

dxdyP x;y;0;xð Þe�i kxxþkyyð Þ: (8)

Taking into account Eq. (7), the spectral decomposition

from Eq. (5) takes the following form:

P x; y; z;xð Þ ¼
1

2pð Þ2
ð1
�1

ð1
�1

dkxdkyS0 kx; ky;xð Þ

� e
i kxxþkyyþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�k2

x�k2
y

p
z

� �
: (9)

For the case of an ideal medium when k ¼ x=ci is a

real quantity, the wave field represented by Eq. (9) com-

prises plane waves of the form ei k�r in which the corre-

sponding wave vector k ¼ ðkx; ky; kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

x � k2
y

q
Þ for

different spatial frequencies ðkx; kyÞ has the same length

jkj ¼ x=ci¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y þ k2

z

q
but different inclination angles

with respect to the coordinate axes. Therefore, the function

S0ðkx; ky;xÞ is called the “angular spectrum” when k is

real.9

In a dissipative medium, the interpretation of solution

(9) as a superposition of plane waves requires more careful

consideration. In this case, as previously noted, k ¼ x=c
þia is already a complex quantity and, hence, the axial com-

ponent of the wave vector kz ¼ k0z þ ik00z is also complex.

As a result, elementary waves acquire a structure e�k00zz

eiðkxxþkyyþk0zzÞ and, thus, cannot be considered to be obliquely

propagating plane waves that decay. Moreover, they can be

called “plane waves” with a caveat: surfaces of equal phase

are one family of planes, kxxþ kyyþ k0zz ¼ const, and sur-

faces of equal amplitude are another family, z ¼ const.

The question then arises of whether it is possible to use

“real” plane waves of the form ei k�r propagating in different

directions as the basic functions of spatial spectral decompo-

sition for the wave field in a dissipative medium. The answer

to this question is negative because for such waves, it

becomes impossible to set a boundary condition on the plane

z ¼ 0. Indeed, for a decaying plane wave propagating along a

unit vector m, the wave vector is k ¼ km ¼ ðx=cþ iaÞm. It

follows that on the plane z ¼ 0, the amplitude of the indi-

cated wave is proportional to e�aðmxxþmyyÞ, i.e., it grows indef-

initely along the radiating surface z ¼ 0 as mxxþ myy
! �1. For an ideal medium without dissipation, the solu-

tion (9) representing an angular spectrum with a real wave-

number is free from this drawback and is, therefore, suitable

for the analysis of a wave field of arbitrary form.

In general, the expression (9) means that the total field

is represented as a superposition of transverse modes of the

form eiðkxxþkyyÞ propagating along the axis z. The propagation

constant (wavenumber) of each of these modes, kz

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

x � k2
y

q
, depends on the dispersion law k ¼ kðxÞ

and spatial frequencies ðkx; kyÞ. The field in a non-

dissipative medium, such as water, can be represented by a

superposition of true plane waves (an angular spectrum),

which is a particular case of Eq. (9). However, the field

within an absorptive layer will possess a more general wave

structure. In Sec. II A 2, a method for characterizing the

wave propagation in an absorptive layer is developed based

on angular spectra that describe the field entering and leav-

ing the layer.

2. Transmission through a plane-parallel layer
oriented perpendicular to the z axis

Let us consider the situation when a plane-parallel layer

of thickness H, made from the test material, is placed in the

reference medium. Assuming ideal alignment, the flat surfa-

ces of this layer are perpendicular to the axis z, intersecting

it at points z0 > 0 and z0 þ H. At a point with a coordinate

z > z0 þ H, in the absence of the layer, the spectral ampli-

tude is expressed from Eq. (7) as

Swithout layer kx;ky;z;xð Þ¼ S0 kx;ky;xð Þei
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0
�k2

x�k2
y

p
z: (10)

In the presence of a layer,

Swith layer kx; ky; z;xð Þ ¼ S0 kx; ky;xð Þei
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0
�k2

x�k2
y

p
z0

� Tinei
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�k2

x�k2
y

p
H

� Toute
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0
�k2

x�k2
y

p
z�z0�Hð Þ; (11)

where k0ðxÞ and kðxÞ are the wavenumbers in the reference

and test media, respectively, and Tin and Tout are the trans-

mission coefficients for the beam entering from the refer-

ence medium into the layer and exiting from the layer into

the reference medium, respectively.

Equation (11) assumes that the layer is thick enough

that multiple reflections within the layer do not contribute to

the transmitted wave. As a rule, the transmitted wave is a

superposition of a series of multiply reflected waves, there-

fore, instead of Eq. (11), one should use the well-known

expression for the coefficient of transmission through the

layer in the continuous wave (CW) mode.10 Although this

approach is possible (the corresponding expressions are

somewhat more cumbersome but also straightforward), it is

assumed below that the first transmitted wave is separated

from its multiple reflections in time. In practice, this separa-

tion can be performed in the pulsed regime if the layer thick-

ness is large enough so that the re-reflected waves can be

separated from the first transmitted signal in time, that is,

this signal is shorter than the corresponding delay, 2 H =c.

This approach is used below.

The ratio of the angular spectra measured in the same

place in the absence of the layer and with the layer does not

388 J. Acoust. Soc. Am. 149 (1), January 2021 Nikolaev et al.

https://doi.org/10.1121/10.0003212

https://doi.org/10.1121/10.0003212


depend on its position z0, the initial amplitude of the angular

spectrum S0, or the coordinate of the measurement z; this

ratio depends only on the thickness and acoustic properties

of the layer

P kx;ky;xð Þ¼
Swithlayer kx;ky;z;xð Þ

Swithoutlayer kx;ky;z;xð Þ

¼Tin�out kx;ky;xð Þei
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�k2

x�k2
y

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0
�k2

x�k2
y

p� �
H
;

(12)

where Tin�out ¼ TinTout is the total transmission coefficient

that accounts for losses at the layer interfaces. The value

Tin�out ¼ Tin�outðkx; ky;xÞ is based on the continuity condi-

tion of the normal components of the tensor of mechanical

stresses and vibrational velocity and can be expressed in

terms of the effective impedances for the corresponding

mode in the test layer and the reference medium,

Tin�out ¼
4Z0Z

Z0 þ Zð Þ2
; (13)

Z0 ¼ q0x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 � k2
x � k2

y

q
; (14)

Z ¼ qx=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

x � k2
y

q
; (15)

where the “0” subscripts and no subscripts refer to proper-

ties of the reference medium and properties of the test layer,

respectively. For modes with nonzero spatial frequencies,

which correspond to an inclined incidence of the wave rela-

tive to the layer, there are also additional losses at the inter-

faces caused by the excitation of viscous waves. Such waves

correspond to the vortex mode of motion of a continuous

medium rather than the acoustic one.11 However, these addi-

tional losses can be neglected for relatively small incidence

angles (k2
x þ k2

y � k2
0) and viscosities. We also note that in

the absence of absorption, Eq. (13) is a well-known expres-

sion for the coefficient of transmission through a layer by

means of “normal impedances,” equal to the ratio of the

corresponding “characteristic impedances” of the media

to the cosines of the angles of incidence and refraction,

Z0 ¼ q0c0= cos h0 and Z ¼ qc= cos h, where h0

¼ arcsinð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
=k0Þ and h ¼ arcsinð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
=kÞ.

The function Pðkx; ky;xÞ has the meaning of a propaga-

tor for the corresponding component of the angular spec-

trum. We use the following representation:

P kx; ky;xð Þ ¼ AP kx; ky;xð ÞeiUP kx;ky;xð Þ; (16)

where AP and UP are real quantities representing the magni-

tude and phase of the propagator, respectively. Because in

Eq. (12), k and Tin�out are complex quantities, the expres-

sions for AP and UP are rather cumbersome. To simplify

them, we will consider a case of practical interest for which

nontrivial wave absorption occurs at a distance much greater

than a wavelength. Then, in the expression for the

wavenumber k ¼ x=cþ ia in the absorbing layer, the imag-

inary part is much smaller than the real one, ac=x� 1.

Neglecting terms above first order in the small parameter

ac=x, we obtain

AP kx; ky;xð Þ

� T̂ in�out exp �xH
a=cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x=cð Þ2 � k2
x � k2

y

q
0
@

2
4

� a0=c0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x=c0ð Þ2 � k2

x � k2
y

q
1
A
3
5; (17)

UP kx; ky;xð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x=cð Þ2 � k2

x � k2
y

q�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x=c0ð Þ2 � k2

x � k2
y

q �
H

þ Ẑ � Ẑ0

Ẑ þ Ẑ0

ax=c

x=cð Þ2 � k2
x � k2

y

 

� a0x=c0

x=c0ð Þ2 � k2
x � k2

y

!
: (18)

Here, a0 ¼ a0ðxÞ is the absorption coefficient in the refer-

ence medium, which is assumed to be known. Also,

Ẑ0 ¼
q0c0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
x þ k2

y

� �
= x=c0ð Þ2

q (19)

and

Ẑ ¼ qcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

x þ k2
y

� �
= x=cð Þ2

q (20)

are normal impedances of the media [see Eqs. (14) and (15)]

with neglect of absorption, and

T̂ in�out ¼
4Ẑ0Ẑ

Ẑ0 þ Ẑ
� �2

(21)

is the corresponding transmission coefficient through two

interfaces.

