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1. Introduction

A lot of works were devoted to the approximations of Cy-semigroups, see
[1-5] and the references therein. While, other mathematicians considered
the discrete approximation of integrated semigroups in their papers [6-8].
We all know that Podlubny introduced fractional derivatives, fractional dif-
ferential equations, some methods of their solutions and some of their
applications in his book [9]. Ashyralyev and Cakir considered the numer-
ical solutions of fractional parabolic partial differential equations [10-15].
In papers [16-19], we dealt with the discrete approximation of the homo-
geneous fractional differential equations and semilinear fractional differen-
tial equations in Banach spaces. Especially in [18,19], we get the stability
and the order of convergence of implicit difference scheme and explicit dif-
ference scheme for homogeneous fractional differential equations. In this
paper, we will consider the fulldiscrete approximation of the nonhomoge-
neous fractional differential equation in the space C([0, T];E), which will
be presented in section 3.
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Let 0<a<l, we consider the well-posed nonhomogeneous Cauchy
problem:

(Dfu)(t) = Au(t) +f(t), t€(0,T]; u(0)=x, (1.1)

where DY is the Caputo-Dzhrbashyan derivative.

In [20], Ashyralyev and Sobolevskii indicated that in the Holder space
Cl ([0, T]; E), the analyticity of a C-semigroup is equivalent to the coercive
well-posedness of nonhomogeneous problem. Ashyralyev studied the well-
posedness of fractional parabolic partial differential equations [14, 21], and
used modified Gauss elimination method to consider their numerical solu-
tions [14]. In [22], the authors got the maximal regularity as well as
approximation for fractional Cauchy equation in space Cl([0, T];E). Here
Cl([0, T]; E) is the Banach space [20] obtained by completion of the set of
E-valued smooth functions u(-) on [0,T] in the norm

] u(t + 7)—u(®)|lg
b )

1O et o110 = 8Ol iy + sup
0<t<t41<T
So, in the second section, we concentrate on the well-posedness of (1.1)
in the Holder space C/([0,T];E) and prove that the analyticity of a-times
resolvent family is the necessary and sufficient condition for the well-pos-
edness of (1.1).

Remark 1.1. The followings are the main differences between this paper
and papers [14, 22].

e In [14], the initial value of the problem is zero and the corresponding
operator is positive. We do not need such assumptions in the pre-
sent paper.

e The authors in [22] got the maximal regularity for fractional Cauchy
equation on space c{f ([0, T]; E) when B < a. There is no such restriction
on f in this paper.

e They used the modified Gauss elimination method to study approxima-
tions [14, 22]. While, we consider the L1 difference scheme here.

It was proved in [23] that the homogeneous Cauchy problem

(Dfu)(t) = Au(t), t>0; u(0)=x, (1.2)

is well-posed iff A generates an a-times resolvent family S,(-,A). We
assume from the beginning that resolvent family S,(-,A) satisfies
[|Sx(£,A)]| < Me®™, t>0, for some M > 1,® > 0. In such case, for {1 :
Rel>w} C p(A), one has

0 —

PN T-A) T = J e M8, (t, A)xdt = (S4(t,A)x)(A), Rei>w,x € E,
0
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where ¢(-) is denoted the Laplace transform of ¢(-). In the paper [16], we
have proved that if the operator A generates an «-times resolvent family
S«(+»A) which is satisfying [|S4(t,A)|| < Me®, t >0, then the operator
A is closed and densely defined.

Definition 1.1. [23] A family {S,(tA)},., C B(E) is called an o-times
resolvent family generated by A if the following conditions are satisfied:

(@) Sy(t,A) is strongly continuous for t > 0 and S,(0,A) = I;

(b)  S,(t,A)D(A) CD(A) and AS,(t,A)x=S,(t,A)Ax for all x¢€
D(A), t > 0;

(c) for x € D(A),S,(t,A)x satisfies the resolvent equation

t
Su(t,A)x = x + J 2 (t—5)Sy(s, A)Axds, t>0.
0

Definition 1.2. An o-times resolvent family S,(-,A) is called analytic if
Su(-,A) admits an analytic extension to a sector X4, \{0} for some 0, €
(0,7/2], where Zy, := {4 € C: |argl|<blp}. An analytic solution operator
is said to be of analyticity type (6o, o) if for each <0y and w>w,, there
is M = M(0, ) such that ||S,(z, A)|| < Me“R?, z € Zy.

