
ISSN 1995-0802, Lobachevskii Journal of Mathematics, 2020, Vol. 41, No. 12, pp. 2448–2457. c© Pleiades Publishing, Ltd., 2020.

Dynamics of Evolutionary PDE Systems

A. A. Gorinov1* and A. G. Kushner2, 3**

(Submitted by J. S. Krasil’shchik)
1Institute of Control Sciences of Russian Academy of Sciences, Moscow, 117997 Russia

2Moscow State University, Moscow, 119991 Russia
3Moscow Pedagogical State University, Moscow, 119991 Russia

Received May 31, 2020; revised June 13, 2020; accepted June 20, 2020

Abstract—The article is devoted to a method for constructing exact and approximate solutions of
systems of partial differential evolution equations (PDE). The basis of this method is the concept
of finite-dimensional dynamics, introduced for scalar equations by B. Kruglikov, O. Lychagina
and V. Lychagin. The basic idea is that a system of evolution equations generates a flow in the
space of solutions of some systems of ordinary differential equations. These ordinary differential
equations have symmetries whose generating functions are generated by the right-hand sides of
the evolutionary system. Dynamics and exact solutions for a system of evolution equations that
describes processes of deep filtration of a suspension and the telegraph equation are constructed.
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1. INTRODUCTION

The theory of finite-dimensional dynamics is a natural development of the theory of dynamical
systems. Dynamics makes it possible to find families of solutions depending on a finite number of
parameters among all solutions of evolutionary differential equations. The main ideas and methods of
this theory were formulated in [4, 8].

This article is devoted to the extension of the theory of finite-dimensional dynamics to systems of
partial differential evolution equations.

We note that dynamics make it possible to construct exact solutions of systems of evolution
equations, even if they do not have the necessary set of symmetries.

A method for constructing attractors for second-order evolutionary differential equations was pro-
posed in [1]. Based on this method, an algorithm for the numerical solution of such equations was
developed in [9].

As an example, we construct dynamics and exact solutions for a system of evolution equations that
describes the deep filtration of a suspension in which small solid particles are suspended. This model
takes into account the clogging of pores with such sediment. The exact solutions obtained have a clear
physical interpretation.

Another example relates to linear second-order partial differential equations. It is shown how exact
solutions can be constructed for some of them using dynamics. In particular, the dynamics and exact
solutions are constructed for the classical telegraph equation.

When finding dynamics, we have to carry out calculations in jet spaces. This leads to cumbersome
formulas. To facilitate calculations and avoid errors, we use the packages DifferentialGeometry and
JetCalculus of the system of symbolic calculations Maple. A description of the basics of working with
these packages can be found in [10].
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2. SYMMETRIES OF ODE SYSTEMS

Consider the following system of ordinary differential equations of order k + 1:

y(k+1) = f
(
x,y, . . . ,y(k)

)
. (1)

Here y =
(
y1, . . . , yn

)T is an unknown vector function of an independent variable x and the vector-

valued function f =
(
f1, . . . , fn

)T belong to the class C∞(Rnk+n+1).

Let Jk := Jk(1;n) be the k-jet space of functions from R to R
n with canonical coordinates x, yji

(i = 0, . . . , k; j = 1, . . . , n). System (1) generates a distribution P of lines on the jet space Jk such that
its integral curves are prolongations of the solutions graphs into the space Jk. The distribution P is
generated by the vector field

D =
∂

∂x
+

∑
i=0,...,k−1
j=1,...,n

yji+1

∂

∂yji
+

n∑
j=1

f j ∂

∂yjk
(2)

or, equivalently, by the set of differential 1-forms

ωj
i = dyji − yji+1dx, ωj

k = dyjk − f jdx (i = 0, . . . , k − 1; j = 1, . . . , n). (3)

This means that each of the differential 1-forms vanishes on the vector field D: ωj
i (D) = 0 (i =

0, . . . , k; j = 1, . . . , n).
Remark 1. In case when k = 1 the vector field D has the form D = ∂

∂x +
∑n

j=1 f
j ∂

∂yj0
and the

distribution P is generated by the following differential 1-forms: ωj = dyj0 − f jdx (j = 1, . . . , n).

A vector field X on Jk is called an infinitesimal symmetry of system (1) if translations along X
preserve P. All infinitesimal symmetries form a Lie algebra with respect to the Lie bracket. We denote
this algebra by SymmP. An infinitesimal symmetry is called characteristic if translations along it
preserve each integral curve of the distribution P.

