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• A model explaining distinct mechanisms of the emergence of criticality is developed.
• All the mechanisms indicate spatial synchronization to be crucial for criticality.
• Purely random dynamics is shown to have nothing to do with critical behavior.
• Critical events of any nature are surmised to appear via one of the found mechanisms.
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a b s t r a c t

We study diverse mechanisms of the transition of stochastic dynamical systems to
critical states. We begin from employing two independent quantitative methods of
time series analysis, first-order detrended fluctuation analysis and multivariate canonical
coherence analysis, and investigate GPS data of land surface displacements. We find
out that there are two different mechanisms of the transition to criticality: the first
mechanism is consistent with that observed in some biological dynamical systems and
associated with a growth of the energies at low frequencies in the power spectrum,
whereas the second mechanism is new and governed by a decay of the energies at
high frequencies. Despite this difference, we show that both mechanisms lead to a loss
of chaoticity in the system’s behavior and result in a more deterministic evolution of
the system as a whole. Basing on these findings, we develop a multivariate stochastic
model that qualitatively explains both empirically observed mechanisms. The obtained
results allow to pose a hypothesis that, in spite of the spread understanding, in stochastic
dynamical systems of any nature the transition to a critical state is always realized
through a trending nonlinear process that has nothing to do with purely random
dynamics.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Identification of critical states in open stochastic dynamical systems, i.e. precatastrophic states on the eve of abrupt
essential changes—catastrophes—in the system’s evolution, is a crucial task in many practical applications. Such an
identification has to be done at an early stage in order for all possible measures could be taken to minimize, or even
avoid, negative consequences of the forthcoming critical event—the catastrophe.
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After the invention of self-organized criticality (SOC) in 1987 [1,2], critical events in complex stochastic dynamical
systems have often become qualitatively likened to sand avalanches occurring over the surface of a sand pile to which
one regularly adds grains, one by one, in a random manner. When the number of grains at a given point on the
surface exceeds a critical threshold, a sand avalanche—the critical event—of a certain size occurs. In SOC it is stated that
since the avalanches appear due to the random external actions, the criticality, as the system’s readiness to evince a
(pre)catastrophic behavior, is an unpredictably manifesting property of any stochastic system.

We only partly agree with such an understanding of critical phenomena.
Specifically, we admit that there may be reasonable grounds in favor of self-organization in complex systems indeed,

in the sense that the system’s numerous constituents, being exposed to the influence of random external forcings,
can hierarchically demonstrate sophisticated collective behaviors through nonlinear interactions between each other
at various spatial scales. In practice this is manifested in various self-similar (power-law-like) dependencies of the
observables indicating a persistent or an antipersistent character of the long-term dynamics of the system.

However, we do not share the opinion that the resulting critical events occur randomly and are thus unpredictable.
Although for every system there may be numerous random factors that participate in the preparation of a critical event,
SOC’s schema disregards the fact that during the accumulation of the influence of those factors (the ‘‘regular addition
of grains to the sand pile’’) the system may demonstrate certain detectable changes in its evolution until the critical
threshold is reached and the critical event occurs. From here it follows that, in our opinion, criticality is not an immanent
property inherent to complex stochastic systems. Instead, during the evolution each system transits back and forth
between noncritical (quiet, far from catastrophes) and critical (precatastrophic) states.

The point is that for a large number of real stochastic dynamical systems the governing equations of motion are
unknown, so that it only remains to statistically analyze historical records of the system’s evolution with the purpose
to find hidden regularities in the behavior. These regularities can serve as flags of the transition of the dynamical system
to a critical mode foregoing a catastrophe. The statistical investigation of the system’s historical records leads to time
series analysis methods.

For the last 20–25 years fractal analysis of time series has widely been employed in medical and biological applica-
tions [3–13]. Intensive research studies in finance based on fractal analysis methods have also been carried out [14–21].
A number of papers on geophysical applications, including those dedicated to the search for precursors of seismic
catastrophes, have been published [22–34]. Independently of the specific nature of a dynamical system, it has now become
a common point of understanding of critical events that the transition to a precatastrophic state can be realized either via
a growth of the energies at low frequencies in the power spectrum, thereby leading to a more deterministic behavior (the
1st mechanism), or via a growth of the energies at high frequencies, resulting in even a more chaotic dynamics (the 2nd
mechanism) [4,5,7,9,11]. The reason for such an understanding is a large amount of empirical evidence that when a system
is transiting to a critical mode, the statistical characteristic used to quantify its behavior, e.g. a detrended fluctuation
analysis (DFA) exponent, either increases—which really corresponds to a more deterministic regime of evolution, or
decreases—which is typical for a more chaotic behavior. However, in the recent paper [35], when analyzing a geophysical
dynamical system—the Earth’s crust, we encountered that it actually exhibits a yet another (the 3rd) mechanism of the
appearance of criticality: although the DFA-based exponent decreased, the influence of the energies at high frequencies
in the power spectrum also diminished, thereby leading to a more deterministic evolution. To the best of our knowledge,
such a mechanism of the transition to a critical state has not been observed in the previous studies.