Note that S,(t,A) for bounded operator A is given by Mittag-Leffler

function E,(A), ie. S(t,A) = E,(#A) = Y% (AL

Definition 1.3. [24] A family {P,(t.A)}, of strongly continuous function
P,(-,A) : (0,00) — B(E) is called an (o, a)-times resolvent family generated
by A if there exists @ > 0, such that {1* : ReA>w} C p(A) and

(PI-A) 'x = J e “P,(t,A)xdt, Re>w, x € E.
0

Remark 1.2. [23-25] If A generates an o-times resolvent family S,(t, A) for
the case 1<a<2, then A is also the generator of («, «)-times resolvent fam-
ily P,(t,A) and

Po(t, 4) = (8u1 % Sa) (1)

While, when 0<a<1, if A generates an analytic a-times resolvent family
S.(t,A), then it is also the generator of analytic (o, o)-times resolvent
family

P,(1A) = LJ HR(I% A)d),
I

2mi

and
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(§1-0 * Py)(t) = Sy(t, A). (1.3)

For P,(-,A), we have the following properties [24, 25]:

t
P,(t,A)x = g,(t)x + AJ 2(t—5)Py(s,A)xds, t>0, for any x € E,
0

AP,(t,A)x = Py(t,A)Ax, for any x € D(A).

When 0<a<1, the following lemma holds:

Lemma 1.1. [25] Let A be the generator of analytic resolvent family S,(t, A).
We have

(1)  Pu(t,A) € B(E) and ||P,(t,A)|] < Me”(1+ t*"!) for any t > 0;

(2) For every x € E,P,(t,A)x € D(A) and ||AP,(t,A)|| < Me”(1+t7'),
for any t> 0;

(3)  S,(t,A) = AP,(t,A) for any t>0, R(P, (l)(t A)) C D(A) for any integer
1>0 and ||AkP()(t,A)|| < Me®(1 + t712=1) for any t> 0, where
k=0, 1

Remark 1.3. If S,(-,A) is bounded, i.e. ||S,(t,A)|| < M;, t€]0,T], then
all the items Me®" in Lemma 1.1 can be changed by M.

Definition 1.4. A function u(-)
c(o.T:E), i u() e C(0,T);D{
and u(-) satisfies (1.1).

€ C([0, T|; E) is called a solution to (1.1) in
) 81— * (u(t)—x) € C'([0, T]; E)

Definition 1.5. A function u(-) € C/([0, T];E) is called a solution to (1)
in Cﬂ([o T|;E) if it is a solution to this problem in C([0, T];E), func-
tions (D”u)(-) and Au(-) are belonging to C£([0, T]; E).

Obviously, if u(-) is a solution to (1.1) in c{f([o, T);E), then x € D(A)
and f(-) € C}([0,T];E). Then we can define the well-posedness of the
problem (1.1) in CA([0, T]; E) as follows.

Definition 1.6. The problem (1.1) is well-posed in C/([0, T]; E), if:

1) For any f(-) € CE([0, T];E) and x € D(A), there exists a unique solu-
tion u(t) = u(t;f(-),x) to (1.1) in CE([0, T); E);

2) The operator u(t;f(-),x) is continuous as an operator from the space
Cl ([0, T]; E) x D(A) to the space CL([0, T]; E).
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Here C/([0, T]; E) x D(A) is equipped with the norm
N e o, 13:89xpay = WOt o, 7128 + ¥

The semidiscrete approximation on the general discretization scheme of
the problem (1.1) are the Cauchy problems in Banach spaces E,;:

(Dfun)(t) = Aptan(t) +fu(1), £ € (0, T];  un(0) = X, (14)

The general approximation scheme, due to [26], can be described in the
following way. Let E, and E be Banach spaces and {p,} be a sequence of
linear bounded operators: p, : E — E,,p, € B(E,E,),n € N, with the prop-
erty ||pux||p — ||x||p as n — oo for any x € E.

Definition 1.7. The sequence of elements {x,},x, € E,,n € N, is said to
be P—gonvergent to x € E iff ||x,—pux|[;, — 0 as n — oo. We write this
as X, —Xx.

Definition 1.8. The sequence of bounded linear operators B, € B(E,), n €
N, is said to be PP-convergent to the bounded linear operator B € B(E) if
for every x € E and for every sequence {x,},x, € E,,n € N, such that

P P . . PP
x,—Xx, one has B,x,— Bx. We write this as B,—B.

The problem of convergence of solutions of semidiscrete approximation
(D2u,)(t) = Aytin(t), £ € (0, T);  un(0) = X,

to solution of problem (1.2) is completely solved by analogy of Theorem
ABC from Appendix [22, 23, 24, 25]. The problem of convergence of solu-
tions of (1.4) in C([0, T]; E,) to the solution of (1.1) in C([0, T]; E) can also
be described by ABC Theorem’s terminology using the conditions (A) and
(B). We will address this issue in section 3.