Characteristic symmetries form an ideal in SymmP which we denote by Char P (see [7]). That is
Char P is a subspace of SymmP and the following properties hold:

– if X ∈ Char P and Y ∈ SymmP then [X,Y ] ∈ Char P;

– if X ∈ Char P and f ∈ C∞(Jk) then fX ∈ Char P.

The quotient Lie algebra Shuff P := SymmP/Char P is called the Lie algebra of shuffling symmetries
of system (1). The vector field

S =
∑

i=0,...,k
j=1,...,n

aji
∂

∂yji
, (4)

can be chosen as a representative of the equivalence class of shuffling symmetries. Here aji (i =

0, . . . , k; j = 0, . . . , n) are smooth functions on Jk. This vector field is a symmetry of the system if
differential forms (3) and the form Φ∗

t (ω
q
p) are linearly dependent for any p = 0, . . . , k; q = 1, . . . , n:

Φ∗
t (ω

q
p) =

∑
i=0,...,k
j=1,...,n

αi
j(t)ω

j
i ,

where αi
j(t) are smooth functions on Jk depending on the parameter t. After differentiating this equality

with respect to the parameter t at the point t = 0, we obtain

dΦ∗
t (ω

q
p)

dt

∣∣∣∣
t=0

=
∑

i=0,...,k
j=1,...,n

dαi
j(t)

dt

∣∣∣∣∣
t=0

ωj
i , or equivalently LS(ω

q
p) =

∑
i=0,...,k
j=1,...,n

βi
jω

j
i .
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The left side here is the Lie derivative of the form ωq
p and βi

j =
dαi

j(t)

dt

∣∣∣∣
t=0

. This conditions is equivalent

to the following equality:

LS(ω
q
p) ∧

⎛
⎜⎜⎝

∧
i=0,...,k
j=1,...,n

ωj
i

⎞
⎟⎟⎠ = 0 (5)

for any p = 0, . . . , k; q = 1, . . . , n. Using the properties of the Lie derivative, we obtain

LS(ω
j
i ) = LS(dy

j
i )− LS(y

j
i+1dx) = dS(yji )− S(yji+1)dx− yji+1dS(x) = daji − aji+1dx. (6)

Lemma 1. The exterior differential of a function a ∈ C∞(Jk) can be presented in the following
form:

da = D(a)dx+
∑

i=0,...,k
j=1,...,n

∂a

∂yji
ωj
i . (7)

Proof. Due to formulas (3) dyji = ωj
i + yji+1dx, dyjk = ωj

k + f jdx, where i = 0, . . . , k − 1; j =
1, . . . , n. Therefore

da =
∂a

∂x
dx+

∑
i=0,...,k
j=1,...,n

∂a

∂yji
dyji =

⎛
⎜⎜⎝

∂a

∂x
+

∑
i=0,...,k
j=1,...,n

∂a

∂yji
yji+1

⎞
⎟⎟⎠ dx+

∑
i=0,...,k
j=1,...,n

∂a

∂yji
ωj
i

=

⎛
⎜⎜⎝

∂a

∂x
+

∑
i=0,...,k−1
j=1,...,n

∂a

∂yji
yji+1 +

n∑
j=1

f j ∂a

∂yjk

⎞
⎟⎟⎠ dx+

∑
i=0,...,k
j=1,...,n

∂a

∂yji
ωj
i = D(a)dx+

∑
i=0,...,k
j=1,...,n

∂a

∂yji
ωj
i .

�

Due to formula (6) we get

LS(ω
j
i ) = D(aji )dx+

∑
i=0,...,k
j=1,...,n

(
∂aji
∂yji

ωj
i − aji+1dx

)
=

(
D(aji )− aji+1

)
dx+

∑
i=0,...,k
j=1,...,n

∂aji
∂yji

ωj
i .

Then formula (5) takes the form
(
D(aji )− aji+1

)
μ = 0, where μ = dx ∧ dy10 ∧ · · · ∧ dynk is a volume

form. Therefore aji+1 = D(aji ) for i = 0, . . . , k − 1; j = 1, . . . , n. If we denote aj0 by ϕj we get vector
field (4) in the following form:

S =
∑

i=0,...,k
j=1,...,n

Di(ϕj)
∂

∂yji
.