For a mode that corresponds to zero spatial frequencies

kx ¼ ky ¼ 0, the expressions can be simplified. In this case,

the mode itself is a plane wave propagating perpendicular to

the layer, and Eqs. (17) and (18) take the following forms:

AP 0; 0;xð Þ ¼ 4q0c0qc

q0c0 þ qcð Þ2
exp � a� a0ð ÞH

� �
; (22)

UP 0;0;xð Þ¼ 1

c
� 1

c0

� �
xHþac�a0c0

x
qc�q0c0

qcþq0c0

: (23)

Estimates show that under the conditions of the experiment

described below, the second term in Eq. (23) makes a few

orders of magnitude smaller contribution to the phase
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change compared with the first term and, therefore, it can be

neglected. Then the algorithm for measuring the phase

velocity and absorption coefficient is simplified and reduced

to two steps. At the first step, the phase velocity is calculated

from the propagator phase UP, defined by Eq. (23),

1

c xð Þ ¼
1

c0 xð Þ þ
UP 0; 0;xð Þ

xH
: (24)

After that, taking into account Eq. (22), the absorption

coefficient is expressed from the propagator magnitude

APð0; 0;xÞ,

a xð Þ¼a0 xð Þþ 1

H
ln

4q0c0qc

q0c0þqcð Þ2

 !
� ln AP 0;0;xð Þ

" #
:

(25)

Thus, to solve the problem of finding the phase velocity

cðxÞ and the absorption coefficient aðxÞ, it is sufficient to

use only the propagator Pð0; 0;xÞ.
It is convenient to choose water as a reference medium.

For water, the dispersion of the phase velocity can be

neglected, and the absorption (a0=f 2 � 2:5� 10�14s2=m,

f ¼ x=2p) can be also considered negligible compared to

the absorption in the test medium.12,13 Based on this

assumption, the speed c0 is considered to be independent of

the frequency, and the absorption is considered to be absent,

a0 ¼ 0.

The propagator Pð0; 0;xÞ sets the complex amplitude

of a plane wave after passing through the test layer in the

case when the initial wave amplitude is equal to unity.

Therefore, its Fourier transform,

g tð Þ ¼ 1

2p

ð1
�1

P 0; 0;xð Þe�ixtdx; (26)

represents the impulse response, that is, the waveform at the

output of the layer when the acoustic disturbance in the

form of the Dirac delta function dðtÞ is specified at the input

to the layer. Due to the peculiarities of measuring holograms

(using the method of replacing a layer with a reference

medium), the impulse response is additionally shifted in

time by an amount H=c0, corresponding to the passage time

of a layer of the reference medium of the same thickness. To

find gðtÞ, it is necessary to expand the domain of the propa-

gator definition to negative frequencies according to the rule

Pð0; 0;xÞ ¼ P�ð0; 0;�xÞ, where the star means complex

conjugation. In practice, the propagator is known only in a

limited frequency band; therefore, the corresponding

Fourier image found by integration over a finite frequency

interval will differ slightly from the exact impulse response.

3. Use of the propagator values at different spatial
frequencies as a statistical ensemble to improve the
accuracy of estimated properties

At first glance, it might seem that in relation to the

problem under consideration, the holography method gives

unnecessary redundant data, which are propagators

Pðkx; ky;xÞ for a large number of nonzero spatial frequen-

cies ðkx; kyÞ. However, such a conclusion is valid only in the

ideal case when Pð0; 0;xÞ is measured absolutely accu-

rately. When finding cðxÞ and aðxÞ in a real experiment,

inevitable errors appear due to uncertainty in measuring

holograms. These errors can be reduced if a large number of

statistically independent measurements are performed and

the resulting values are averaged over the statistical ensem-

ble. Propagators Pðkx; ky;xÞ provide such an opportunity.

Indeed, propagators for different ðkx; kyÞ can be considered

independent quantities, and each of them contains informa-

tion about the parameters cðxÞ and aðxÞ. To describe the

specified statistical ensemble, we mark the implementation

of random variables cðxÞ and aðxÞ, found from the propa-

gator Pðkx; ky;xÞ, with superscripts: cðkx;kxÞðxÞ and

aðkx;kxÞðxÞ. Equations (24) and (25) give an expression for

cð0;0ÞðxÞ and að0;0ÞðxÞ. Equations (17) and (18) make it pos-

sible to use the experimental measurement of the complex

quantity Pðkx; ky;xÞ to find cðkx;kxÞðxÞ and aðkx;kxÞðxÞ. Since

these quantities are included in both Eqs. (17) and (18), in

practice, it is convenient to find them by the method of suc-

cessive approximations. In a first approximation, absorption

can be neglected in the estimation of the phase velocity in

the test layer from Eq. (18) for the propagator phase. Using

this estimate, the absorption coefficient can be readily calcu-

lated from Eq. (17) for the propagator magnitude AP. These

initial estimates can then be improved iteratively by using

the current estimate of the absorption coefficient to recalcu-

late the phase velocity from Eq. (18) and the new sound

speed value to recalculate the absorption coefficient from

Eq. (17).

For convenience, we note that Eqs. (17) and (18) look

relatively simple at small frequencies for which the condi-

tion k2
x þ k2

y � k2
0 is met. Up to terms quadratic in spatial

frequencies, the phase velocity and absorption coefficient

are expressed in terms of the propagator magnitude and

phase as

1

c kx;kyð Þ xð Þ
� 1

c0

þ UP kx; ky;xð Þ
xH

1� c0c

2x2
k2

x þ k2
y

	 
� �
;

(27)

a kx;kyð Þ xð Þ� a 0;0ð Þ xð Þþ 1

H
ln

AP 0;0;xð Þ
AP kx;ky;xð Þ

" #(

þ
c2� c2

0

� �
q0c0�qcð Þ

2x2 q0c0þqcð Þ
k2

x þk2
y

	 
)
: (28)

Considering the right-hand side of Eqs. (27) and (28), c can

be approximated by the value cð0;0Þ as found by Eq. (24) if

errors on the order of 	ðk2
x þ k2

yÞ are neglected. After find-

ing cðkx;kyÞðxÞ and aðkx;kyÞðxÞ for all considered spatial fre-

quencies, an averaging operation should be carried out to

provide much more accurate estimates of c and a than could

be achieved through the use of only the propagator

Pð0; 0;xÞ.
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Up to this point, we have assumed that the incident

beam as measured by a three-coordinate positioner (see

below) is well aligned with the test sample so that the

positioner’s z axis is perpendicular to the test layer.

Consequently, the propagator evaluated at zero frequencies

corresponds to a plane wave at normal incidence to the

layer. However, this alignment may not be achieved in prac-

tice. As explained in detail in Appendix A, modified expres-

sions for the propagator should be used to account for such

misalignments.

4. Determination of the absorption coefficient based
on the total acoustic power transmitted through a
layer for a beam with a narrow angular spectrum

The method for finding acoustic characteristics

described above is based on the fact that after passing

through a plane-parallel homogeneous layer, a plane wave

does not change its structure, i.e., remains a plane wave with

the same direction of propagation. In practice, the condition

of plane parallelism and uniformity of the layer cannot

always be ensured. In this case, the representation of the

wave field as a superposition of noninteracting plane waves

of different directions is not possible. At each distance z,

one can still use expansion (5) and assume that a superposi-

tion of the transverse modes of the form eiðkxxþkyyÞ is given in

the corresponding transverse plane. In the presence of het-

erogeneity at an infinitely small step z! zþ dz, each of

these modes is generally distorted and thereby generates a

set of new modes with different spatial frequencies. In other

words, the heterogeneity of the medium leads to the interac-

tion of the components of the spatial spectrum. It is impor-

tant, however, that with a weak and smooth inhomogeneity,

each transverse mode gives rise to modes with close spatial

frequencies. In particular, if a wave beam incident on a layer

has a spatial spectrum localized near zero frequency

ðkx; kyÞ ¼ ð0; 0Þ, then as a result of mode mixing caused by

weak inhomogeneities, the beam will retain this localization

property near zero frequency at all stages of propagation.

Since at a small step z! zþ dz, the mixing of the modes

due to the inhomogeneity does not change the total power of

the wave, Wðz;xÞ, and the dissipation of each mode occurs

according to the law of absorption of a plane wave, we can

assume that the dependence of the total power on distance is

described by the same formula as for a plane wave,

Wðz;xÞ 	 e�2aðxÞz. It follows that the beam power in the

absence of a layer, Wwithout layer, and the beam power in the

presence of a layer, Wwith layer, are related as follows:

Wwith layer z;xð Þ
Wwithout layer z;xð Þ

¼ T 0ð Þ
in�out

	 
2

e�2a xð ÞH: (29)

Here, we introduce a notation for the transmission coeffi-

cient of a plane wave through the boundaries of the layer

during normal incidence

T 0ð Þ
in�out ¼

4q0c0qc

q0c0 þ qcð Þ2
: (30)

Therefore, the absorption coefficient can be found by mea-

suring the total beam power

a xð Þ ¼ 1

2H
ln

Wwithout layer z;xð Þ
Wwith layer z;xð Þ

" #
þ 2 ln T 0ð Þ

in�out

( )
:

(31)

It is noteworthy that the values of the total beam power

included in this formula are quite simply expressed through

the angular spectrum of the wave14

W z;xð Þ ¼
1

8p2q0c0

ð ð
k2

xþk2
y
k2

0

dkxdky

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

k2
x þ k2

y

k2
0

s
jS kx; ky; z;xð Þj2: (32)

The spatial spectrum included here, as noted above, can be

determined from the experimentally measured hologram.