2. Necessary and sufficient condition for the well-posedness
in C4([0, T];E)

Obviously, the well-posedness of (1.2) in C£([0, T]; E) imply the well-posed-
ness of it in C([0, T];E). Then A is the generator of an o-times resolvent
family S,(t,A), and the solution to (1.2) is S,(#,A)x. Furthermore, it fol-
lows from the well-posedness of (1.2) in cl 0 ([0, T]; E) that

[15:( A )x”cg([o,n-,E) < M|« (2.1)

Lemma 2.1. Let A be a generator of analytic a-times resolvent family. For
any 0<t<t+ 1t < T and 0 < < 1, one has the following inequalities:
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B
T
1S2(t + 7 A)=Su(6 A)l[pp < Mz (22)
th
P
APt + 7, A)=AP,(1,A) [ < Mo (23)
P
||ga * St + 7, A)—gy * Su(t, A) || gk §M2t—ﬁ; (2.4)
P
|[Py(t + 7, A) =Py (t, A)||pp < My vl (2.5)

Proof. We know that S,(t,A) =1+ g, * AS,(t,A). Then it follows from
(1.3) that

Su(t,A) =1+ g, x Ag1—o % Py(t,A) =1+ g1 *x AP,(t, A)

t
=1+ J AP,(s,A)ds. (2.6)

0

And, S,(t+71,A)-S,(t,A) = ttH AP,(s,A)ds. From Lemma 1.1, we
know that ||AP,(t,A)|| < M;(1 +t7!) for any £>0, then
tds M T T
18, + 7 A) =Sy (6 A)lpp < My J < TIJ ds =M< My
t

t

(2.7)
We also have

1185(t + 7 A) =Sy (1, A)||pp < 2M; < M. (2.8)

Interpolating (2.7) and (2.8), we obtain (2.2). It follows from
|AP,(s,A)|| < M;(1 +s72) for any s>0, that

ds
AP+ A)=AP6 Ay =111 AR5 M)l < 01
M,
StTJt dS:Mlt—ZSMzt—z
(2.9)
From Lemma 1.1 we have
M, M, _2M, M
I|AP,(t + 1, A)—AP,(t, A)”EHE—HRLTISTISTZ (2.10)

Interpolating (2.9) and (2.10), we obtain (2.3). It follows from
||P,(t,A)|| < M;(1+ t*71) for any £>0 that
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Hgoz * Soc(t + T’A)_g% * Sa(t’A)HEHE
t41 t+t
=11 s Aales < |
t

— T T
:Mltu< I'C :Mlta? SMZ;

t+r
s lds < My* ! J ds

t t

While, ||gy * Sy(t + 7, A) =g * Sy (£, A)||pp < Myt +1)" + Mit* < My,
then similar to the above process, one has (2.4). From the inequalities

t+1
1Pu(t 4+ A) =Pyt A) |y = ||j P (s, A)ds| [y
t

< T ds <M11_M1t°‘r< T
< M , i a2 —M2t_2’
(t+1)" t* M,
P,(t+1,A t,A <M M, — <2
1ot + 7, A)=Pa(t A)l[pp < My ==+ My <=
we get (2.5). [

Remark 2.1. Actually, we can get (2.1) from the above lemma. In fact,

[1S5(+> A)x] |cg([0, T):E)

t8][S,(t + 7, A)x—S, (£, A)x
= sup [|S,(t,A)x|[p+ sup [154( ) (t, A)x]|

0<t<T 0<t<t+1<T h
Mztﬁl'
<M+ sup =2 el < Ml
0<t<t+1<T

The authors in [20] has proved that when the operator A has a bounded
inverse A~!, the well-posedness of

u'(t) = Au(t) + f(t), te€0,T]; u(0)=x, (2.11)
is valid in C£([0, T]; E) iff the following coercivity inequality holds

1
. +||Au||cﬁOT]E)<M(||Ax||E mwncg([om),

where M is independent of f, uy and f(-).

In fact, it is such a strong condition that the operator A has a bounded
inverse A~!. When we consider the problem (2.11), it can be replaced by
the condition that the operator (JI—A)~" is bounded for some /. The latter
one can be easily satisfied. While, when it comes to the problem (1.1), such
condition can not be replaced. It means that we do not have the bounded-
ness of the operator A~! in this paper. Then
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_ 1
D20 et 011+ 1ABO) e .1 SM(\\Ax||5+muf<->|rcg([o,ﬂ;m),

can not imply that the operator u(t;f(-),x) is continuous. From (1.5) on
page 3 of [20], we see that the well-posedness of (1.1) is valid in
Cﬁ ([0,T];E) iff the following coercivity inequality holds

ell oo,y + 1DF el o 0,71 1AM o 10,18

— 1
< (el sl gy W g ) @12

where M is independent of f3,uy and f(-).
We are going to show that the analyticity of S(t, A) is a necessary and
sufficient condition for the well-posedness of (1) in CA([0, T]; E).

Theorem 2.1. If the problem (1.1) is well posed in CL([0, T]; E), then S,(t,A)
is an analytic o-resolvent family.