Here D0 = id and Di = D ◦ · · · ◦ D︸ ︷︷ ︸
i times

. The vector-valued function ϕ =
(
ϕ1, . . . , ϕn

)T is called the

generating function of the vector field S.
Theorem 2. A generating function of a symmetry of system (1) satisfies to the following

differential equation:

Dk+1(ϕj)−
∑

i=0,...,k

Di(ϕj)
∂f j

∂yji
= 0. (8)
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Proof. For any differential 1-form ωq
k (q = 1, . . . , n) we have

LS

(
ωq
k

)
= dS(yqk)− S(f q)dx = daqk − S(f q)dx =

(
Dk(aqk)− S(f q)

)
dx+

∑
i=0,...,k
j=1,...,n

∂aqk

∂yji
ωj
i

=

⎛
⎝Dk+1(ϕq)−

∑
i=0,...,k

Di(ϕq)
∂f q

∂yji

⎞
⎠ dx+

∑
i=0,...,k
j=1,...,n

∂aqk
∂yji

ωj
i .

After applying the exterior multiplication of both parts by the differential form
∧

i=0,...,k
j=1,...,n

ωj
i due to (5) we

get formula (8). �

3. DYNAMICS ON SOLUTIONS OF ODE SYSTEMS AND SOLUTIONS OF
EVOLUTIONARY PDE SYSTEMS

Consider the following system of evolutionary partial differential equation with two independent
variables t, x:

∂u

∂t
= ϕ

(
x,u,

∂u

∂x
, . . . ,

∂ku

∂xk

)
, (9)

where ϕ = (ϕ1, . . . , ϕn)
T are vector-valued function of the class C∞, u = (u1, . . . , un)

T .

Let ϕ(x,y0, . . . ,yk) be a generating vector-valued function of the shuffling symmetry S of (1) and
let Φt be the translation along the vector field S from t = 0 to t.

If ϕ is a generating vector-valued function of a shuffling symmetry of system (1), then system (1) is
called a (finite-dimensional) dynamics of PDE system (9). The number k + 1 is called an order of the
dynamics.

We describe two approaches to construct solutions of system (9) using dynamics.

1. Let Ly(x) = {y0 = y(x)} be the graph of a solution y = y(x) of system (1) and let

L
(k)
y(x) =

{
y0 = y(x),y1 = y′(x), . . . ,yk = y(k)(x)

}
(10)

be its prolongation into the space Jk(1;n).

Shifting the curve L
(k)
y(x) along the trajectories of the vector field S, we get the surface Φt

(
L
(k)
y(x)

)
⊂

Jk(2;n) that is a prolongation of the graph of a solution u(t, x) of evolutionary equation (9). Here
Jk(2;n) is the k-jets space of functions with two independent variables t, x. Since system (1) is solvable
with respect to higher derivatives, then its solution space could be identified with the space R

n(k+1) by
taking the initial data at a point x0. Then, instead of the vector field S, we can use the vector field

E =
∑

i=0,...,k
j=1,...,n

Di(ϕj)
∂

∂yji
(11)

on the space of initial data. Hereϕj is a restriction of the function ϕj to system (1). Therefore, we can use
transformations of the space of initial data Rn(k+1) instead of transforming curves. Such transformations
are given by shifts Φt along the vector field E.

Let y = y(x;a) be the solution of equation (1) with initial data y(x0) = a0, y′(x0) = a1, ...
y(k)(x0) = ak. Applying the transformation Φt to the point a = (a0, . . . ,ak) (where ai = (a1i , . . . , a

n
i ))

we obtain a one-parameter family y(x; Φt(a)) of solutions of equation (1). Then the function u(t, x) =

y(x,Φt(a)) is a solution of the evolutionary equation (9) with the initial data u(0, x) = y(x;a).
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2. A different approach can be used to construct solutions of evolutionary PDE. This approach is
more preferable when the solution of the system of ODE and the shift transformation Φt are known
explicitly. We describe this approach.

The transformation Φt acting on the jet space Jk generates the transformation Φ∗
t acting on

functions: Φ∗
t (f) := f ◦ Φt. Let Φ−1

t be the inverse transformation for Φt. Curve (10) is generating
by the system of equalities

y0 − y(x) = 0, y1 − y′(x) = 0, . . . , yk − y(k)(x) = 0. (12)

Applying the transformation
(
Φ−1
t

)∗
to (12) we obtain the following systems:

F0(t, x,y0, . . . ,yk) = 0, F1(t, x,y0, . . . ,yk) = 0, . . . ,Fk(t, x,y0, . . . ,yk) = 0, (13)

where Fi are some vector-valued functions. Solving equations (13) with respect to y0, . . . ,yk we find a

coordinate representation of the curve Φt

(
L
(k)
y(x)

)
:

y0 = Y0(t, x), y1 = Y1(t, x), . . . ,yk = Yk(t, x). (14)

The vector-valued function u(t, x) = Y0(t, x) is a solution of equation (9) (see [7]).
For example, for first order ODE system (1), i.e. when k = 0, the vector field S has the form

S = ϕ1 ∂

∂y10
+ · · · + ϕj ∂

∂yj0
.