In [35] the 3rd mechanism was only reported, but no theoretical explanation on its possible origins was given. The
aim of this study is to provide more insight on the possible origins of the emergence of the diverse mechanisms of the
transition of dynamical systems to critical states.

To this end, we first perform two independent types of stochastic analysis of geophysical time series recorded by GPS
stations and show that the new mechanism reported in [35] was not an artifact specific for a particular region (namely,
the Japanese islands) but it really takes place in the whole dynamical system—the Earth’s crust; besides, we demonstrate
that the 1st and the 3rd mechanisms lead to a decrease of the overall complexity of the system’s dynamics.

Next, having established the genuine diversity of the mechanisms of the emergence of criticality, we proceed to
theoretical analysis and suggest a vector autoregressive stochastic model that is shown to nicely simulate two of the
three previously reported mechanisms and yet covers both modes of evolution, critical and noncritical. In doing so, we
involve the approach invented by Haken [36] by supplying our model with control parameters responsible for the diversity
of modes of the system’s behavior. Furthermore, afterward we also pose a hypothesis that the commonly accepted
understanding of the transition to criticality via a growth of the energies at high frequencies resulting in a more chaotic
dynamics before a catastrophe—the 2nd mechanism—may be incorrect. In other words, we suggest that a purely random
process quantified by a decay of DFA exponents has nothing to do with critical behavior, and it is exactly a decay of the
energies at high frequencies, i.e. a more deterministic (or trending) process realized via the 3rd mechanism, that leads
systems to precatastrophic states.

The two qualitatively distinct kinds of changes with the energies at high frequencies both leading to a decrease of
the DFA exponents immediately raise an important question on the number of crossovers in the power spectrum that,
in our opinion, has been overlooked in the previous studies. We show that the decay of high frequencies’ energies is
accompanied with a greater number of crossovers, and this is exactly the case reported in [35]. We hypothesize that the
same, nonlinear, more trending behavior rather than white-noise-like dynamics takes place on the eve of catastrophes in
biological dynamical systems as well.
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The paper is organized as follows. In Section 2 we first briefly introduce the general idea of fractal analysis of time
series and then apply it to quantify the behavior of land surface displacements in California and Japan, using some GPS
data from our recent studies. We come to a preliminary conclusion that the overall chaoticity (or complexity) of the
dynamical system in a critical state always decreases, which must be reflected in a growth of collective behavior of the
system as a whole. In Section 3 we verify that supposition on the same real data using canonical coherence analysis. In
Section 4 we develop a stochastic model which explains both previously reported mechanisms by allowing to simulate
various types of critical and noncritical dynamics depending on the values of control parameters. In Section 5 we outline
a plan for future research. In Section 6 we conclude the paper.

2. Fractal analysis of time series

Let {∆xk}Nk=1 be a finite sample of a time series of increments of a quantity x(t) defined on the interval [t0, tN ] with
the constant time step ∆t = tk − tk−1. Depending on the application the quantities x(t) and ∆xk have specific physical
meanings, e.g. for GPS time series x(tk−1) is the coordinate of a given point of the land surface at the time moment
tk−1, while ∆xk is, up to the factor 1/∆t , the velocity of the displacement of that point from x(tk−1) to x(tk) over the
corresponding time interval [tk−1, tk].

Fractal analysis of time series implies introducing the quantity j ≥ 1 called ‘scale’ and subsequent partitioning the time
interval [t0, tN ] into several adjacent segments of the size 2j∆t , so that the number of the segments is n =

N∆t
2j∆t . Then at

each scale j we can define the measure of chaoticity of the system’s evolution on the interval [t0, tN ] as follows

D =
lnµ(j + ∆j) − lnµ(j)

ln(j + ∆j) − ln j
. (1)

Here the quantity µ(j) is the data measure at the scale j, while ∆j is the scale increment. For the data measure in (1) it
holds

µ(j) =

[
1
n

n∑
k=1

(
R(j)
k

)q
]1/q

, q ≥ 1, (2)

where

R(j)
k =

[
1

N/n
∥r (j)

k ∥
p
p

]1/p

, p ≥ 1. (3)

The parameters p and q are considered to be fixed, and they solely define a concrete pair of norms. Usually one takes
p = q = 2 or p → +∞, q = 1, although other values can also be used. For the components of the vector r (j)

k =
{
r (j)k,m

}
different formulas can be employed. A typical choice is

r (j)k,m =

m∑
i=1

(
∆x(k) − ∆x(k)i

)
, m = 1, . . . ,

N
n

, (4)

where

∆x(k) =
1

N/n

N/n∑
i=1

∆x(k)i (5)

and

∆x(k)i = ∆xl, l = (k − 1)
N
n

+ i, (6)

which yields the conventional first-order detrended fluctuation analysis (DFA) method [37]. For the measure of chaoticity
D computed via (4) the notation HDFA is used.

