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Introduction 
 
The IAHR symposium on ice is a biannual conference covering engineering and research on 
ice in fresh and salt water. The conference was first arranged in Reykjavik, Iceland in 1970. 
The 25th conference was planned for Trondheim, Norway in June of 2020, but due to the 
Covid19 pandemic it was arranged as a virtual conference in November of 2020. The 
conference gathered 105 participants and 87 papers were submitted and peer reviewed for 
the technical sessions of the conference. In addition, two plenary key note lectures were 
given covering the challenges of hydropower operation in the arctic and the history of ice 
research in Norway. 
 
The technical sessions covered a range of topics within research on ice processes, utilisation 
of remote sensed data and engineering aspects related to ice jams, loads on structures and 
hydropower operation in fresh water and ships, floaters and fixed structures in coastal areas 
and on the ocean. All presentations and discussions were carried out live on a digital 
platform, and this fostered many interesting exchanges of information across countries and 
time zones. 
 
The IAHR Ice Symposium were arranged by financial support from the Norwegian Research 
Council and the Norwegian University of Science and Technology. We gratefully 
acknowledge the support received to arrange the conference. The organising committee 
also wishes to thank the NTNU Centre for Continuing Education and Professional 
Development for support with the administration and technical arrangement. The transition 
from a traditional conference to a virtual meeting could not have been done without this 
support. 
 
The organizing committee also want to thank the scientific committee for handling the peer 
review of the papers, the reviewers of the papers and not the least all authors and 
conference participants who made this event possible. 
 
 
Knut Alfredsen 
Chairman of the organizing committee. 
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Ice gouging is mechanical plowing of bottom ground by ice features. Hydrometeorological 
conditions, changing from year to year, determine the intensity of ice features (ice 
hummocks, ice ridges and stamukhi) formation. In this paper, we consider the conditions of 
the ice gouging of the Northern Caspian seabed by ice features in winters of various severity. 
We used the cumulative freezing-degree days (CFDD) over a winter period as a criterion for 
dividing winters by severity. We used data from several nearshore meteorological stations to 
divide them into mild, moderate and severe. The analysis, based on aerial reconnaissance and 
modern satellite data, showed the variability of the number of stamukhi, their distribution and 
depths of grounding over recent years. We created charts of different ice gouging intensities 
for the different types of winters. The charts are consider not only analysis of stamukhi 
distribution, but also ice cover dynamics, typical position of fast ice rim and features of the 
bottom topography. The charts showed changes in the conditions of ice gouging at the 
Northern Caspian from year to year. The results allowed estimating the influence of the 
winters severity on the intensity of the ice features formation and ice gouging in different 
years. The results of this study must be considered when conducting economic activities in 
the Northern Caspian. 
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1. Introduction 
The Caspian Sea is partially freezing every year. The ice conditions of the Caspian Sea are 
complex and variable. They vary from year to year depending on hydrometeorological 
conditions. The ice conditions determine the number and spatial distribution of ice features 
(ice ridges, hummocks, etc.). Ice features are a factor of the bottom microtopography 
dynamics. Grounded hummocks, named stamukhi, can move and plow the bottom. Ice 
gouging (ice scouring) is the process of mechanical plowing of the bottom ground by ice, 
associated with the ice cover dynamics, acting under the influence of hydrometeorological 
factors and the topography of the coastal zone (Ogorodov, 2011). Information on the 
stamukhi distribution and ice gouging processes is most important for pipeline design from 
offshore structures to shore, marine operations, including tracing and navigation of ships and 
air-cushion vehicles during the period of ice formation and melting. Along with changes in 
ice conditions in the Northern Caspian, the conditions for the ice gouging of the bottom by 
ice features change from year by year. 
 
Earlier P.I. Bukharitsin (1984) suggested that the largest number of ice features form in 
moderate (normal) winters. The first chart of intensity of ice gouging by ice features in the 
Northern Caspian was created by Ogorodov (2017). Climate change should be considered 
when studying the conditions of bottom gouging by ice features. Under the conditions of 
climate warming, the character and intensity of ice impact on the coasts and seabed change 
significantly (Ogorodov et al., 2018). Due to the decrease of the ice thickness, ice ridging 
increases. The width and stability of fast ice also become lower. We analyzed the 
hydrometeorological conditions in the Northern Caspian and created charts showing how the 
ice gouging conditions vary depending on the severity of winters. 

2. Materials and methods 
 
Ice scours at the Northern Caspian were first discovered by B.I. Koshechkin (1958). The 
scientific research of the ice scours and gouging started along with exploration of oil deposits 
on the shelf (Ogorodov, Arkhipov, 2010). Now many researchers, prospectors and 
stakeholders pay attention to ice gouging processes (Ogorodov et al., 2019; Sigitov et al., 
2019). 
 
Ice conditions in the Northern Caspian strongly depend on the thermal type of winter 
(Kouraev et al., 2004). We classified winter seasons of the Northern Caspian by their severity 
to show, how ice-gouging conditions change depending on meteorological conditions. This 
classification reflects the interannual dynamics of winter temperatures, which define the 
formation of ice in the water area. Determining the types of winter seasons is a key 
parameter, both when analyzing the ice regime of the seas and assessing climate change.  
 