4. FLOW OF SUSPENSIONS THROUGH POROUS MEDIA

Deep filtration of a single-component suspension of particles in a porous medium is described by the
following first order evolutionary PDE system [3]:{

∂u
∂t = −∂u

∂x − h(v)u,
∂v
∂t = h(v)u.

(15)

This model takes into account the change in the permeability of the medium due to the capture of
particles by the porous medium. Here u, v are a suspension concentration and a sediment concentration,
h(v) is a filtration coefficient.

We use the following notation: u1 = u, u2 = v. The corresponding generating vector valued function
for dynamics has the form ⎛

⎝ϕ1

ϕ2

⎞
⎠ =

⎛
⎝−y11 − h(y20)y

1
0

h(y20)y
1
0

⎞
⎠ .

First-order dynamics will be sought in the form{
y11 = f1(y10, y

2
0),

y21 = f2(y10, y
2
0).

(16)

The vector field (2) has the form

D =
∂

∂x
+ f1(y10, y

2
0)

∂

∂y10
+ f2(y10, y

2
0)

∂

∂y20
.

Then vector field (4) is

S = ϕ1 ∂

∂y10
+ ϕ2 ∂

∂y20
=

(
−y11 − h(y20)y

1
0

) ∂

∂y10
+ f(y20)y

1
0

∂

∂y20

=
(
−f1(y10, y

2
0)− h(y20)y

1
0

) ∂

∂y10
+ h(y20)y

1
0

∂

∂y20
.
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Using Theorem 2, we obtain a system of differential equations for finding functions f1, f2 (see formula
(8)): ⎧

⎨
⎩
y10h(y

2
0)

∂f1

∂y10
−

(
f2 + y10h(y

2
0)
) ∂f1

∂y20
− h(y20)f

1 − y10h
′(y20)f

2 = 0,
(
f1 + y10h(y

2
0)
) ∂f2

∂y10
− y10h(y

2
0)

∂f2

∂y20
+ h(y20)f

1 + y10h
′(y20)f

2 = 0.
(17)

Consider case when the function h is linear i.e. h(y20) = αy20 + β, where α, β are constant. Then
functions ⎧

⎪⎪⎨
⎪⎪⎩

f1 = (δ − α(y10 + y20))y
1
0 ,

f2 =
1

β + ξ − αy10

(
(β + ξ − αy10)

2H
(

αy20+β

α(β+ξ−αy10)

)

−y10(αy
2
0 + β)(ξ − α(y10 + y20))

)
(18)

are solutions of system (17). Here H is arbitrary function and δ, ξ are arbitrary constant.
If we choose H(z) = z then functions (18) take forms⎧

⎨
⎩
f1 = (δ − α(y10 + y20))y

1
0 ,

f2 =
(αy20 + β)(−α2y10(y

1
0 + y20) + α(1 + ξ)y10 − β − ξ)

α(β + ξ − αy10)
.

(19)

Suppose that α = −1, β = 1, δ = ξ = 0. In this case system (15) takes the form{
∂u
∂t = −∂u

∂x − (1− v)u,
∂v
∂t = (1− v)u.

(20)

Then the general solution of system (16) is⎧
⎪⎪⎨
⎪⎪⎩

y1(x) =
C2

exp(C1 exp x− x− 1)− C2
,

y2(x) =
(C1 expx− 1) exp(C1 exp x− 1) +C2 expx

C2 expx− exp(C1 expx− 1)
,

(21)

where C1, C2 are arbitrary constants. The vector field S has the form

S = −y10(1 + y10)
∂

∂y10
+ y10(1− y20)

∂

∂y20

and then the transformation is

Φt : (x, y
1
0 , y

2
0) �−→

(
x,

y10
et(1 + y10)− y10

,−et((e−t − 1)y10 − y20)

et(1 + y10)− y10

)
.

Applying the inverse transformation Φ−1
t to obtained general solution (21), we get the following solution

of system (20): ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u(t, x) =
C2e

x+1

eC1x+t − C2ex+1
,

v(t, x) = −C2e
x+1 + (C1e

x − 1)eC1ex+t

eC1x+t − C2ex+1
.