Thus, Eqs. (30) and (31) make it possible to extend the holo-

graphic method of measuring the absorption coefficient to

the case of weak inhomogeneity. It is important to recall

that the use of the described approach gives only an approxi-

mate value for the absorption coefficient, which will be

more accurate for beams with narrower angular spectra.

B. Finding the angular spectrum of an acoustic field
based on its hologram

According to Eq. (9), the acoustic field at any point in

space is completely determined by its angular spectrum

S0ðkx; ky;xÞ, which is the Fourier transform of the surface

distribution of the complex amplitude of the acoustic pres-

sure at the source, Pðx; y; 0;xÞ. From Eqs. (6) and (7), it fol-

lows that the spectrum S0ðkx; ky;xÞ can be calculated on the

basis of the transverse distribution of the pressure amplitude

not only on the source plane z ¼ 0 but also on any other

plane z ¼ zH

S0 kx; ky;xð Þ ¼ e�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�k2

x�k2
y

p
zH

�
ð1
�1

ð1
�1

dxdyP x; y; zH;xð Þe�i kxxþkyyð Þ:

(33)

The two-dimensional transverse distribution Pðx; y; zH;xÞ
is, hence, a complete record of the wave field Pðx; y; z;xÞ,
i.e., its hologram.15,16

Although, formally, the support of the transverse coor-

dinate function Pðx; y; zH;xÞ is the entire infinite coordinate

plane ðx; yÞ, for a large source, as compared to a wavelength,

the acoustic field is a wave beam bounded in the transverse

direction. Therefore, we can assume that the specified beam

crosses a portion of a finite size comparable to the diameter

of the source. In addition, when moving away from the

source, the evanescent components of the angular spectrum

decay and, therefore, the beam consist only of propagating

components whose frequencies satisfy the condition
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k2
x þ k2

y 
 k2
0. According to the Nyquist criterion, a function

with a limited spectrum is completely determined by its dis-

crete values at the nodes of the spatial grid, the step of

which does not exceed half the wavelength. This leads to an

important practical conclusion that to record a hologram, it

is sufficient to measure the magnitude and phase of the

wave in a limited number of points on a surface area that

intersects the wave beam. It is convenient to place these

points in the nodes of the square grid.

Since the step of such a grid should be half the wave-

length or less, for large (compared to the wavelength) sour-

ces, the required number of recording points can be

significant. For example, for centimeter-sized sources oper-

ating in water in the megahertz frequency range, the size of

the hologram is on the order of 100� 100 pixels. Ultrasonic

receiving devices with such a large number of elements do

not exist yet, but this problem is bypassed by synthesizing a

two-dimensional array of receivers using a single receiver,

sequentially placed in nodes of the synthesized array. In

practice, this hologram registration process is automated

using computer-controlled positioning systems.15

As mentioned, the analysis of the spatial spectrum of an

acoustic beam transmitted through a plane-parallel layer of the

test medium allows one to determine the acoustic properties

of the layer. Since the propagator specified by Eq. (12) does

not depend on the specific form of the spatial spectrum, the

result is valid for any beam, including a beam of small diame-

ter, for example, the one radiated by a miniature source. This

means that, in practice, a plane-parallel layer infinite in the

transverse direction is not needed; it can be replaced only by

its portion in which the acoustic beam is present. In other

words, the idealized process of the passage of a plane wave

through an infinite plane-parallel layer can be indirectly imple-

mented using a narrow beam and a small sample. This conclu-

sion is important for practice because it allows one to exclude

the influence of diffraction on the process of measuring the

acoustic characteristics of the test material.

III. EXPERIMENT

The method described in Sec. II for measuring the

absorption coefficient and phase velocity is suitable for

waves of any nature. To illustrate its performance, an exper-

iment was carried out with ultrasound in the megahertz

range with relevance to medical applications and nonde-

structive testing of materials. More specifically, the purpose

of the experiment was to validate the applicability of the

method for layers with a limited transverse size, as well as

to demonstrate the ability of the method to achieve high

measurement accuracy by using averaging over a statistical

ensemble formed by plane waves of different directions cor-

responding to the angular spectrum of the wave beam.

A. Materials and methods

1. Test samples for measuring acoustic properties

Plane-layered samples made of room-temperature-

vulcanizing silicone rubber (RTV-2, Wacker Chemie AG,

Munich, Germany) were used in the experiments. Such

RTV materials, due to their stability, are commonly used as

phantoms of soft biological tissues even though they have a

slightly lower speed of sound and higher absorption.17

To prepare the samples, the liquid mixture from the rub-

ber base and hardener was poured into one of several con-

tainers. For disk-shaped samples, each container was

fabricated from a section metal pipe cut on a lathe in con-

junction with a glass plate pressed to each end of the pipe

section. This ensured a high degree of parallelism and

smoothness of the plane surfaces of the samples. A hole was

drilled in the pipe wall to facilitate filling of the container

with the glass plates in place. Samples were degassed by

placing the container in a vacuum desiccator for several

hours until the rubber solidified completely. The diameters

of the disk-shaped samples were equal to the inner diameter

of the pipe (108 mm), and the thicknesses corresponded to

different pipe-section lengths. In addition, a rectangular

cuboid-shaped sample with the thickness of the thickest disk

but much smaller transverse dimensions was manufactured

using a similarly machined container. Figure 1 shows a pho-

tograph of a disk-shaped and a cuboid-shaped sample; the

dimensions of all samples are listed in Table I. The uncer-

tainty of the thickness of the layers (60.05 mm) was

estimated based on ten measurements of the thickness at dif-

ferent points of each sample using a micrometer screw

gauge with an accuracy of 0.01 mm. The density of the

rubber was determined to be 1196 6 27 kg/m3 based on

measurements of sample weights and dimensions.

2. Experimental setup

The arrangement of the main elements of the experimen-

tal setup is illustrated in Fig. 2. An ultrasonic field in the

form of a focused beam was created in water by a piezoelec-

tric transducer with a nominal diameter of 38.1 mm, focal

length of 63.5 mm, and center frequency of 1 MHz (V392,

Panametrics, Waltham, MA, USA). The transducer was pow-

ered by an electric voltage supplied from a generator

(33250A, Agilent, Santa Clara, CA, USA).

The test sample was positioned opposite the source in

the prefocal region. The exact location of the sample relative

FIG. 1. (Color online) Photograph of samples D20 and C20.
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to the transducer is not important because the axial position

z0 does not appear in any of the relevant equations defining

the propagator per Eq. (12). In practice, the sample was

positioned such that the beam width incident on the sample

was small relative to the sample size while ensuring that the

sample holder did not interfere with the scanning of the

hydrophone. Given the transducer’s focal length of 63.5 mm

and the sample thickness of 10–20 mm, a suitable position

was found to approximately correspond to an axial position

of z0 þ H ¼ 46 mm. This distance was determined with an

uncertainty of about 1 mm by placing the needle hydrophone

at the acoustic focus and then using the motorized positioner

to move the hydrophone near the distal face of the sample as

a distance-measuring probe.

The acoustic signal was received by a needle-type hydro-

phone (HNA-0400, Onda, Sunnyvale, CA, USA) with a sensor

diameter of 0.4 mm. The hydrophone was connected to an

oscilloscope (TDS5034B, Tektronix, Beaverton, OR, USA)

through a preamplifier. The sensitivity at the output of the pre-

amplifier at a frequency of 1 MHz was 8:12� 10�7 V/Pa.

Note that in the considered approach, all measurements are rel-

ative; therefore, the amplitude and phase responses of the

hydrophone do not play a role, i.e., an uncalibrated hydro-

phone can be used. The acoustic hologram was measured on a

plane perpendicular to the beam axis and located at a distance

of 10 mm beyond the focal point at a zH ¼ 73.5 mm.

The hydrophone was successively translated to the

nodes of the square grid using a positioning system (UMS-3,

Precision Acoustics, Dorchester, UK), which allowed the

ultrasound receiver to be moved in three mutually perpen-

dicular directions with a positioning accuracy of 5 lm. The

system was controlled using a commercial LabVIEW pro-

gram (UMS3 Software, Precision Acoustics). The measure-

ments were carried out in a tank 1� 0.5� 0.5 m in size,

filled with degassed water at a temperature of 24 �C. At this

temperature, the density of water is 997 kg/m3 and the speed

of sound is 1496 m/s.18

3. Measurement and processing of a time-domain
signal at a given point in space

To measure the acoustic parameters at different fre-

quencies, a pulsed mode of operation was used in which an

electric voltage UðtÞ in the form of a tone burst, consisting

of a small number of sinusoidal cycles, was applied to the

transducer. In most of the measurements described below,

the driving electrical signal had an amplitude of 5 V, con-

sisting of three cycles of a 1 MHz sinusoid. This tone burst

signal was repeated at a frequency of 100 Hz.