The most common method of classification of winters by severity is calculating the 
cumulative freezing-degree days (CFDD). A similar approach for winters typing in the 
Northern Caspian was used by Tamura-Wicks et al. (2015). CFDD is usually calculated as a 
sum of average daily degrees below freezing for a winter season. Then we determine the type 
of winter season according to the preferred gradations. Dumanskaya (2013) classify moderate 
(normal) winters as winters with CFDD corresponding to the interval from “average minus 
20% amplitude” to “average plus 20% amplitude”. Winters with CFDD in the interval above 
are classified as mild and in the interval below are indicated as severe. Moreover, two 
extreme abnormal winters (the coldest and the warmest) are excluded from statistics. 



P.I. Bukharitsin (2008) and A.V. Fedorenko (2011) perform similar technique for winters 
typing of the Caspian Sea. 
 
In this research, we summarized negative air temperatures of winter seasons (from December 
till March) from four hydrometeorological stations of the Northern Caspian – Astrakhan, 
Atyrau, Makhachkala and Fort-Shevchenko. The annual sums were used to classify 1950-
2019 winter seasons according to their severity. 
 
Two main sources were used to identify stamukhi distribution in years with different severity 
of winters: 
1) aerial reconnaissance data from 1959 to 1974 (Bukharitsin, 1984); 
2) stamukhi observation data from satellite imagery deciphering (mainly Sentinel-1, usable 
Sentinel-2 and Landsat) from 2014 to 2019 acquired by LLP ICEMAN.KZ (Sigitov et al., 
2019). 
 
The distribution of stamukhi and ridging zones are largely dependent on the bottom 
topography. Therefore, a high-resolution digital elevation model (DEM) of the bottom of the 
Northern Caspian is required. The DEM, developed in the laboratory of geoecology of the 
North, Faculty of Geography, MSU, is based on the bathymetric navigation map of 1998, 
reduced to an average level of the Caspian Sea minus 28 m below sea level. In 2017, 
Ogorodov was the first to publish a chart of the intensity of ice gouging in the Northern 
Caspian, based on this DEM. This chart considered only aerial reconnaissance data from 
1959 to 1974 for moderate (normal) winters. 
 
Using the analysis of ice ridges and stamukhi locations, the distribution of various types of 
ice conditions for different types of winters (Terziev et al., 1992) and the bottom topography 
(DEM), we created charts of the ice gouging intensity distribution for mild, moderate and 
severe winters. 

3. Results 
 
The winters of the Northern Caspian were divided into three categories according to their 
severity: mild, moderate and severe (Table 1). For the period from 1950 to 2019, moderate 
types of winters prevail with 59.4%. The number of severe and mild winters is the same and 
amounts to 14 of each type (20.3%). Fig. 1 shows their temporal pattern. From 1950 to 1985 
severe winters in the Northern Caspian occurred every 2-5 years, but from 1985 to 2019 only 
3 severe winters took place (2002/03, 2007/08, 2011/12). 
 
Considering the aerial reconnaissance (Bukharitsin, 1984) and satellite data (Sigitov, 2019), 
we created charts of different ice gouging intensities for the different types of winters 
(Fig. 2). The charts are consider not only analysis of stamukhi distribution, but also ice cover 
dynamics, typical position of fast ice rim and features of the bottom topography. 
 
According to Ogorodov, 2011 we divide all the ice gouging area of the Northern Caspian into 
four zones: 1) fast ice zone; 2) zone of fast and drifting ice interaction; 3) drifting ice zone 
within deep areas; 4) drifting ice area within banks and shoals. 



Table 1. The Northern Caspian winter seasons classification 
Winter 

type Number % CFDD���ɋ Seasons 

Severe 14 20,3 ��1862,05 

1950/51, 1953/54,1955/56, 1959/60, 
1963/64, 1966/67, 1968/69, 1971/72, 
1976/77, 1979/80, 1984/85, 2002/03, 

2007/08, 2011/12 

Moderate 41 59,4 from -1862,05  
to -858,25 

1951/52, 1952/53, 1954/55, 1956/57, 
1958/59, 1960/61, 1962/63, 1964/65, 
1967/68, 1969/70, 1970/71, 1972/73, 
1973/74, 1974/75, 1975/76, 1977/78, 
1978/79, 1981/82, 1983/84, 1985/86, 
1986/87, 1987/88, 1989/90,1990/91, 
1991/92, 1992/93, 1993/94, 1994/95, 
1995/96, 1996/97, 1997/98, 2004/05, 
2005/06, 2008/09, 2009/10, 2010/11, 
2012/13, 2013/14, 2014/15, 2016/17, 

2017/18 

Mild 14 20,3 ��858,25 

1957/58, 1961/62, 1965/66, 1980/81, 
1982/83, 1988/89, 1998/99, 1999/00, 
2000/01, 2001/02, 2003/04, 2006/07, 