Proof. The problem (1.1) is considered in a complex Banach space E. By
the strong continuity of S,(¢,A), A*I—A has a bounded inverse for all com-
plex A with Rel>w. It means that for any ¢ € E,2*y—Ay = ¢ has a
unique solution ¥ = (A*I—A) "' ¢. Clearly, the function u(t) = S,(t, ) is
a solution in C/([0,T];E) of (1) with f(t) = Su(t, A*)pandu(0) = .
Actually, for such u(:) and f(-), the coercivity inequality (2.12) provides
the following inequality

Izl + 1A < 3 1¥l + 5 Wl )
As the same as the discussion on the page 17 of [20], we get
12782 (s 20 0, 7338 + 11ASa (> 0 et o, 713
< M(IIS2 (5 )l epo, 7.8 + 1AV L)-
Hence,

2le + AWl < ol + 1S 21 g 4]

where
tP1|S,(t + 1, %) =S, (t, A)]|

152G A ep o, 1) = OSSI;ETHSa(t,A )|+  sup 7

0<t<t+1<T
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Clearly, ||S (- /1“)||C/; 1) — 0% as Rel—oo. Together with y =
(2" I-A) ", we have, for sufficiently large w;>w and any Awith ReAi>w,,
|2 T—A) |y < M o< \)Mw\ Then, S,(t,A) is analytic. 0
Theorem 2.2. Let A be the generator of an analytic a-times resolvent family.
Then (1.1) is well posed in CL([0,T):E) and the coercivity inequality
(2.12) holds.

Proof. If u(-) is a solution to problem (1.1) in CE([0, T];E), then it is a
solution in C([O T);E), too. Hence, we have the representation u(t) =
S.(t,A) x—i—fo (t—s,A)f(s)ds := w(t) + v(t). We need to show that
Aw(t), Av(t), ( ) v(t) belongs to Cﬁ([O T); E) and (2.12) holds.
Firstly, let us consider the estimate of ||Au(:)|| o.mmy We know that
w(t) €D(A) and  [JAw(D)l]; = [1S.(6 A)Ax]l, < Mi|Ax]l,0 < £ < T.
Applying (2.2), we get that, for 0<t<t+ 1 < T,

B
T
lAw(t + ) —Aw(D)]lp = [1Su(t + 7, A)Ax—=S5,(t, A)Ax|[p < Ma||Ax]lp 5 -

Then,
P
1AWl oo, 1.6y = sup [lAw(D)llp +  sup [JAw(t +1)—Aw(t)llp 3
0<t<T 0<t<t4+1<T
Mztﬁ’l,'
< Mi||Ax||g+ sup 5 l1Axllg < M| |Ax] |-
0<t<t+1<T b
Since

Av(t) = E AP, (t—s, A)(f(s)—f(t))ds + Jo AP, (t—s, A)dsf(t)
_ j AP, (t—5, A)(F(5)—F(6))ds + (Sa(t, A)—T)f (1),

we have |[Av(t)||[z < (My+ 1)|[f(O)]|p + M ItW = Olle gg. Following from

the definition ||f]] = Ol + M
Cg([O’T];E)_oiltlgT F O<SS<F<T (t— s)ﬁ ’

can get that [|f(s)~f(0)llg < [flles o rey - Hence  [|Av(0)]l; <
(M1 + DIt o, 1) + M1 o =517 11t o, 1y While,
! ds B ! do r-pHra+p)
L(t—s)l—ﬂsﬁ_L(l—a)l-ﬁ = TP = B(1—p)
. N
S p)
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it follows that for 0 < ¢t < T,

(Mi +1)B(1-B) + MyN M
81— p) Wlegio e = 5= g et e

lAv(D)]lg <

M
=sa—p Nawmne:

Next, we shall estimate the difference Av(t+ 7)—Av(t),0<t<t+71 < T.
We consider the cases t < 2t and t>27, separately. When ¢ < 21,

2M;

ﬁ( )Hf”d‘ 0,T);E

p+1
ﬁ(2M3)\Lf||CﬁOT e _g( M3)\Lf||cﬂ” e

[Av(t+7)—Av(1)][ < [|Av(t + )| [p +[|Av(D)]|p <

<o et
pa—p) e

When t>21,
Av(t +1)—Av(t)
= (Sy(t+ 0, A)=D)f (t + 1) —(Su(t, A)—I)f (1)

+ ) TAPa(t +1—5,A)(f(s)—f(t +1))ds— | AP,(t—s, A)(f(s)—f(¢t))ds
=f(t)—f(t+ 1)+ Su(t + 1, A)f (t + 1) =S, (t, A)f (1)
t+1 t