When measuring the hologram at each point of the

scanning area, a pulse signal detected by the hydrophone

was recorded. To reduce noise, the recorded signals were

averaged over 64 realizations. Then, the direct current (DC)

component of the received signal (i.e., its average value

over time) was subtracted. Each averaged signal scaled by

the hydrophone sensitivity yields an acoustic waveform

pðr; tÞ. As described below, time-domain measurements at

many scan points were processed to identify spectral com-

ponents Pðr;xÞ and construct holograms of the acoustic

field at various frequencies.19,20

Because the signals recorded in the experiment are sam-

pled both in time and space, discrete versions of the Fourier

transforms from Eqs. (3) and (6) were employed. This pro-

cedure required the choices of spatial and temporal windows

within which the signal was recorded and sampling steps.

The choice of a window corresponds to the periodization of

the analyzed signal, which, in turn, determines a discrete set

of frequencies corresponding to harmonics of the Fourier

series. The related details are presented in Appendix B.

Note that due to the finite time window, the cyclic frequency

is changed with the sampling step Dx ¼ 2p=T [see Eq.

(B2)], where T is the time-window duration.

Figure 3 shows a typical transducer voltage signal UðtÞ
and corresponding hydrophone signals uðtÞ 	 pðr; tÞ mea-

sured at several points on the plane of the hologram. The

initial part of the hydrophone signal in each waveform con-

tains an electromagnetic interference pulse, which is almost

independent of the position of the measurement point

TABLE I. Geometric characteristics of silicone rubber samples used in the

experiments.

Sample name Shape Thickness (mm) Cross-sectional size (mm)

D10 Disk 9.68 6 0.05 Diameter 108

D15 Disk 14.62 6 0.05 Diameter 108

D20 Disk 19.55 6 0.05 Diameter 108

C20 Cuboid 19.55 6 0.05 20� 17

FIG. 2. (Color online) The arrangement used for acoustic measurements.

The main elements of the setup are shown at top. (1) Source, (2) test sam-

ple, (3) needle hydrophone, and (4) scan area when recording a hologram.

Dots indicate positions of the hydrophone during the measurement process.

Underneath is a corresponding photograph.
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because it is not associated with acoustic processes. The

subsequent impulse in each waveform represents an acoustic

signal that is delayed in time relative to the start of radiation.

As shown in Fig. 3, whereas the shape of the acoustic signal

is similar to the shape of the electrical signal UðtÞ that feeds

the transducer, it does not coincide with it and depends on

the position of the hydrophone. These differences can be

explained not only by distortions arising in the process of

electro-acoustic conversion in a piezoelectric transducer but

also by the propagation effects of diffraction and, in the

presence of an absorbing layer, the dispersion and absorp-

tion of the acoustic wave.

Electromagnetic interference arising before the arrival

of the acoustic signal and possible reverberation signals aris-

ing after the end of the acoustic pulse were cut off by a suit-

able choice of the time window. The beginning of the

window t0 was chosen at a time immediately preceding the

arrival time of the signal front when the hydrophone was

positioned on the beam axis. It is advisable to set t0 a little

earlier than the observed time of arrival of the acoustic sig-

nal front, for example, by an amount on the order of several

cycles at the central radiation frequency so as not to miss

the start of the signal. The window duration T should be

chosen sufficiently large so that it contains the entire acous-

tic signal with its decaying tail. At the same time, the win-

dow should end before the arrival of signals associated with

acoustic reflections from structural elements and the walls

of the water tank.

Based on the above recommendations, for measure-

ments in water using the experimental arrangements of this

study, the start of the window was selected at t0 ¼ 44.75 ls.

When layers were present, an additional delay (on the order

of several microseconds) was introduced, taking into

account the difference in the speed of sound in water and in

the material of the layers. The window duration was chosen

equal to T ¼ 40 ls, which made it possible to record the

entire pulse signal and cut off the reverberation signals

(Fig. 3). According to Eq. (B2), for the chosen value of T,

the frequency sampling step was D f ¼ Dx=ð2pÞ ¼ 25 kHz.

The time sampling step was ht¼ 8 ns, and the corresponding

number of the waveform points was N ¼ T=ht ¼ 5000.

Figure 4 shows the dependence of the absolute value

of the spectral amplitude jPðr;xÞj on the frequency

f ¼ x=ð2pÞ calculated using Eq. (33) for the hydrophone

signal measured at the point of x ¼ 3 mm, y ¼ 0,

z ¼ 73.5 mm [see Fig. 3(b)]. It can be seen that the spectral

amplitude far exceeds the noise level in a relatively wide

frequency range from about 0.4 to 1.6 MHz, which includes

approximately 50 frequency points of the discrete spectrum.

4. Angular spectrum at different frequencies obtained
from the acoustic hologram

The complex amplitudes of the frequency components

Pðx; rÞ are functions of spatial coordinates. Similar to the

time sampling procedure described above with respect to a

signal measured at a given point, the signal is also sampled

by transverse spatial variables when scanning the field with

a hydrophone. The spatial step when recording the hologram

was h ¼ 0.5 mm. More details are provided in Appendix B.

Figure 5 shows the transverse distribution of the magni-

tude and phase of the hologram Pðr;xÞ at one of the

frequencies f ¼ x=ð2pÞ¼ 1 MHz as well as the magnitude

and phase of the corresponding angular spectrum calculated

using Eq. (B5). When processing experimental data, the

indicated values were calculated for all temporal frequencies

from a discrete set shown in Fig. 4. From the pattern of the

spatial spectrum, it is possible to conclude that although

the spectrum is localized near the origin ðkx; kyÞ ¼ ð0; 0Þ, it

is quite wide, i.e., the ultrasound beam contains plane waves

of many directions.

FIG. 3. (Color online) The signal UðtÞ (a) supplied to the transducer and the

corresponding response uðtÞ of the hydrophone, measured in water (no sam-

ple) at various points on the hologram plane [(b)–(d)] at the distance from

the source, z¼ 73.5 mm. The signals [(b)–(d)] correspond to distances of 3,

3.5, and 4 mm from the beam axis in the transverse direction, respectively.

Vertical dashed lines indicate the boundaries of the time window used when

recording acoustic signals.

FIG. 4. (Color online) The dependence of the spectral amplitude jP j nor-

malized to its maximum Pmax on the frequency for the hydrophone signal at

the point (x, y, z) ¼ (3 mm, 0, 73.5 mm). The corresponding time signal is

shown in Fig. 3(b).
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5. Measurement of the propagator

The propagator, which carries information about the

acoustic properties of a sample inserted between the trans-

ducer and the hydrophone, is determined from two-

dimensional distributions of the complex amplitudes of the

angular spectrum. These amplitudes are calculated from

hydrophone measurements recorded in the free field and with

the test sample in the propagation path [Eq. (12)]. As shown

in Appendix A, the possible non-perpendicularity of the layer

with respect to the axis z of the positioning system can be

taken into account by shifting the origin of spatial frequencies

to the extremum point of the propagator, ðkðnÞx ; k
ðnÞ
y Þ. After this

shift, it can be assumed that the measured propagator corre-

sponds to the perpendicular arrangement of the layer and the

corresponding equations from Sec. II A 2 can be applied.

To find the acoustic properties of the layer material, it is

sufficient to use the propagator for only the spatial fre-

quency that corresponds to normal incidence. The magni-

tude and phase of the propagator are then given by Eqs. (22)

and (23), respectively, and the algorithm for finding the

phase velocity and absorption coefficient is given by Eqs.

(24) and (25). However, as previously mentioned, improved

accuracy can be achieved by calculating the indicated

parameters at other spatial frequencies in the vicinity of the

normal incidence frequency and then averaging the results

using Eqs. (27) and (28).

The relevant region of small spatial frequencies is

shown in more detail in Fig. 6. This region is where the

magnitude of the angular spectrum components from each

measured hologram appreciably exceeds the noise level. If

this region is chosen too wide so that the spectrum magni-

tude reaches the noise level, a noticeable error may occur

when calculating the propagator expressed by the ratio of

the spectra. Noisy regions that were excluded from propaga-

tor calculations appear blue in the two-dimensional distribu-

tions shown in Figs. 5 and 6.