2015/16, 2018/19 

 

 
Figure 1. Winter severity timeline of the Northern Caspian 

 
Fast ice zone is characterized by limited scour impact of ice features, mainly ice ridges and 
grounded hummocks. The intensity of ice gouging is determined by immobility of fast ice. 
Bottom scouring by ice floes with frozen ice ridges occurs only during the fast ice breack-up. 
The zone of fast and drifting ice interaction is characterized by intensive scour impact on 
seabed by keels of ice ridges on fast ice rim and ice hummocks frozen into drifting ice floes, 
rarely by stamukhi. Drifting ice zone within deep areas is characterized by intensive scour 
impact on seabed by keels of ice ridges frozen into drifting ice floes. Drifting ice zone within 
banks and shoals is characterized by the most intense scour impact on seabed by keels of ice 
ridges frozen into drifting ice floes and large stamukhi. 
 



 
Figure 2. (Continued below) 



 
Figure 2. Charts of ice gouging intensity of the Northern Caspian: 1) fast ice zone; 2) zone of 
fast and drifting ice interaction; 3) drifting ice zone within deep areas; 4) drifting ice area 
within banks and shoals; 5) ice hummocks and ice ridges; 6) stamukhi. 

4. Discussion 
 
Severe winters in this region are caused by meridional activity, bringing cold air from the 
Arctic often. Surge of air far to the south leads to a cold snap and prolonged cooling. Mild 
winters occur when latitudinal activity takes place in Europe, the East European Plain, the 
Caucasus and the Caspian Sea (Solovjev, 1973). The winter season of 1953/54 was the most 
severe in the North Caspian region, the CFDD for Astrakhan station amounted -��������ɋ��
The mildest was the winter of 1999/00, the CFDD for Astrakhan station amounted minus 
78.7 °C. 
 
Depending on the temperatures, the beginning and the end of freeze-up can be shifted earlier 
or later. The ice coverage of the Caspian Sea also vary significantly - from 30% to 85% of the 
area of the Northern Caspian (winters 1999/2000 and 1953/1954, respectively) (Magaeva, 
2017). 
 



The classification of winter severity shows that in recent years (after 1985) severe winters 
occur less frequently, while moderate winters predominate. Earlier Bukharitsin (1984) 
supposed the largest number of ice features is formed in moderate (average in ice coverage) 
winters. In severe winters, landfast ice is more stable, and the width of the ridging zone is 
less. Ogorodov (2011) suggested that in mild winters, ridging is also low due to the limited 
fast ice extension. 
 
The intensity of ice gouging depends primarily on the number of ice features scouring the 
seabed and the general ice coverage. Previously, the conditions of bottom scouring were 
considered depending on level fluctuations and ice coverage (Bukharitsin et al., 2015). The 
charts (Fig. 2) show that, the ice-gouging areas of various intensity change along with the 
number of ice features. The comparison of the ice-gouging intensity patterns showed the 
difference of them from year to year. The area of low intensity of ice-gouging (1) related to 
the extension of fast ice is reduced in mild winters both absolutely and relatively. We 
suppose that, during mild winters, fast ice is thinner and brasher, which favor to more active 
ridging in this zone. This fact is confirmed by modern data from 2014-2019, showing many 
ice features in fast ice. According to Sigitov (2019), the majority of stamukhi in mild years is 
formed in proximity to the coastline, and the most intense ridging and stamukhi formation is 
observed in the zone of fast ice. This provides a greater intensity of bottom scouring in this 
zone compared to moderate and severe winters. 
 
At the same time, in mild winters, the area of the intensive ice-gouging (2) expands either 
relatively or absolutely. However, in mild winters, the intensity in this zone decreases 
significantly compared to the same zone for moderate or severe winters. Ice features in mild 
winters consist of weak ice, which reduces ice impact. 
 
Moreover, the area of drifting ice in mild, moderate and severe winters remains almost 
unchanged both in relatively deep waters (3), and in banks and shoals (4). In severe winters, 
the fast ice area is maximum; it occupies about 75% of the Northern Caspian. Fast ice in 
severe winters is extremely strong, which prevents active ridging. The example cases show 
that, depending on the severity of winters, the ice-gouging conditions change. From year to 
year the ice-gouging intensity patterns vary significantly, but also the degree of intensity in 
different zones are diverse. 

5. Conclusion 
 
The study shows that in recent years the number of severe winters in the Northern Caspian 
decreased significantly, moderate winters predominate. The created charts of the ice-gouging 
intensity revealed changes in the conditions of bottom scouring depending on types of 
winters. Despite the climate warming, the intensity of bottom scouring in the Northern 
Caspian does not decrease. In moderate winters, the intensity of ice-gouging processes is 
highest, but in mild winters the intensity is also high. Studying the changes in ice-gouging 
intensity depending on the severity of winters allow us to predict the formation of ice scours 
in certain zones during ongoing climate changes. The results of this study must be considered 
when conducting economic activities in the Northern Caspian. 
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