Because the measure of chaoticity is a function of the time series {∆xk}, depending on the measure’s values the entire
evolution of a dynamical system can be classified into critical and noncritical states via processing the time series in a
moving window of the length N and subsequent analyzing the evolution of the measure of chaoticity.

Remark 1. By calling D the ‘‘measure of chaoticity’’, we follow [38] where the ‘‘norm of chaos’’ was introduced
to differentiate between degradation and self-organization processes in open stochastic systems (see also [39]). This
parameter should not be considered as a measure of deterministic chaos nor does it have any relation to the Lyapunov
exponents that usually appear when studying nonlinear but purely deterministic dynamical systems. We emphasize that
the measure of chaoticity D is aimed to quantify persistence/antipersistence in stochastic dynamical systems, that is
the systems whose (often unknown) equations of motion contain both a deterministic and a random (stochastic) terms.
Therefore, it can also interchangeably be called the ‘‘measure of complexity’’ (see, e.g., [7,9]). ■
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Recently the first-order DFA was modified: in [40] it was shown that if instead of (4) one assumes m = 1, . . . , N
n + 1

and takes

r (j)k,m =
1
2

⎛⎜⎝m+
N
2 +j−1∑

i=m+
N
2

∆x(k)i −

m+
N
2 −1∑

i=m+
N
2 −j

∆x(k)i

⎞⎟⎠ , (7)

then the resulting measure of chaoticity will provide a higher (up to 50%) accuracy of discrimination of critical and
noncritical states of a dynamical system. The physical meaning of the difference of the two sums in (7) is the pure
acceleration (at the node m within the segment k, at the scale j), while the meaning of the expression (4) is a mixture of
velocities and accelerations. Since the modified method is superior over the conventional DFA, in this work we will use
the measure of chaoticity computed via (7), and will be denoting it as H̃DFA. More details on the comparison of the two
methods can be found in [40].

We have applied the developed measure of chaoticity H̃DFA to the time series of GPS displacements of the land surface
in Japan and California, preliminarily filtered from various kinds of non-tectonic perturbations such as orbital errors,
atmospheric disturbance, temperature fluctuations etc., and available at the Nevada Geodetic Laboratory [41]. The time
series were processed in a moving window of the length N = 8192 records (28.4 days) with a time shift 288 records (one
day). For the norms in (2)–(3) we had p → +∞, q = 1, while the scales varied exponentially from j = 1 to j = 2048
as j = N2−(i+1), where i = 1, . . . , 12 was the scale index. Detailed analyses of current seismic hazards with full-color
maps of both regions can be found in [35,42]. Here, as a basis for the subsequent topic-independent analysis, we merely
provide typical results of the data processing from some GPS stations.

Specifically, the stations J172 and J203 (the Tohoku region, Japan) are located in the areas where earthquakes of the
moderate to large magnitudes 6.1 to 6.9 occurred in 2016 [43], while the stations J866 and J105 (northern part of Hokkaido
island, Japan) are located in seismically quiet areas [35]. This difference in the seismic activity is clearly seen in Fig. 1:
the power spectra of the J172 and J866 northward component time series coincide only at high frequencies, while at low
frequencies the spectrum’s energies are greater in the critical state; on the other hand, the power spectra of the J203
and J105 upward component time series coincide at low frequencies, whereas at the middle and high ones the energies’
influence in the critical state is smaller compared to the noncritical state. These changes of the power spectra taking
place in the critical states result in the appearance of crossovers—the critical (or boundary) frequencies ωB that separate
the two parts of the spectra. The fractal measure of chaoticity H̃DFA allows to quantify the difference between the critical
and noncritical states, as shown in the graphs of the data measure µ(j) against the scale j: according to (1), the quantity
H̃DFA is the slope of the straight line in the corresponding log–log plot. Due to a linkage between the spectral and fractal
approaches, the critical frequency ωB in the power spectrum results in the emergence of the critical scale jB =

1
2ωB

, i.e.
the border between the two parts of the scale range that separates the major and minor scales, in which the quantity
H̃DFA has different values [35,42].

Analogous results were obtained for California [42]. In order to visualize the difference between critical and noncritical
states in an even more obvious manner, in Fig. 2 we show power spectra for a single GPS station (P305, about 70 km
north-west of Fresno) which was experiencing both states during the period from January 2015 to June 2016. As it is
seen, in the seismically quiet (noncritical) state the power spectrum demonstrates a rather small change of slope at
the critical frequency ωB; in turn, the measure of chaoticity at the critical scale jB changes insignificantly, from 0.955
(at the minor scales) to 1.051 (at the major scales) [42]. However, in the seismically active (critical) state the power
spectrum’s slope changes substantially, following the measure of chaoticity’s essential change from 0.976 to 0.356. An
evident crossover appears between the low and middle frequencies at ωB ≈ 0.01, thereby making the spectrum flatter in
the range 0.01 . . . 0.04 when the system is in the critical regime, while in the noncritical mode the crossover is harder to
recognize—the spectrum is nearly a straight line close to a power law (see also the spectra in Fig. 1, bottom).