When using a focused source with known diameter d
and focal length F, the width of its angular spectrum can be

estimated as the angle between the source axis and the ray

directed from the edge of the source to the focal point, i.e.,

kmax=k0 � d=ð2FÞ. Accordingly, a region on the plane

ðkx; kyÞ within a circle of radius kmax can be identified to

contain sufficient information for making plane wave esti-

mates of the phase velocity and absorption coefficient. For

the source used in this study (d¼ 38.1 mm, F¼ 63.5 mm,

c0¼ 1.5 mm/ls), kmaxðmm�1Þ � 1:26� f ðMHzÞ. As can be

seen from Fig. 6, this estimate for the frequency of 1 MHz is

in good agreement with the measured results. The number

of discrete spatial frequencies inside the indicated circle

increases quadratically with frequency f and can be esti-

mated as 620� ðf ðMHzÞÞ2. In the megahertz frequency

range, this number of points is on the order of several hun-

dred. Averaging over this large number of angular spectrum

components allows for a significant improvement in the

accuracy of absorption coefficient and phase velocity esti-

mates. Typical standard deviations for the absorption coeffi-

cient and phase velocity measurements in the frequency

FIG. 5. (Color online) (Top) Transverse distribution of the magnitude and

phase of the pressure field at a frequency of 1 MHz (acoustic hologram)

measured at a distance zH¼ 73.5 mm. (Bottom) Magnitude and phase of the

corresponding angular spectrum. A circle (dotted curve) of radius k ¼ x=c0

indicates the boundary of the region of propagating plane waves.

FIG. 6. (Color online) Reconstruction of a propagator at a frequency of

1 MHz from holograms measured at a distance zH¼ 73.5 mm. The magni-

tude (on the left) and phase (on the right) of the angular spectrum are shown

in the absence (top row) and presence (center row) of sample D20. The

reconstructed propagator is shown at the bottom.
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range from 0.4 to 1.6 MHz were 0.3 m�1 and 0.5 m/s,

respectively.

When calculating the phase velocity from experimen-

tally measured holograms, the propagator phase

UPðkx; ky;xÞ is used, which is specified in an interval of

length 2p, for example ½�p; p�. Formal application of Eq.

(12) for calculating the propagator Pðkx; ky;xÞ, therefore,

yields not a total phase UP but a quantity uP 2 ½�p; p� that

is related to the total phase by the expression UPðkx; ky;xÞ
¼ uPðkx; ky;xÞ þ 2pNðkx; ky;xÞ, where N ¼ Nðkx; ky;xÞ is

an integer that depends on frequencies ðkx; ky;xÞ and is

not known in advance. Thus, before calculating the phase

velocity, it is necessary to unwrap the phase by finding

Nðkx; ky;xÞ. The phase unwrapping procedure can be

carried out based on the measured difference Dtfront in the

arrival times of the pulses recorded by hydrophone on the

beam axis as introduced by the presence of a test layer in

the propagation path. This difference is equal to Dtfront

¼ Hðc�1
front � c�1

0 Þ, where cfront is the propagation speed of

the pulse front. Since the dispersion of the phase velocity is

small, cðxÞ � cfront, the phase incursion for zero spatial fre-

quency is UPð0; 0;xÞ � x Dtfront as follows from Eq. (18).

Taking into account that the calculated value for the phase

difference jUP � xDtfrontj < p, the number of complete

cycles N can be found as

N 0;0;xð Þ¼ floor
xDtfront�uP 0;0;xð Þ

2p
þ 1

2

� �
; (34)

where the function floor(� � �) denotes the operation of

extracting the integer part of a number. The total phase

UPð0; 0;xÞ then can be determined and used as a starting

value for the algorithm of phase unwrapping on the entire

plane ðkx; kyÞ. Because the propagator phase front is a

smooth surface, it can be assumed that there are no sharp

phase jumps (by an amount greater than p) of the discrete

spatial spectrum at neighboring points. Therefore, the phase

unwrapping algorithm sequentially sorts all the points of a

given region of spatial frequencies by moving from the cur-

rent point ðkx; kyÞ at which the phase is already found to its

nearest neighbor ðk̂x; k̂yÞ, where k̂x ¼ kx6Dk or

k̂y ¼ ky6Dk. In this case, the phase should be unwrapped in

accordance with a formula similar to Eq. (34)

N k̂x;k̂y;x
	 


¼floor
UP kx;ky;xð Þ�uP k̂x;k̂y;x

	 

2p

þ1

2

 !
:

(35)

An arbitrary trajectory of the transition from point to point

can be chosen; here, enumeration of points was done line by

line, as in raster scanning.

B. Experimental results

1. Holographic reconstruction of the source surface
vibration and acoustic beam structure

Although the main purpose of using the holographic

method in this study was to analyze the propagation of plane

waves, the holography-based reconstruction of the pattern of

vibration of the source surface and the spatial structure of

the radiated ultrasonic field were also of interest.15,16 As

already noted, the source was a single-element piezoelectric

transducer with focusing provided by the concave shape of

the radiating piezoelectric plate. For such transducers, the

common oscillation pattern of their surface is uneven as a

result of the peculiarities of the attachment of electrical con-

tacts, the nature of the backing, as well as the inevitable

excitation of Lamb waves in the piezoelectric plate.21,22

Since the structure of the oscillations depends on the design

features of the transducer, the influence of which on the

vibration of the piezoelectric plate is difficult to model, an

accurate theoretical prediction of the distribution of the

vibrational velocity on the piezoelectric plate is usually

impossible. The holography approach allows for reconstruc-

tion of the actual wave sources from the radiated field.

When performing holographic reconstruction of the

transducer behavior, it is necessary to know the position of

its surface in space. Since the piezoelectric plate had the

shape of a spherical segment, it was sufficient to indicate

the center of the corresponding sphere. To approximate the

location of such a center, a point on the beam axis was

determined at which the wave amplitude at the center fre-

quency of 1 MHz reached a maximum (z ¼ 63.5 mm). Note

that due to diffraction, this point is located closer to the

source than the true center of curvature of the radiating sur-

face.23 However, this difference for the transducer used here

is fairly small and was neglected when defining the location

of its center of curvature.

A nonstationary hologram was measured beyond the

focus at a distance of 73.5 mm from the source. Based on

these measurements, continuous wave holograms were

found at different frequencies (one of them is shown in the

top of Fig. 5) and used to backpropagate the field to the sur-

face of the source using the Rayleigh integral.15,16 To more

evenly take into account the waves propagating from the

source at large angles to the axis, the measured hologram

was multiplied by a circular spatial window with a diameter

of D ¼ 70 mm, which suppressed the angular parts of the

initial square hologram and thereby made it more adequate

to the round shape of the source.

Figure 7 shows the results of reconstructing the magni-

tude and phase of the normal component of the vibrational

velocity on the surface of the radiator at several characteris-

tic frequencies. At all frequencies, the radiating region is a

circle with a diameter of about 38 mm, which corresponds to

the nominal size of the transducer. The inhomogeneous

pattern of the surface vibrations is clearly visible in the form

of a ring structure caused by quasi-standing Lamb waves.

Despite slight differences in the reconstructed distributions,

the surface of the radiator was completely active with no

noticeable defects for all of the excitation frequencies.

The measured hologram also allowed reconstruction of

the spatial structure of the acoustic field. Figure 8 shows the

distribution of the acoustic pressure amplitude in the

axial plane ðx ¼ 0; y; zÞ calculated at the same frequencies
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as in Fig. 7. The white arc on the left corresponds to the

radiating surface. The position of the scanning plane of the

transverse distribution of the acoustic field parameters is

depicted by a vertical dotted line in the upper image. The

measured hologram was used to calculate both forward

propagation (i.e., to the right relative to the plane of the

hologram) and backward propagation to the source. The

amplitude distribution to the left of the radiating surface was

not physically realized and is shown only to demonstrate the

backpropagation algorithm.

It can be seen from Fig. 8 that the ultrasonic field has

the form of a focused beam and with increasing frequency,

the degree of narrowing of the beam in the focus region

increases. A theoretical calculation for the beam diameter

determined from the minima of the wave amplitude closest

to the axis for frequencies of 0.5, 1, and 1.5 MHz yields 12.2,

6.1, and 4.1 mm, respectively.23 The corresponding values

for the beams shown in Fig. 8 are 10.3, 6.1 and 4.2 mm,

which are quite consistent with theoretical estimates.

Another feature of the field structure at different fre-

quencies is the frequency-dependent diffraction shift toward

the source of the point at which the maximum amplitude is

reached (focal shift). Apparently, this effect was first noted

in Ref. 23 where it was shown that for a uniformly oscillat-

ing radiator having the shape of a concave spherical cup

with a depth h and radius of curvature F, the focal shift

depends on the parameter k0h as Dz � 12F=½ðk0hÞ2 þ 12�.
Given the geometric dimensions of the source used

here, the theoretical shifts Dz at frequencies of 0.5, 1 and

1.5 MHz are approximately 15.4, 4.7, and 2.2 mm, respec-

tively. It is interesting to compare the position of maximum

amplitude at different frequencies with the position of the

nominal focus of the radiator, which was defined as the

point with maximum amplitude at an operating frequency of

1 MHz. From the above values of the shifts for an idealized

source, it turns out that at a frequency of 0.5 MHz, the maxi-

mum amplitude point should shift toward the transducer by

�9.7 mm and at a frequency of 1.5 MHz, on the contrary, it

should move away byþ2.5 mm. These focal shifts are close

to the observed focal shifts, which for the distributions

shown in Fig. 8 are �8.6 and þ2.2 mm, respectively. The

discrepancies can be explained by the uneven nature of the

oscillations of the surface of the radiator (see Fig. 7).