- AP, (t—s, A)(f(t)—f(s))ds

+ AP, (t +1—s,A)(f(s)—f(t + 1))ds +

(==}

I—1

+ | APt + =5 A)(F(E)—f(t + 1))ds

t—1

+ . A(P,(t+1—5,A)—P,(t—s,A))(f(s)—f(¢))ds

=L+ L+1L+1+ I

lg = [ (1) =f (¢ + 1) + Su(t + 1 A)f ( + 1) =Su(, A)f (1) [
< FO—=f(E+Dlle + 1182 + 7 A) |l (£ + 1) =f (1)
1185t + 7, A)=Su (8 Al g gl F (D)
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From (2.2) and the definition of ||f(+)

A -
||Il||ESM|V||cg([o,T};5)Tﬂt /'

t+1
||12||Esj AP (t + 15, A)lp_g 1 (5) (¢ + )| s

t—1

we have
| |C§([O> TJ;E)

[
<M - P
Y (4 o—s) P G0 TE)

<M 1 - .

< 1|V||C{)’([0, TJ:E) (t—r)ﬂ t—1 (t + T—S)liﬁ
1 (20)f

= Mullfll s o, 11:8) (t—1)F B

Because t—7 = § 4 —7>1, then

(ZT)ﬁ M g
L[l < M1l s o, 7. <—|fllctio mrp et P
Gy ([0, TIE) ﬁ(%)ﬁ ﬂ C, ([0, TIE)
t
HI3||E§J |AP,(t=s5, A)|[p_glf () =f (1) | s
t—1

! ds
<M —_— f .

1 t dS Tﬁ
< M1|[f||c/f 0, 7]:E) (t—r)ﬁJ — = M1|[f||cg([o,T];E)

i (t—s)' 7P B(t—1)*
B
MleHCﬁ [0, T; )ﬂ() WHcﬁ 0,7):E) Pe=b.
I = JH AP, (t + 1=, A)(f(t)—f (¢ + 7))ds

_ J AP, (h, A)dh(f(1)—f(t + 7))

= (Sy(t+ 1, A)—I-8,(21, A) + I)(f(t)

= (S,(t 1, A4) = Su(25,A)) (1)~ (1 + 1)
Eally < 11Ss(t + 5 A4)=S,(25, M)l ()~ (¢ + D= M1l g eyt

= (J:TAPa(h,A)dh—J AP, (h A)dR)(F ()~ (£ + 7))
—f{t+71))
)-
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If f =1 in (2.3), we obtain
t—1
|1Is]|p < L APy (t + 7=5,A) =Py (t=5,A)) || g gl [f (5)—f ()| gl
T (t=s)f
<M, L WT |V||cg([o,T];E)d5

T

t—1
= Malfll s 10, 1) JO md&

While
t—1 T 5 T t—1 T
7d5:J 7ds—|—J ————ds

.[o (t—s)zfﬁsﬁ o(t—s 2=bgp L (t—s)zfﬁsﬁ
_ —1

L e e

GF1=p7 B 1-p =
27 28h 27 2Ph

=Bt G-pF (=Pt (=P

Then we get

||15| |]5S q | |f| |Cg([0, T];E)Tﬂtiﬁ

It means that we have proven that for any o<t<t+t<T,

[|Av(t + 1) =Av(D)]|p= B = )Ilfllc/f o1t
Consequently,
||AV||cﬁ ([0, T]; ) ﬁ( )||chﬁ 0, T};E
Hence,
_ 1
[Aull s t0, 1y =M (HAxHE + BO—p) |1l s o, T};E)> : (2.13)

From (1.1), (2.13) and the triangle inequality, we know that

_ 1
D3l = Al + 5 W lga ) @19
Secondly, let us consider the estimate of ||u| o

)- We can easily get
the estimate HWHCﬁ <M ||x||. Since

[0, T]:E
[0, T};E)
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t

v(t) = J P,(t—s, A)(f(s)—f(t))ds +f(t)J P,(t—s,A)ds

_ L Py (t—s, A)(F(s)~f(£))ds + go S (1, A)f (1),
or any >0 that

it follows from ||P,(t, A)|| < M;(1 + t*1) fi
OOl

MOl < MEIFl5 +M1j

o (t—s)'
.y ! ds
< My t*|[f ()| + My O(t—S)l—_a_ﬁﬁHfHCﬁ (0.71:8)°
\I/_\{hﬂ; o) lo = sl g =t Jo =0y o do = (altéjl)igl)_m =
o a+p+1 2—
G i < Fi—p - Then,
M, (B(1-f) + L)t* M,

vl < B(1— B) Hf”c” ([0, T):E) < mWHc{f([o,T];E)'

Then we consider v(t+ 7)—v(t),0<t<t+ 1t < T under the case t < 2t
and t>2t, separately. For the case t < 27 one has