From Fig. 2 an important qualitative observation can be made. In the bottom plot we show the relation between the
power spectra in the noncritical and critical modes. Remarkably, despite the decrease of the measure of chaoticity at the
major scales in the critical regime from 1.051 to 0.356, the power spectrum at the low frequencies remains unchanged
compared to that in the noncritical state—the ratio between the energies is close to 1. Instead, we see that due to the flat
part of the spectrum between ω ≈ 0.01 and ω ≈ 0.04 the influence of the middle and high frequencies in the critical
state decreases—the ratio is several times greater than 1. Consequently, when the system transits from the noncritical to
the critical regime, the ratio between the energies of the low and high frequencies grows, similarly to how it would do if
the measure of chaoticity in a critical regime increased and the influence of low frequencies in the power spectrum grew
leaving the energy at high frequencies unchanged, as it normally occurs in some biological dynamical systems (e.g., heart
rate dynamics [10,11]) and in horizontal GPS land surface displacements (Fig. 1, top). The same effect takes place for
upward GPS data recorded in Japan (Fig. 1, bottom) and other regions of the planet [35]. This observation suggests that
the overall chaoticity (or, as it is also referred to, complexity [7,9]) of the system’s behavior in a critical mode always
decays independently of the specific mechanism of the transition to criticality.
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Fig. 1. In the top—power spectra of the northward component of the time series of increments between {∆xk} of the Japanese GPS stations J172
(critical state) and J866 (noncritical state) (first plot) and the corresponding dependencies of the data measures µ(j) on the scale j (second plot); in
the bottom—similar outcomes for the upward component of the stations J203 (critical state) and J105 (noncritical state). The vertical dashed lines
mark the crossovers—the critical frequencies ωB and critical scales jB . Different values for H̃DFA at the major and minor scales are due to the different
slopes of the straight lines at both sides of jB .
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Fig. 2. Power spectra of the upward component of the time series of increments between {∆xk} of the U.S. GPS station P305 at two different states
of the system’s behavior (top) and the ratio between the spectra (bottom) at N = 2048. The vertical dashed line marks the critical (or boundary)
frequency ωB .

3. Canonical coherence analysis of time series

Let us note that the decay of chaoticity in a dynamical system is equivalent to the growth of collective behavior between
its nearby parts [44]. Hence, the empirically observed loss of complexity should result in a more synchronized evolution of
time series recorded at neighboring GPS stations. This consideration suggests that an appropriate method of multivariate
analysis would allow to properly distinguish seismically active and quiet areas (or critical and noncritical states) by means
of investigation of mutual spectral properties of the time series.

Canonical coherence analysis (CCA) is a suitable tool for this task. It is based on the same idea as canonical correlation
analysis [45], except that the coherence coefficient is calculated for the Fourier-transformed data (i.e. in the frequency
domain) rather than for the original time series (supplied in the time domain) [46]. In the special case of bivariate time
series canonical coherence analysis reduces to the well-known magnitude-squared coherence technique that implies the
study of the power cross-spectrum of two scalar (univariate) time series [47]. The coherence coefficient characterizes the
presence of harmonics common to all the time series, and it can informally be thought of as the correlation coefficient
between the multivariate data at a given frequency.

Let {∆xk}Nk=1 = {(∆x(1)k , . . . , ∆x(p)k )}Nk=1 be a finite sample of a p-variate time series. According to the canonical
coherence analysis method, the number

cl(ω) =
S∗

∆x∆x(l)
S−1
∆x∆xS∆x∆x(l)

S∆x(l)∆x(l)
(8)

is the partial coherence coefficient between the (p − 1)-variate time series {(∆x(i)k )}, i ̸= l, and the univariate time series
{∆x(l)k } at the frequency ω [25]. In (8) S∆x∆x is the (p−1)×(p−1) matrix whose elements sij(ω) are the power cross-spectra
of the scalar time series {∆x(i)k } and {∆x(j)k }, S∆x∆x(l) is the (p − 1) × 1 matrix with the elements power cross-spectra of
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the scalar time series {∆x(i)k } and {∆x(l)k }, S∗

∆x∆x(l)
is its conjugate transpose and S∆x(l)∆x(l) is the power spectrum of the lth

variate at the frequency ω. The superscript ‘−1’ prescribes to take the inverse matrix. Note that an essential requirement
of using CCA is stationarity of the time series. In order to satisfy this condition, before using formula (8) we pass from
the velocities {∆xk} to the accelerations {∆(∆x)k} naturally defined as

∆(∆x)(i)k = ∆x(i)k+1 − ∆x(i)k , i = 1, . . . , p, (9)

so that the subsequent canonical coherence analysis is performed with respect to the quantities (9). (Observe that DFA-
based methods intrinsically incorporate similar procedures, e.g. through (4) or (7), which makes those methods applicable
for studying nonstationary time series as well.)