For the phase velocity and absorption coefficient mea-

surements, the samples were placed between the transducer

FIG. 7. (Color online) The magnitude (left column) and phase (right col-

umn) of the normal component of the vibrational velocity on the surface of

the source at different excitation frequencies: 0.5 MHz (top), 1 MHz (cen-

ter), and 1.5 MHz (bottom). The magnitude is normalized to its maximum

value. The vibrational velocity was calculated based on the hologram mea-

sured at 73.5 mm from the source.

FIG. 8. (Color online) Distributions of the acoustic pressure amplitude in

water in the absence of samples, reconstructed from the hologram in the

axial plane of the beam at different frequencies, 0.5 MHz (top), 1 MHz (cen-

ter), and 1.5 MHz (bottom). The amplitude is normalized to its maximum

value. The white arc on the left indicates the surface of the source. The ver-

tical dashed line in the top image depicts the measurement plane. The

highlighted rectangular areas in the central and lower images indicate the

position of the test samples (D20 and C20, respectively) during

measurement.
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and the focus. In Fig. 8, bright rectangles schematically

show the location of the samples against the background of

the structure of acoustic beams with which the samples were

measured. The center image shows the position of a large

disk-shaped sample, and the bottom image shows a small

cuboid-shaped one (see Fig. 1). Due to the transverse locali-

zation of the focused beam, both the disk-shaped sample

and the smaller cuboid-shaped sample had transverse sizes

noticeably larger than the beam diameter.

2. Propagator for layers of various thicknesses

As noted in Sec. III A 5, holograms of an acoustic

beam, measured in the same plane in the presence of a layer

and in its absence, make it possible to determine the propa-

gator Pðkx; ky;xÞ. For the source used in this work, one

could expect a high accuracy of the propagator measure-

ments for spatial frequencies ðkx; kyÞ inside the circle k2
x

þ k2
x 
 k2

max for which the estimate kmaxðmm�1Þ � 1:26

� f ðMHzÞ is valid. The indicated feature is visible in Fig. 9

in which the results of measuring the propagator at various

frequencies are shown for sample D20. The magnitude AP

and phase UP distributions on the plane ðkx; kyÞ are shown

within the square jkxj; jkyj 
 1:5 mm�1. The propagator

magnitude distributions show, especially at low frequencies

of 0.5, 0.6, and 0.7 MHz, that near the origin there is a

region of relatively uniform color in the form of a circle

whose radius increases with frequency. The indicated circle

corresponds to the area where the propagator measurement

is little affected by noise. With increasing frequency, the

propagator magnitude decreases, which is due to a corre-

sponding increase in the absorption coefficient. The propa-

gator phase distribution also depends on the frequency,

while the color picture has an axially symmetric shape with

the center at the origin, which confirms the high degree of

parallelism of the sample and the field scanning plane.

As noted above, the propagator values Pðkx; ky;xÞ over

a large number of spatial frequencies allow statistical aver-

aging and refinement of the sound velocity and absorption

coefficient. If we average over kx; ky in Eqs. (17) and (18) to

generate initial estimates for cðxÞ and aðxÞ, then these

values can be substituted into Eqs. (22) and (23) to obtain

a more accurate estimate for the propagator Pð0; 0;xÞ.
Figure 10 shows the corresponding frequency dependences

of the propagator magnitude AP (upper plots) and propaga-

tor phases U P (central plots) for various samples.

It can be seen that in the frequency range from 0.4 to

1.6 MHz, the propagator magnitude decreases monotonically,

which indicates an increasing character of the frequency

dependence of the absorption coefficient. For thicker speci-

mens, the decay is faster. The propagator phase is shown after

the unwrapping operation described in Sec. III A 5. The phase

value U P grows almost linearly with frequency, which

reflects the small dispersion of the phase velocity.

The bottom part of Fig. 10 shows the results of the cal-

culation of the filtered impulse response gðtÞ expressed by

Eq. (26) but with integration only at the interval

0:4 MHz 
 jxj=ð2pÞ 
 1:6 MHz, where the noise level is

small. As expected, the impulse response takes the form of a

short pulse, which experiences a delay that increases with

increasing sample thickness. In addition, faster absorption

of high frequencies leads to the fact that with an increase in

the sample thickness, the peak value of the impulse response

decreases and the duration increases.

3. Absorption coefficient and phase velocity

The main purpose of the proposed method for extract-

ing plane waves from the experimental holograms was to

FIG. 9. (Color online) Distribution of the magnitude AP and phase UP of the propagator over a portion jkxj; jkyj 
 1:5 mm�1 of the spatial frequency plane

ðkx; kyÞ at different frequencies f ¼ x=ð2pÞ for the sample D20.

FIG. 10. (Color online) The frequency dependence of the magnitude AP

(top) and phase UP (center) of the propagator for different samples. The

correspondence of the color of the curves to the samples is explained in

the central graph. (Bottom) Impulse response calculated by integration over

the frequency range from 0.4 to 1.6 MHz.
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measure the absorption coefficient and phase velocity of the

acoustic waves. The results of these measurements are

shown in Fig. 11. The values of the acoustic parameters of

the material given in Fig. 11 were obtained by averaging the

values of 1=cðkx;kyÞ and aðkx;kyÞ, represented by Eqs. (27)

and (28), respectively, over the components of the angular

spectrum within a circle of radius kmaxðmm�1Þ � 1:26

� f ðMHzÞ. The top graph shows the frequency dependences

of the absorption coefficient found for all four samples using

the propagator. In addition, a curve calculated based on

measurements of total acoustic power using Eq. (31) was

added for sample D20.

The bottom graph in Fig. 11 shows the frequency

dependences for the shift of the phase velocity relative to its

value at the frequency f1 ¼ 1 MHz: Dc ¼ cðf Þ � cðf1Þ. The

calculated phase velocity values cðf1Þ for different samples

were 980.6, 983.8, 982.5, and 986.7 m/s for samples D10,

D15, D20, and C20, respectively. The indicated discrepancy

can be explained by the limited accuracy of specifying the

thickness of the samples (see Table I), which is used to cal-

culate the phase velocity value based on the measured prop-

agator phase. As can be seen, the estimate 983.4 6 3 m/s is

valid for speed cðf1Þ. It is useful to compare this value with

the wavefront propagation velocity, measured based on the

shift of the delay times of the arrival of the signal front with

and without a layer. The indicated shifts for samples D10,

D15, D20, and C20 were 3.37, 5.13, 6.85, and 6.82 ls,

which gives velocities of 984, 981, 982, and 983 m/s,

respectively, i.e., the measured velocity of the signal front

was 982.5 6 1.5 m/s. As can be seen, this value is close to

the obtained results for the velocity cðf1Þ.

IV. DISCUSSION

A. Absorption coefficient

The results for the frequency dependence of the absorp-

tion coefficient shown in Fig. 11 indicate a high

repeatability of the measurement results when using samples

of different thicknesses. It can be seen that within the fre-

quency range from 0.4 to 1.6 MHz, which contains most of

the energy of the acoustic signal, the curves for samples

D10, D15, and D20 are practically indistinguishable.

A significant result illustrating the operability of the

coefficient measurement method proposed in this work is

the coincidence of the absorption curves for the sample

D20, which is extended in the transverse direction, and the

sample C20, which is small in size but has the same thick-

ness. Thus, due to the use of a beam localized in the trans-

verse direction, it was possible to measure the absorption

coefficient, which characterizes the behavior of an infinite

plane wave, using a small sample.

To analyze the proximity of the experimental curves

aðf Þ to each other, the deviation of these curves from a cer-

tain averaged or fitted curve �aðf Þ was considered. The fitted

curve was constructed from the experimental data for the

thickest sample D20 in the frequency range from 0.4 to

1.6 MHz, where the measurement errors were minimal and,

thus, was assumed to be close to the true dependence. An

analysis showed that the experimental data are described

with high accuracy by the following power law:

�a fð Þ ¼ a1 f=f1ð Þg; (36)

where f1¼ 1 MHz, a 1¼ 21.17 m�1 is the absorption coeffi-

cient at the frequency f1, and g¼ 1.585 is an exponent. The

upper part of Fig. 12 shows plots for the frequency depen-

dence of the relative deviation da ¼ ða� �aÞ=�a, expressed

as a percentage, for various samples. The lower part of

Fig. 12 shows the spectra of two signals normalized to their

maximum value: the hydrophone signal already shown

earlier in Fig. 4 (solid line) and the voltage signal supplied

to the transducer (dashed line). These frequency dependen-

ces indicate that within the frequency range from 0.4 to

1.6 MHz, where the spectral amplitude of the acoustic signal

FIG. 11. (Color online) The frequency dependences of the absorption coef-

ficient (top) and phase velocity (bottom) for various samples using averag-

ing over a circle of radius kmaxðmm�1Þ � 1:26� f ðMHzÞ.