[v(t + ) =v(0)[|g < [Iv(t+ Ollp + [[v(D)]lg < <2M4ﬂ) 1t o, 71:8)
2M, _
:m|V||Cg([O,T];E)TﬁT F < ( ) ([0, 1):E) T Pr?
M

=5 p VMletiona™ "

When t>2r,

v(t 4+ 1)—v(t)
=gy * Syt + T A)f(t +7)—gy xSy (£, A)f (2)

+ . T P,(t+1—s5,A)(f(s)—f(t+ 7))ds— Jo P,(t—s,A)(f(s)—f(t))ds
= [ * Syt + L A)(f(t + 1) —f (1)) + (g0 * Su(t + 7, A) =gy * Sy (1, A))f (1))

t+1 t

+] Pa(t+r—s,A)(f(s)—f(t+t))ds—i—L Py(t—s, A)(F(£)—F(s))ds

+ P,(t+ t—sA)(f(t)—f(t+ 1))ds

(t—71

+ (Py(t + 1—s,A)—Py(t—s,A))(f(s)—f(t))ds

0
=L+ 1, +1; + 1+ Is.
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Applying (2.4), we get that
1T1llp = llgw * Sult + 1, A)(f(t + 1) (1))
(8 # Sult + 1 A) =gy % Su(£ A))f (1)l
< 1ga # Solt + 7, A) [ gl (8 + D) =f (D)
+1go * Salt + 17, A) =g * Su(ts A) |l (1) ]
< Mi(t+ ) fllen o Tt + Mo [fll a0 -

<M||f| |c{j([0, T];E)rﬁt_ﬂ.

t+1
||zz||Esj 1Pu(t + 5, A) g gl (5)—F (¢ + )|

t—1

t+1 dS
B .
e (t+ 1—s) 2 P W lleto. e

SMIJ

1 t+t ds

< MleHCg([O, T];E) (t_f[>ﬁ Jt—r (t + T_S)liaiﬂ
N C i

(t—r)ﬁ o+ p

o+f o f A/
QSMH]‘” -
ﬁ(g)ﬁ B Gy ([0, T);E)
2

1]l < Jt [1Po(t=5, A)|| g f () = (£)] | pdls

t—1

= M1|V||Cg([0, TJ:E)

< Millfllc o, ey

<th L
= (=) P (0. TE)

1 Jt ds
B
QUOTEE (¢ )P Ji_o (1—s)' "
o+

< Mi[fl]

N+ ﬂ)(t o)

b

= Mi|[flles o, 11

e M Pt
P B W”cﬁ([o,ﬂ;ﬁﬂ L
t+1

I = J” Py(t + 1—s, A)(F(£)—f(t + 7))ds = J P, (h, A)dh(f(£)—f(t + 1))

2t

< Mi[lfll et o, 7159

= <Jm P,(h,A)dh— rr Py(h, A)dh)(f(t)—f(t + r))

= (gu * Syt + T, A)—gy * Sy (27, A)) (f (1) —f(t + 7).
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1Tallg < [lgo # Sa(t + 7, A)=go ¢ S(27, Al ()= (£ + D)
< (11ga # Solt + 1 A) [ + I8z * S2 (27 A) [ p) IIF () =F (£ + )]
< My((t+ 0"+ O ller o, 157t =M, 11,7t

Putting f =1 in (2.5) and using the method similar to what we used to
estimate Is, we obtain

IITsHES—IlfHCﬁ s

It means that we have proved that for any 0<t<t+ 1 < T,

IIV(f+f)—V(t)HE~ﬁ( )Hchﬁ org Tt

Consequently,

W03 = g = )Ilfllc/f s

Hence,

- 1
||u”c{f([o, T];E)SM(H“XHE + m WHCg([O, T];E))' (2.15)

It follows from (2.13); (2.14); (2.15) that (2.12) holds. We proved
the theorem. O

3. The fulldiscrete approximation in C([0, T|;E)

Assume that the functions f,(-) € C([0, T];E,) converge to the function
f() € C([0,T;E) in the sense sup,c 7 |lfu(t)—puf(t)|[r, — 0asn — oo.
Although Theorems 4.2 and 4.3 hold, when consider the full discretization,
we will impose stronger conditions on operators A, A,. First of all, this is
due to the fact that a bounded linear perturbation A + B, for bounded B,
remove the problem, in general, from the class of well-posed problems.
Therefore, we assume that the operators A, A, generate Cp-semigroups. In
such situation, as was shown in [17], one has P,(t,A,)x,—P,(t,A)x for
t>0 as n — oo, whenever xnﬂx for any x, € E,,x € E. Then under condi-
tions (A) and (B;) from Appendix, one can get the convergence of solu-
tions of problems (1.4) to solution of problem (1.1) by major convergence
Theorem. So in this section, we investigate approximation of problems
(1.4) and we consider the full discretization of the problem (1.1) by using
the following implicit difference scheme [18]