(22)

Graphs of functions (22) are shown in Figs. 1, 2 for constant values C1 = C2 = 0.1. Analysis of
the graphs allows us to conclude that the filtration coefficient and suspension concentration decrease
over time (see Fig. 3). This is due to the fact that over time, the pores are filled with sediment and
their permeability decreases. On the other hand, the concentration of sediment increases with time. An
evolution of the filtration coefficient is shown in the Fig. 4. We see that the filtration coefficient decreases
with time. These observations are in good agreement with the physics of the process.

Remark 3. System (16) has one more irregular solution y10 = 0, y20 = 1 +C1e
x which we do not

consider because it is not physical.
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Fig. 1. Graph of the function u =
0.1ex+1

e0.1x+t − 0.1ex+1
.
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Fig. 2. Graph of the function v = −0.1ex+1 + (0.1ex − 1)e0.1e
x+t

e0.1x+t − 0.1ex+1
.
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x

Fig. 3. Evolution of the concentrations of suspension u(x) and sediment v(x) from t = 0 to t = 1.
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Fig. 4. Evolution of the filtration coefficient h from t = 0 to t = 1.
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Fig. 5. Graph of solution (30).

5. SECOND ORDER LINEAR PARTIAL DIFFERENTIAL EQUATIONS
Some scalar equations that are not formally evolutionary can be reduced to systems of evolutionary

equations. Consider the following class of second order linear partial differential equations

utt + 2b(x)utx + c(x)uxx + h(x)ut + g(x)ux + f(x) = 0, (23)

where b, c, h, g, f are functions of the class C∞. Such equations describe, for example, processes in
media whose characteristics do not change with time.

Equations (23) are equivalent to the following evolutionary systems:{
ut = v,

vt = −2b(x)vx − c(x)uxx − h(x)v − g(x)ux − f(x).
(24)

As above, we use the following notation: u1 = u, u2 = v. The corresponding generating vector valued
function for dynamics has the form⎛

⎝ϕ1

ϕ2

⎞
⎠ =

⎛
⎝ y20

−2b(x)y21 − c(x)y12 − h(x)y20 − g(x)y11 − f(x)

⎞
⎠ .

Consider, for example, the telegraph equation
utt − uxx = au+ but + c, (25)
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where a, b, c are constants. This equation admits two types of linear second order dynamics:
⎧
⎪⎨
⎪⎩
y12 =

y11
x+ α

,

y22 =
y21

x+ α

(26)

and ⎧
⎪⎪⎨
⎪⎪⎩

y12 =
2bα− (x+ β)α2

4b2 + 16a− α2(x+ β)2
× y11 −

4α

4b2 + 16a− α2(x+ β)2
× y21,

y22 = − 4aα

4b2 + 16a− α2(x+ β)2
× y11 −

2bα+ α2(x+ β)

4b2 + 16a − α2(x+ β)2
× y21.

(27)

Here α, β are arbitrary constants. The general solution of system (26) is{
y1(x) = C3 + C4(x+ α)2,

y2(x) = C1 + C2(x+ α)2,
(28)

and the general solution of system (27) is⎧⎪⎨
⎪⎩
y1(x) =

1

2
C2x

2 + C3x+ C4,

y2(x) =
1

8α

(
x(C2β − C3)(2β + x)α2 + (8C1 + 2bx2C2 + 4bC3x)α− 32

(
a+ b2

4

)
C2x

))
.

(29)

Here C1, . . . , C4 are arbitrary constants. Applying the shift transformations Φt to the obtained general
solutions, we obtain particular solutions of equation (25). For example, the function

u(t, x) = −1 +
1

10

(
5

2
x2 + 5 + (10x+ 1− t)

√
5

)
e−

t
2
(
√
5−1)

+
1

10

(
5

2
x2 + 5 + (−10x− 1 + t)

√
5

)
e

t
2
(
√
5+1) (30)

is a solution of equation (25). It corresponds to solution (29) with a = b = c = 1, α = 1, β = 0 and
C1 = 0, C2 = 1, C3 = 0, C4 = 0, C5 = 0. In this case

S = y20
∂

∂y10
+

(x2 − 20)(y10 + y20) + (x+ 2)y11 + x2 − 20 + 4y21
x2 − 20

∂

∂y20
+ y21

∂

∂y11
+ (y11 + y21)

∂

∂y21
.
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