In order to determine the mutual coherence coefficient between all the univariate time series, we apply (8) for
computing the partial coherence ci between every single variate and the remaining p− 1 time series, and then introduce
the quantity

C(ω) =

p∏
i=1

ci(ω). (10)

Since all the partial coefficients ci ∈ [0, 1], the same holds for (10). Furthermore, due to the multiplication of the partial
coefficients, the values of C(ω) at the frequencies that are not common for all the scalar time series will decay, providing
maximum only for the frequencies common for all the p variates [25–27,32].

With the aim to verify the preliminary conclusion made in Section 2 that the overall complexity in a critical state always
decreases, we have applied CCA to compute the mutual coherence between several univariate time series produced by five
GPS stations closest to a given spatial point. Each of the time series was transformed using (9) and then processed through
(8) (for estimating the spectra we employed Welch’s method [48]) in a moving window of the same length and time shift
as in Section 2. At every time shift we thus calculated a coherence spectrum (10) that quantified the degree of spectral
similarity (or synchronization) between the scalar time series at the corresponding time moment. Subsequent averaging
of the resulting spectro-temporal field over the whole time period yielded the mean coherence spectrum between the
GPS stations’ data. The closer the spectrum’s value to 1 at a certain frequency, the more coherent the scalar components
of the multivariate time series, and hence the more synchronized temporal behavior of the system in the nearby spatial
area takes place.

We have analyzed several groups of time series from areas in the Japanese islands and California exhibiting diverse
degrees of the seismic hazard. As in the previous section, we used the results of [35,42] and selected GPS data that
corresponded to horizontal and vertical motions of the Earth’s crust in seismically active and quiet areas. For the former
we investigated areas around Los Angeles, the Tohoku region and Shizuoka Prefecture; for the latter we considered areas
in the northern part of Hokkaido island and between the cities of Fresno and Bakersfield. The resulting mean coherence
spectra are shown in Fig. 3. As it is seen, independently of the region of the planet—and more, regardless of the specific
mechanism of transition to criticality,—the critical regimes are accompanied with a growth of the mutual coherence
between the univariate time series from the neighboring GPS stations. It is crucial to emphasize that the growth occurs
in a wide frequency range, embracing low frequencies (roughly, including ω < 0.05). If this was not so, i.e. if the growth
of coherence was observed at high frequencies only, then one could argue that the transition to criticality goes in parallel
with an increase of the overall chaoticity of the system. However, it is exactly at the middle and especially at the low
frequencies that the mutual coherence in the critical state exceeds that in the noncritical regime. Consequently, not only
the increase of collective behavior is caused by the synchronized motions of the closely located parts of the dynamical
system, but in both types of critical regimes we are observing a more deterministic, or, equivalently, less chaotic behavior.

4. Multivariate stochastic model for critical and noncritical states

The obtained results impel to design a multivariate evolutionary model that would provide an explanation to the
two mechanisms of transition of dynamical systems to critical modes. In other words, we intend to gain insight into
how exactly spatial synchronization leads to the appearance of critical phenomena. With this purpose consider a vector
autoregression model of order q (VAR(q)-model) of the form

zk =

q∑
l=1

Alzk−l + ek. (11)

Here {zk} ≡ {∆(∆x)k} is the p-variate time series, Al = (aij,l) are the regression matrices of the size p× p that determine
the auto- and cross-regressions at the time lags l between the scalar components {z(i)k } and {z(j)k } of the vector time
series {zk} = {(z(1)k , . . . , z(p)k )}, while the vector {ek} = {(e(1)k , . . . , e(p)k )}’s elements are uncorrelated normally distributed
errors [49]. We introduce mutually independent univariate time series {ẑ(i)k } with the scaling behavior of the power spectra
as a blue noise (∼ ω1), and define the matrices Al via the autocorrelation coefficients

rii,l =

1
N

∑
k

(
ẑ(i)k − ẑ

(i))(
ẑ(i)k+l − ẑ

(i))√
1
N2

∑
k

(
ẑ(i)k − ẑ

(i))2 ∑
k

(
ẑ(i)k+l − ẑ

(i))2
,
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Fig. 3. Mean coherence spectra of five univariate time series of increments between {∆xk} from GPS stations in the USA (top) and Japan (middle
and bottom) at different system states.