A UL() = AuUn(te) + fulte),  te = ke, Un(0) = x, (3.1)
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and explicit difference scheme [18]
AZ( Un() = AnUn(tk—l) +fn(tk—1)> tk = k‘L’n, Un(o) = Xpn. (3-2)

For any grid function ©,(-) the finite difference approximation is
defined by

1 kSl 1—o_ (l—o ®”(tk_j)_®”(tk_j_1)
Tz—a) 0 i) . '

AL Ou() =
We can split the solution of (1.4) by the equa-
tion u,(t) = S,(t, A,)x, + fot P, (t—s, Ap)fu(s)ds := wy(t) + v, (2).
Lemma 3.1. Let x, € D(A,) and f,(-) € C*([0, T]; E,). Then

I, (O]] < CE)(1 + £~ )max{]| Ay,
1o/,(0]] < CE)(1+ #2)max{||4,x,

>

oo 1y b
> 3.3
FOlloomne ) O

>

Proof. Indeed, from Lemma 1.1, we know that ||w/ (t)|| = ||S,(t, A,)xa|| <
Clo) (1 + =) [ Anxall, [[W5, (O] = 1187, (t: An)xal] < Cla)(1 + £72)[|Apa.
One can write,

V() = Pu(t; An)fa(0) + [y Pu(s An)f', (t—5)ds,

V(1) = PL(6 A 0) + Pyl A)FL(0) + [ Pals, A", (—s)ds.
Then we can get
v, (0] < Clo) (1+ £ H[£(0)]] 4+ C(e) (1+ ), Ol (o, 715,
V(O < ) (1+ 72 [fu (0)] |+ Ce) (1 + £ HIf,(0) [+ Clo) (1 + ), Ol | o, 718,

Hence, we have (3.3). O

From the above Lemma, we know that when x, € D(A,) and f,(-) €
C*([0, T]; E,), the solution u,(t) satisfies the estimates (3.3) which is as the
same as it in [19]. From the analysis in [19] and from the estimates (3.3),
one has that 7, (kt,) := (Dfu,)(t)—A; us(-) = O(75) and

|7, (k) || < Clo)Tymax{|[Anxal|s |[fa ()l 20, ) }-
First, we approximate the problem (1.4) by implicit scheme (3.1). We
know that (3.1) can be split into
A‘ka,,(-) = A, W,(t), W,(0) = x,

and
A‘t"kV,,(-) = A, V,(tx) + fulte),  Va(0)=0.

It is clear that U,(t) = W, (&) + V,(t). Then from Proposition 3.1 and
Theorem 3.2 in [18], we have the following theorem.
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Theorem 3.1. For the implicit difference scheme (3.1), i.e. for the system

LT (ki) k—i1)z, .
2 — (x Zb] U” ] ) U (( J 1) ) = A"Un(k’cn) +fn(kfn)>
=0

T
Un(0) = xu,
we have that
Kk k—jt1
n(kty) Zc Rx, +T(2— arZZd,]an(;rn for any k € IN,
i1 =1 =1

where cj(k) dll;) are the same as them in [18, 19]. Moreover, for
every kENc()>0]—12 k dl(])>01—1 wk—j+1,j=1,..,k
and Z]l _IZ]IZ_J—H 1] 1_1

Now from Theorem 3.1 and Theorem 3.3 in [18], we can easily get the

stability of implicit difference scheme (3.1).

Theorem 3.2. Assume that Cy-semigroups eAr satisfy condition (B) with
® = 0. Then the implicit difference scheme (3.1) is stable, i.e.

1Un(kta)|| < Ml|xu]| + MT(1—0) (kta)” sup [[fu(jra)l]

1<]<

The next theorem gives us the order of convergence of the implicit dif-
ference scheme (3.1). Set z,, (kt,) = u,(kt,)—U,(kt,).

Theorem 3.3. The representation of z,, (krn) is:

where dgj-) are the same as they in [18, 19]. Moreover, under conditions of
Theorem 3.2 and x, € D(A,),fu() € C*([0, T}; E,), we have

|12, (kta) || < Clo)rhmax{|[Anxalls [fa ()llczio, 11, }-

Proof.  Since  z, (kt,) = uy(kt,)—U,(kt,), one has U,(kt,) =
U (kTn) =2y, (ktn).  Then A (un()=Zu,(-)) = An(un(ktn)—Zu, (kT0)) +
falkty), and APz, () = AnZy, (&) + A un(-) —Antin(ktn)—fa(kt,). While
(Dfuy)(tk) = Aputn(kt,) + fu(kt,), we get the following equation

ALz, (1) = AnZy, () + AL un (1) —(Dfun) () = Anzu, (kty) + 74, (kT0).