FIG. 12. (Color online) (Top) The frequency dependence of the relative

deviation of the absorption coefficient from Eq. (36). (Bottom) The spectral

amplitude of the signals applied to the transducer and recorded by the

hydrophone, normalized to their maximum values.
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is not too small, the spread in the results of measuring the

absorption coefficient does not exceed 5%–10%. An excep-

tion is the vicinity of frequencies of 0.7 and 1.35 MHz,

where the spectral amplitude of the electric signal at the

source and, as a consequence, the amplitude of the acoustic

signal at the hydrophone have local minima. Thus, as

expected, the error in measuring the absorption coefficient is

large at those frequencies where the amplitude of the acous-

tic signal is small. Within the frequency band, where the sig-

nal significantly exceeds the noise level, the spread of the

absorption curves is small, which indicates the high accu-

racy and good repeatability of the proposed method for mea-

suring the absorption coefficient.

Figures 11 and 12 show not only curves derived from

estimates for the absorption coefficient based on measure-

ments of the propagator but also a curve for sample D20

obtained by measuring the total acoustic power. The corre-

sponding dependence for the absorption coefficient appeared

to be very close to the dependences determined from the

propagator measurement. As noted in Sec. II A 4, the

method based on measuring acoustic power is more accurate

when the angular spectrum of the probe beam is narrower.

Despite the approximate nature of this method, it has one

important advantage, namely, that its use does not require

strict plane parallelism and uniformity of the test sample.

This advantage may turn out to be fundamental in character-

izing media that by their nature have a certain heterogeneity,

for example, biological tissues.

B. Phase velocity

As can be seen from the bottom graphs in Fig. 11, the

results for the frequency-dependent shift of the phase veloc-

ity Dc ¼ cðf Þ � cðf1Þ vary slightly for different samples in

the operating frequency range from 0.4 to 1.6 MHz, espe-

cially for the disk-shaped samples D10, D15, and D20.

There is some larger difference at low frequencies for the

small cuboid sample C20, which may be due to the fact that

the side lobes of the probe beam partially do not fall on the

sample, which causes distortion of the propagator phase.

As already noted, the calculated values of the phase

velocity at the frequency f1 ¼ 1 MHz for different samples

were slightly different: cðf1Þ ¼ 983.4 6 3 m/s. This differ-

ence can be explained by the limited accuracy of measuring

the thickness of the samples. According to Table I, the rela-

tive error in the thickness measurement ranged from 0.25%

to 0.5%, which, in accordance with Eq. (24), yields the

same (apparent) relative error in the value of the phase

velocity. In absolute units, this error is from 2.5 to 5 m/s,

which corresponds to the marked spread for the phase veloc-

ity cðf1Þ. Note that a different source of systematic measure-

ment error could be the temperature inconsistency during

the measurement of holograms for different samples. The

temperature coefficients of the speed of sound dc=dT for

water and RTV are 2.75 6 0.01 and �2.8 6 0.1 (m/s)/K,

respectively.24,25 Estimates based on these values show that

the resulting velocity spread could be observed with

temperature changes of more than half a degree. During the

experiments, such fluctuations were not observed; therefore,

it can be assumed that the main reason for the apparent dif-

ference in the phase velocity in various samples was the

errors in measuring thicknesses.

A characteristic feature of the experimental frequency

dependences of the phase velocity shown in Fig. 11 is their

growth with frequency. According to the causality principle,

the dispersion of the phase velocity is interconnected with

the frequency dependence of the absorption coefficient.

From this point of view, the results obtained are useful to

analyze in more detail. Figure 13 shows the dependences

obtained from the measured propagator for the absorption

coefficient and phase velocity for sample D20. In contrast to

Fig. 11, the experimental results are depicted not by curves

but by individual experimental points representing the val-

ues of the quantities at the corresponding frequencies of

the discrete Fourier transform. The solid curve in the top of

Fig. 13 corresponds to the power law dependence [Eq. (36)].

It can be seen that the experimental points accurately fit the

indicated power dependence within the frequency range

from 0.4 to 1.6 MHz. Given the smooth behavior of the dis-

persion curves, the integral dispersion relations can be

replaced by approximate local relations.26 It was shown

that, in the case of a power law dependence of the absorp-

tion coefficient a ¼ a1ðf=f1Þg with 0 
 g 
 2, local disper-

sion relations allow the phase velocity to be expressed with

high accuracy using the following equation:27

c fð Þ ¼ c f1ð Þ

1þ a f1ð Þc f1ð Þ
2pf1

tan
p
2

g
� �

f

f1

� �g�1

� 1

" # : (37)

FIG. 13. (Color online) Dispersion dependences for sample D20. (Top) The

absorption coefficient. (Bottom) The phase velocity. The circles show the

experimental values obtained based on the measured propagator. The

smooth curve in the upper graph corresponds to a power approximation

a 	 f g. The dashed curve in the lower graph is constructed using the indi-

cated dependence based on local dispersion relations.
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In the bottom graph in Fig. 13, the dashed curve is con-

structed from Eq. (37) using the power law parameters

drawn by a solid curve in the upper graph. We note very

good agreement between the experimental results and the

dependence predicted from the causality principle.

C. Impact of the hydrophone size on propagator
measurement

The propagator-based method presented in this study

relies on the measurement of acoustic holograms. In general,

the correct measurement of a hologram requires the use of a

miniature hydrophone that has a sensitive element with a

diameter less than a wavelength (preferably much less).16

The sensitivity of such hydrophones is low, limiting their

capability of detecting weak signals against a background of

noise, which is especially noticeable when conducting

broadband measurements using short pulses.

A hydrophone is much more sensitive if its diameter

is comparable to the wavelength or exceeds it. The obvi-

ous drawback of larger receivers, however, is the fact that

they do not show the true signal at a point, but they show

the result of the acoustic pressure averaged over the sur-

face of the sensitive region.28,29 The corresponding effect

of spatial non-locality is equivalent to the fact that the sen-

sitivity of a finite-size hydrophone is direction dependent.

In terms of the angular spectrum, the corresponding radia-

tion pattern can be described using some frequency-

dependent function for the directivity Dðkx; ky;xÞ. In turn,

the sensitivity of the hydrophone at normal incidence to a

plane wave (when kx ¼ ky ¼ 0) should be scaled in order

to account for the sensitivity to each obliquely incident

plane wave in the angular spectrum. Thus, when using a

hydrophone of a finite size, a quantity Dðkx; ky;xÞ
�Sðkx; ky; z;xÞ is measured instead of the true angular

spectrum Sðkx; ky; z;xÞ.
However, the propagator is defined as the ratio of angu-

lar spectra such that the factor Dðkx; ky;xÞ present in both

the denominator and the numerator is canceled—see Eq.

(12). In other words, the use of a finite-size hydrophone

does not introduce any error into the propagator measure-

ment. Of course, this conclusion is valid only for those spa-

tial frequencies where the value jDðkx; ky;xÞj is not too

small compared to unity so that the amplitude of the cor-

rected angular spectrum noticeably exceeds the noise level.

For example, consider the sensitive section of the

hydrophone to be a circle of radius a. To assess the directiv-

ity in this case, one can use the recommendation of the

International Electrotechnical Commission (IEC 62127–3,

section 5.6), according to which for a circular receiver

inserted in a rigid baffle, the directivity diagram has the

form 2 J1ðk0a sin hÞ=ðk0a sin hÞ, where J1ð�Þ is the Bessel

function, k0 ¼ x=c0 is the wavenumber, and h is the angle

between the normal to the surface of the hydrophone and the

direction of propagation of the received wave.30,31 It follows

that

D kx; ky;xð Þ ¼
2 J1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
a

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
a

: (38)

The area on the spatial frequency plane, where the

directivity function Dðkx; ky;xÞ exceeds a given level, is a

circle
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q

 ka. The radius of this circle at the level

jDj ¼ 0:1, according to Eq. (38), is equal to ka � 3:42=a. It

is interesting to compare this radius with the radius of the

circle kmaxðmm�1Þ � 1:26� f ðMHzÞ that was previously

used when averaging the propagator over spatial frequen-

cies. The final size of the hydrophone will not affect the

measurement results at ka > kmax, whence the following

estimate is obtained for the permissible radius of the hydro-

phone: aðmmÞ < 2:71=f ðMHzÞ. For example, for a fre-

quency of 1 MHz, the diameter of the hydrophone can reach

5.4 mm, which is much larger than the diameter of the

hydrophone used in the experiments (0.4 mm) and more

than three times the wavelength. Thus, the proposed method

for measuring the propagator can be implemented using

even larger and, therefore, more sensitive receivers. Note

that with an increase in the diameter of the hydrophone, its

directivity becomes narrower, which results in low-pass

filtering of the angular spectrum. According to the Nyquist

criterion, this allows for increasing the scanning step and,

thus, faster measurement of the propagator without signifi-

cant loss of accuracy. However, if noticeable side lobes are

present in the directivity, the scanning step should be kept

small (half the wavelength or less) in order to avoid aliasing

effects.