i = 1, . . . , p, l = 0, . . . , q, (12)

completed with a tuning of the cross-correlations either as

rij,l = rii,l, i ̸= j, l = 0, . . . , q, (13)

or as

rij,l = rii,l

(
1 −

l
q

)
, i ̸= j, l = 0, . . . , q, (14)

through the subsequent multivariate Yule–Walker procedure (see, e.g., [48]) additionally supplied with the mutual
coherence coefficient C ∈ [0, 1] as

aij,l = (1 + (C − 1)(1 − δij))aYWij,l , (15)
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where δij is the Kronecker delta, aYWij,l are the Yule–Walker estimates of the regression coefficients dependent on rij,l. Unlike
(10), the quantity C in (15) is simply a number rather than a function of frequency; it is a control parameter (in the sense
of [36]) that determines the regime of evolution of the dynamical system. Setting different values for C allows to generate
univariate time series {z(i)k } with an arbitrary mutual coherence. Indeed, under i = j it holds aij,l = aYWij,l , while under i ̸= j
we obtain aij,l = CaYWij,l . Consequently, if C ≈ 0 then aij,l ≈ 0, i ̸= j, and hence the matrices Al are close to diagonal, which
yields nearly noncoherent univariate time series—the dynamics of each component {z(i)k } is determined mostly by its values
at the previous time moments z(i)k−l, and hence {z(i)k } are the VAR(q)-versions of the original time series {ẑ(i)k } corresponding
to a noncritical state of the system; however, if 0 < C ≤ 1 then due to (13)–(14) the cross-regression coefficients aij,l,
i ̸= j, are essentially nonzero, and hence the evolution of every univariate time series {z(i)k } is additionally governed by the
other components’ values z(j)k−l, i ̸= j, which makes the scalar components {z(i)k } and {z(j)k } mutually coherent, i.e. simulating
a critical state.

The core of our model is the tuning of the originally zero cross-correlation coefficients rij,l, i ̸= j, using (13)–(14) and
the subsequent correction of the corresponding cross-regressions aij,l, i ̸= j, using the control parameter C in (15). These
operations are dictated by the earlier observed connection between the loss of chaoticity (which, as we saw in Fig. 3, is
accompanied with higher values of the mutual coherence) and the synchronized motions of closely located parts of the
dynamical system (which is simulated by the cross-correlations of the univariate time series).

Remark 2. As the control parameter that determines the mutual coherence of the univariate time series, C may, actually,
directly affect the cross-correlation coefficients rij,l, i ̸= j, rather than be applied to the corresponding cross-regressions
aij,l, i ̸= j, after the Yule–Walker procedure as suggested in (15). However, if instead of (13)–(15) we straightforwardly
defined rij,l = Crii,l or rij,l = Crii,l

(
1 −

l
q

)
, i ̸= j, and afterward computed all aij,l using the Yule–Walker method, then

under C ≈ 0 the computation of aij,l, i ̸= j, would generate a numerical exception due to the appearance of singular
matrices. Therefore, we take into account the control parameter C after the Yule–Walker method via formula (15), which
is possible due to a linear dependence between the coefficients rij,l and aij,l. ■

The physical meaning of formulas (13)–(14) can be understood from the schemas shown in Fig. 4. The modulus of
the correlation function shown in blue (left plot, solid curve) corresponds to the noncritical regime of evolution. In this
mode the autocorrelation coefficients’ absolute values |rii,l| are large at the small time lags (l ≈ 0) and properly decay
while the time lag is increasing (l ≫ 0), which results in the power spectrum of the blue noise (right plot, blue solid
line ∼ ω1), with smaller energies at low frequencies and larger energies at the high ones. If a critical mode occurs
in the way (13)—the cross-correlation function in the absolute value identically coincides with the magnitude of the
autocorrelation in the noncritical mode (left plot, Mechanism 1 red solid curve),—then the power spectrum’s energies
additionally increase compared to the blue noise’s spectrum over the whole frequency range (right plot, Mechanism 1
red solid line). In this way Mechanism 1 of the loss of chaoticity (the 1st mechanism from Introduction) is realized (cf.
Fig. 1, top), with the single boundary frequency ωB ≈ 0.1. However, if a critical state occurs in the way (14), then the
cross-correlation function’s magnitude is suppressed at large time lags—under l ≫ 0 |rij,l| ≈ 0, i ̸= j (left plot, Mechanism 2
red solid curve),—and therefore, because large l’s correspond to low frequencies, the growth of the energies in the power
spectrum at low frequencies is not significant compared to the blue noise’s spectrum (right plot, Mechanism 2 red solid
line). Here a yet another boundary frequency appears, ωB ≈ 0.03. Because for fractal analysis the absolute value of a power
spectrum’s energy is not important and only its shape counts, we can mentally perform a parallel shift of the resulting
power spectrum downward (marked by the dotted arrow on the right plot). As a result, it will match the noncritical’s
at the low frequencies, but the parts belonging to the middle and high frequencies will get moved below. Consequently,
the influence of the middle and high frequencies gets diminished, and in this way Mechanism 2 of the loss of chaoticity
(the 3rd mechanism from Introduction) is implemented (cf. Fig. 1, bottom, and Fig. 2, where the more evident boundary
frequency is at ωB ≈ 0.01, while the other is at ωB ≈ 0.04 (not marked)). For the sake of giving a reference we also
reproduce the case of the white noise ∼ ω0: the autocorrelations coefficients rii,l are then all zeros except that at l = 0
and the resulting power spectrum is of low energy and flat over the entire frequency range (shown by the blue dashed
lines in both plots).

In numerical experiments with model (11)–(15) we took p = 3, q = 64 and first simulated three mutually independent
blue noises, {ẑ(1)k }, {ẑ(2)k } and {ẑ(3)k }, of the length N = 2048 records each. After that we calculated their autocorrelation
coefficients using (12) and modified the cross-correlations either as (13) (Experiment 1) or as (14) (Experiment 2). Then
we applied the multivariate Yule–Walker method to find aYWij,l , computed aij,l via (15) with two different values of C, one
zero and the other not, and generated {zk} using (11). Therefore, the resulting VAR(q)-based univariate time series {z(i)k },
i = 1, 2, 3, were either noncoherent or coherent, depending on the parameter C. In Figs. 5–6 we plot the power spectra
of the simulated time series {z(2)k } under C = 0.5 (critical mode) and C = 0 (noncritical mode). The power spectra of the
time series {z(1)k } and {z(3)k } are similar and not shown. We see that formula (13) nicely describes the case of growth of
the energies at low frequencies, thus really simulating Mechanism 1 of emergence of a critical state. In its turn, formula
(14) provides an outcome analogous to that shown in Fig. 2, that is it corresponds to the case of decay of the energies at
high frequencies and therefore explains Mechanism 2 of the loss of complexity reported in Section 2 indeed. In Fig. 7 we
also depict the coherence spectra C(ω) of the simulated time series {z(i)k }, i = 1, 2, 3, in both regimes. Comparison with
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Fig. 4. Qualitative schemas of the absolute values of the correlation functions in diverse modes of the system’s behavior (left) and the corresponding
power spectra (right) for the autoregression model (11)–(15). In both plots, the colored curves or lines running parallel one to another in fact
coincide, but for the sake of clarity they are drawn with tiny gaps. The vertical dashed black lines on the right schema mark the critical frequencies
ωB . See a detailed description in the main text.

Fig. 3 demonstrates that the suggested model reproduces qualitatively the same kind of change of the mutual coherence
spectra between the scalar components of the multivariate time series: the transition to a critical state results in a growth
of C(ω) over the frequency range, especially dominant at the frequencies ω < 0.1.

Remark 3. Comparison of Fig. 7 with Fig. 3 also reveals that in reality the noncritical mode of evolution still implies the
presence of small nonzero cross-regressions aij,l, i ̸= j, between the univariate time series {z(i)k } and {z(j)k }—otherwise in
Fig. 3 we would observe the mutual coherence spectra C(ω) ≈ 0.1 over the entire frequency range, including ω < 0.1,
as in Fig. 7. This evinces that the scaling behavior of the model power spectra ∼ ω1 over the whole frequency range
in a noncritical state is, strictly speaking, an idealization, and a slight deviation from the straight line in the log–log
plot, together with a boundary frequency ωB, should be present. This finding is consistent with the observation made in
Section 2 about the values of H̃DFA in Fig. 2 at the major and minor scales: in the noncritical regime the values on both
sides of the boundary scale jB do differ one from the other (1.051 vs. 0.955), although that difference is not as big as in
the critical mode (0.356 vs. 0.976). ■

Figs. 5–7 are an evident proof of the importance of spatial synchronization as a driving force of the loss of chaoticity and
emergence of critical states followed by catastrophes in dynamical systems. Hence, the mutual coherence, as a measure
of the spatial synchronization, can be considered as a quantitative flag of a forthcoming catastrophe.

5. Remarks for future research

The VAR(q)-model (11)–(15) qualitatively explains both mechanisms of the transition to critical states that we
observed when processing the real time series, as well as accounts for both regimes of evolution, critical and noncritical.
Nevertheless, it is merely an intermediate solution between what statistical physicists nowadays mainly have—purely
quantitative stochastic methods, such as the (uni- or multifractal) DFA techniques, that do distinguish critical and
noncritical states of dynamical systems but provide no explanation on the possible origins of that difference—and what
they eventually desire to have—the adequate equations of motion which would fully describe the systems’ behavior in all
possible aspects. The reason why we decided to employ linear vector autoregression is that it is an apt tool for studying
the influence of spatial synchronization on the appearance of critical phenomena via cross-correlation coefficients of the
univariate time series. Most likely, in reality a more complicated mechanism of the loss of chaoticity compared to (13)–(14)
takes place.
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Fig. 5. Power spectra of the univariate time series {z(2)k } simulated by the VAR(q)-model in Experiment 1 (formula (13)) at two different states of
the system’s behavior (top) and the ratio between the spectra (bottom). Cf. Fig. 1, top.