D. Conclusions

In this study, a method is described for measuring the

acoustic characteristics of media based on the possibility of

using bounded acoustic beams and finite-size samples to

analyze the behavior of unbounded plane waves passing

through a test sample of finite thickness and infinite lateral

dimensions. The proposed method is based on the theoreti-

cal decomposition of the acoustic field into an angular spec-

trum to describe a wave beam as a superposition of plane

waves traveling in different directions. Experimentally, the

method relies on nonstationary acoustic holography mea-

surements, i.e., measurement of acoustic waveforms over a

distribution of points on some surface that intersects the

beam. Harmonic plane waves of different directions,

selected using the hologram as a result of spectral decompo-

sitions in time and transverse coordinates, allow for the

measurement of the acoustic characteristics of materials

within a certain frequency range. It was shown that the accu-

racy of measurements at a given frequency can be improved

by using a large number (up to several hundred or more) of

plane waves probing the test layer at different angles. One

of the important advantages of the proposed method is the

ability to accurately measure the absorption coefficient and

phase velocity in the near field of acoustic sources when
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using small samples. It should be also noted that in tradi-

tional approaches, the effects of near-field diffraction and

refraction at the sides of the layer can affect the accuracy of

measuring the absorption coefficient. Corresponding errors

are reduced by placing the hydrophone in the far field of the

source. In this case, the correction for diffraction and refrac-

tion can be made on the assumption of spherical divergence

of the wave.6 However, this approach becomes more diffi-

cult at high frequencies when a greater distance between the

source and receiver is required. The proposed method allows

measurements in the near field and naturally takes into

account the effects of diffraction and refraction.
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APPENDIX A: BEAM TRANSMISSION THROUGH AN
INCLINED LAYER

It is assumed that the axis of the acoustic beam is

directed close to the z axis of the positioner that is used to

measure the hologram. However, the orientation of a test

layer may not be exactly perpendicular to the axis z. We

will call this position inclined. Let n ¼ ðnx; ny; nzÞ be the

unit normal to the layer surface. In the case when the layer

is perpendicular to the positioner axis z, n ¼ ð0; 0; 1Þ.
Consider the passage of angular spectrum components

through a test layer, which in a liquid has the form of a plane

wave eik0�r with a wave vector k0 ¼ kx; ky; kzð
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 � k2
x � k2

y

q
Þ so that jk0j ¼ k0. We represent this wave

vector in the form k0 ¼ k? þ k
ð0Þ
k , where k

ð0Þ
k ¼ k

ð0Þ
k n is the

component directed along the normal, and k? is the tangent

to the surface of the component layer. After penetrating the

layer, the wave takes the form eik�r, where jkj ¼ k,

k ¼ k? þ kk, and k ¼ kn. Due to the boundary condition,

the tangent component of the refracted wave vector is the

same as the incident wave vector, whereas its normal com-

ponent is generally different. We rewrite the previously

obtained Eq. (12) using the notation introduced as

P kx; ky;xð Þ ¼ Tin�out e
i kk�k 0ð Þ

k

� �
H
; (A1)

where the transmission coefficient through two interfaces,

Tin�out, is expressed by Eq. (13) in which normal impedan-

ces, according to Eqs. (14) and (15), respectively, can be

written as Z0 ¼ q0x=k
ð0Þ
k and Z ¼ qx=kk. Therefore, Tin�out

is expressed through k
ð0Þ
k and kk. Now the propagator,

according to Eq. (A1), is completely determined by the

quantities k
ð0Þ
k and kk, which can be written as

k 0ð Þ
k kx;ky;xð Þ¼ n �k0¼ nxkxþnykyþnz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0�k2
x � k2

y

q
;

(A2)

kk kx; ky;xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

?

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

0 þ k 0ð Þ
k

2

q
: (A3)

These expressions generalize the definition of the propaga-

tor Pðkx; ky;xÞ to the case of an inclined orientation of the

test layer relative to the incident beam.

For a layer inclined at a slight angle, it is useful to

consider the form of the propagator at the position in the

angular spectrum that corresponds to the normal incidence.

This location can be expressed as ðkðnÞx ; k
ðnÞ
y Þ ¼ k0ðnx; nyÞ.

Introducing the shifts ~kx ¼ kx � kðnÞx and ~ky ¼ ky � k
ðnÞ
y , let

us consider the case of small shifts j~kx=k0j; j~ky=k0j � 1. In

the second order of smallness, the above definitions yield

the following expression for the tangential component of the

wave vector k?:

k2
? � ~k

2

x þ ~k
2

y þ nx
~kx þ ny

~ky

	 
2

=n2
z : (A4)

If we further consider that the slope is also small, i.e.,

jnxj; jnyj � 1, the last term in the right-hand side of

Eq. (A4) can be omitted, which provides k2
? � ~k

2

x þ ~k
2

y , i.e.,

the quantity k2
? for a slightly inclined layer is expressed by

the same formulas as in the case of the perpendicular

arrangement with the only difference being that the spatial

frequencies are shifted. Given that, now

k 0ð Þ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 � ~k
2

x � ~k
2

y

q
(A5)

and

kk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � ~k

2

x � ~k
2

y

q
; (A6)

it follows that in terms of the shifted spatial frequencies ~kx

and ~ky, the propagator for a slightly inclined layer (which,

as shown above, depends entirely on k
ð0Þ
k and kk) is

expressed by the same formulas as in the case of a perpen-

dicular arrangement.

Note that because the magnitude k2
? ¼ ~k

2

x þ ~k
2

y is zero

during normal incidence, according to Eqs. (17)–(21) at the

corresponding spatial frequencies ðkðnÞx ; k
ðnÞ
y Þ, the propagator

magnitude APðkx; ky;xÞ reaches its maximum, and the prop-

agator phase UPðkx; ky;xÞ reaches a minimum or maximum

(depending on the ratio of the speeds of sound in the layer

and the immersion medium). Accordingly, the frequencies

ðkðnÞx ; k
ðnÞ
y Þ can be readily identified in experimental data

from the two-dimensional distributions of the propagator

magnitude and phase at each frequency x within the mea-

sured bandwidth.

APPENDIX B: CALCULATION OF DISCRETE FOURIER
TRANSFORMS

The spectral transform, Eq. (3), takes the form of a dis-

crete Fourier transform
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P mð Þ rð Þ ¼ hte
imð2p=TÞt0

XN�1

n¼0

p nð Þ rð Þei2pmn=N: (B1)

Here, ht is the time discretization step, T ¼ Nht is the length

of the time window, N is the number of sampling points, t0

is the point in time corresponding to the beginning of the

time window. The original time signal and its spectrum are

associated with the corresponding discrete representations

as follows: pðr; tnÞ ¼ pðnÞðrÞ for tn ¼ t0 þ nht, where

n ¼ 0; 1;…;N � 1, Pðr;xmÞ ¼ PðmÞðrÞ for xm � 0,

Pðr;xmÞ ¼ PðmþNÞðrÞ for xm < 0, where xm ¼ mDx,

m ¼ �N=2;…; 0;…;N=2� 1, and

Dx ¼ 2p=T (B2)

is the sampling step on the cyclic frequency corresponding

to the periodization of the signal with a period T. The dis-

crete transform calculation, Eq. (B1), was performed using

the fast Fourier transform (FFT) algorithm.

Similar to the time sampling procedure described above

with respect to a signal at a given point, when scanning a

field with a hydrophone, the signal is also sampled by trans-

verse spatial variables. Consider in the plane of the holo-

gram z ¼ zH, a square scan region of size D� D such that

�D=2 
 x 
 D=2 and �D=2 
 y 
 D=2 (Fig. 2). The coor-

dinates of the points at which the signal is measured by the

hydrophone are recorded in the following form: x ¼ lxh,

lx ¼ �L=2;…; 0; 1;…; L=2� 1, y ¼ lyh, ly ¼ �L=2;…; 0;
1;…; L=2� 1, where L is the number of sampling points

along each direction, and h is the sampling step, i.e.,

D ¼ L h. The corresponding discrete values

P r;xmð Þ ¼ P lxh; lyh; zH;xmð Þ ¼ P
mð Þ

lxly
(B3)

allow one to write a discrete analog of Eq. (6):

S
mð Þ

jxjy
¼ h2

XL=2�1

lx¼�L=2

XL=2�1

ly¼�L=2

P
mð Þ

lxly
e�i 2p=Lð Þ jxlxþjylyð Þ; (B4)

where jx ¼ �L=2;…; 0; 1;…; L=2� 1, jy ¼ �L=2;…; 0;
1;…; L=2� 1. The quantities S

ðmÞ
jxjy

specify the initial angular

spectrum in a discrete set of frequencies,

S kx ¼ jxDk; ky ¼ jyDk; zH;x ¼ mDx
� �

¼ S
mð Þ

jxjy
; (B5)

where

Dk ¼ 2p=D (B6)

is the sampling step for spatial frequencies. As in the case of

the time discretization described previously, the formulas

written above represent the classical discrete Fourier trans-

form. Due to the periodicity of the discrete spectra,

P
ðmÞ
lx�L; ly

¼ P
ðmÞ
lx; ly�L ¼ P

ðmÞ
lx; ly

; therefore, summation in both

sums in Eq. (B4) can be carried out from 0 to L� 1, i.e., it

is possible to use the more familiar form of the discrete

Fourier transform.

In order to avoid clipping of the useful signal and the

effect of aliasing, the size of the spatial window was chosen

to exceed the diameter of the ultrasonic beam and was equal

to D ¼ 70 mm, and the step of shifting the hydrophone when

recording the hologram was h ¼ 0.5 mm. The number of

spatial steps in each of the transverse directions was

L ¼ 140.
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