In this connection, the growth of the number of crossovers in the power spectrum under Mechanism 2 indicates there
are more complex interactions between the system’s constituents than under Mechanism 1. This suggests that higher-
order detrended fluctuation analysis methods could be useful for further investigating the role of spatial synchronization
in stochastic dynamical systems [37,50]. In particular, currently we are investigating geophysical time series produced by
seismometers with the sample rate 1 Hz. We have found out that at the very small time scales (approx. less than five
minutes) the dynamics of the Earth’s crust evinces a much more nonlinear behavior before critical events, with multiple
crossovers, so that higher-order DFAs are the tools that may help properly quantify it.

Having said all that, as a concluding important remark we would also like to pose a hypothesis aimed to stimulate
further studies in the field of stochastic dynamics and critical states of complex systems.

As it is known, in a number of applications (e.g., heart rate dynamics of people with atrial fibrillation, gait dynamics
of people with Huntington’s disease, among others) DFA-based measures of chaoticity at major scales, similarly to what
we reported above for upward GPS displacements, are observed to decrease to ≈ 0.5, which is nowadays commonly
interpreted as the transition to criticality via a nearly random process, i.e. through a more chaotic behavior (the 2nd
mechanism from Introduction)—see, e.g., [5,7,9]. However, as far as we know, for those applications the question of
the structure of the power spectra of the original (not randomly shuffled) time series was not directly investigated.
We think, a special research on this issue would clarify the situation, but until then the general observations on the
mathematical similarity of the mechanisms of evolution of various stochastic dynamical systems permit us to speculate
that the mechanism of the transition to critical states in those applications may be the same as that described above for the
vertical GPS displacements, i.e. the 3rd mechanism from Introduction, or Mechanism 2 from Section 4. Besides, one must
not fail to bear in mind that although for a truly random process DFA-based methods are known to produce the chaoticity’s
estimates close to 0.5, the converse must not necessarily hold, and due to the multiple crossovers it does not indeed, as
we showed in the previous sections. These observations allow to make a preliminary conclusion that independently of the
nature of a dynamical system the transition to criticality always results in a more deterministic (trending) behavior because the
ratio between the energies at low and high frequencies grows anyway, solely one or another mechanism of transition is
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Fig. 6. Power spectra of the univariate time series {z(2)k } simulated by the VAR(q)-model in Experiment 2 (formula (14)) at two different states of
the system’s behavior (top) and the ratio between the spectra (bottom). Cf. Fig. 1, bottom, and Fig. 2.

realized yielding either an increase or a decrease of the measure of chaoticity. In other words, no evolution toward simple
randomness takes place even if the measure of chaoticity decays, and a sophisticated mechanism of nonlinear interactions
between the harmonics of different wavelengths likely governs the critical phenomenon. Perhaps, such a mechanism may
be related to the nonlinear energy cascades observable in the power spectra of the quantities describing turbulent fluid
flows [51]. Anyway, if a future research reveals the same transformation of the structure of the power spectrum for the
previously studied biological dynamical systems, that will not affect those studies’ practical outcomes but confirm our
hypothesis and assist better understanding of the emergence of critical phenomena; otherwise, that will disprove our
supposition but simultaneously stress that vertical movements of blocks of the Earth’s crust exhibit a new mechanism of
transition to critical states that has not been previously reported.

6. Conclusion

We have investigated diverse mechanisms of the transition of stochastic dynamical systems to critical states that had
been reported in previous studies. With this aim we employed two independent quantitative methods of time series
analysis, first-order detrended fluctuation analysis and canonical coherence analysis, and analyzed GPS data of land surface
displacements. We found out that there are two different mechanisms of the transition to criticality: the first mechanism
is the same that the one observed in some biological dynamical systems and associated with a growth of the power
spectrum energies at low frequencies, whereas the second mechanism is new and governed by a decay of the energies at
high frequencies. We showed that both mechanisms lead to a loss of chaoticity in the system’s behavior and result in a
more deterministic evolution of its neighboring parts. Afterward we developed a vector autoregression stochastic model
that qualitatively explains both empirically observed mechanisms, and, given the idea of mathematical similarity of the
evolutionary mechanisms in dynamical systems of diverse nature, posed a hypothesis that in any system the transition
to a critical state is always a trending nonlinear process having nothing to do with purely random dynamics. Further
research efforts are needed to either confirm or disprove the hypothesis posed.
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Fig. 7. Coherence spectra of the three univariate time series, {z(1)k } to {z(3)k }, simulated by the VAR(q)-model under the mechanisms (13) (top) and
(14) (bottom) at different system states.
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