Then we can get the conclusion of Theorem from the proof of Theorem
3.3 in [19]. O
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Next, the explicit scheme (3.2) can be split into
AL Wu() = AaWo(ti1),  Wa(0) = xy,
and
AL V() = AuVi(teer) + fultk-1), - Va(0) = 0.
Here, U,(tx) = W, (tx) + V,(tx). Then we have the following theorem.

Theorem 3.4. For the explicit scheme (3.2), i.e. for the scheme

k—1 i)en)— i,
re-—o) be ) T Oullk =1 ):A”Uﬂ((k_l)fﬂ> + fu((k=1)70),
) n
U,(0) = x,,

we have that

W‘

—1 k—j—1
(k) Rlx, +T(2— ocrz lljill R'f,(jt,) for any k € IN,

i=0

M*

U,(kty) =

Il
o
~.
Il
o

J

where _-k ,d are the same as them in [18, 19]. Moreover, for any k =

12,3, e>0 = 0,1 Lk diy > 0,i=0,.0k—j1j =0, k-1,
- —j—1 5 (k+1)
andzj:ocj =1, Z Z - 1]+1b:1
Proof. We only " need to show that Val(kt,) =
‘ i1 k)
F(Z—O() Tﬁ Z Z ) 1]+1 Rf”(] ”)
(1) For k=1, we have V,(1,) = F(Z—a)rifn(o),a((])l =1
(2) For k=2, we have Va(2t,) = F(Z oc) *((1— bl)an( )
la

o) dy) = 0,d7) = 1-b; > 0,d}) =

While, we know that, when k > 3,
Va(kt,)

= (1=b)RV,(k=1)2,) + > (bj—1 — b) V((k—j)t) + T(2—a)t*f, (k—11,).

(3) For k=3, we have V. (3t (
+(1=01) R,(0) + (1=b1)Rfu(T) + fu(210)), do) = by—by > 0,d\) =
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d21_(b1—b2) Ay =0,dY =1-b>0,d=1  and  (b—byt
(1=b1)*)by +(1— b)b1+b2—1 )

(4) Assume that Vn(krn)iz( r2—o)t Z Zk ' 1;1 R'f,,(jr,) holds for

al k< K-1, d,.,’;.fl>01—0 k—j—1,j=0,..,k—1,  and
Z E_] ! lljillbzl.Thenfork:K,
Vu(K1,)
B K-1
— (1= B)RVA(K=1)5) + > (b1 — B)Va((K—1)0) + T2—2) S (K—1)z,)
1=2
K—2K—j—2
r(z OC Z(; z]+1an n)
j=0 =0
K2 KllKl]lKlJrl
+ (b —b) Y i RE )+ (K=1)2))
=2 j=0 i=0

K—2K—j—1
=re-n (3 3 0 b R
K—3K—j—3K—i—j—1

DI D BRCREL e A >+fn<<1<—1>rn>)

=0 =0 =2

K—j—1 Kl Kfjl
+1)
=I(2— Z( (Z (b1 — 0]+1 (1-b d;_ 1;+1R

=2 i=K—j— 2
K—j-3 K—i—j—1

S (bAoA R ) 4 ful(K - 1>rn>)
i =2

It means that (_i(()ljﬁ) =S b - bl)do 120, dlljjrrll =
=(K) K—i—j—1 (K- l+1) (K+1)
(1 b )dz 1,j+1 +Z Ea <bl 1= bl)dz]-H > 0 K ] 3 dl]+1
=(K) . (K+1) (K+1)
= (1=b1) i1 = 01 =K=j=2,K=j—1,j=0,...,K-1; dOK 1 =0 dl K-1
— (1=b))dyy_, > 0; AV = 1; and
K71K_]_17(K+1)
di,j+1 bj
j=0 i=0
K_szﬁzi(K) K2 K—I-1K—I-j-1 K L)
= (1-b)) dibj+ > (b — b)) ,JH b+ by = 1
j=0 i=0 =2 j=0 i=0

Thus, by induction, we can obtain our conclusion. O
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Remark 3.1. Here, the solution V,(kt,) is a little bit different from it in
[18,19]. It is because in general that f,(0) # 0 in the present paper, but
£,(0) = 0 in [18, 19].

Theorem 3.5. Let o>1 and let e be the Cy-semigroups generated by the
operators A,. Assume that e satisfy condition (B)andw = 0. If we have
T2 1A2|| < ¢, where c is independent of n, then for the scheme (3.2), we
have

|Un(kta)|] < M||xu|| +MT(1—a)(kea)* sup | |fa(iza)l-
0<j<k—1

Proof. From Theorem 3.5 in [18, 19], we have |[|W,(kt,)|| < M||x,||. We
just need to show [ Va (I(ckt P)H < MT'(1—a)(kt,)” supy <<k Hf (Ta >|L+1)

k—1 ~k—j—1 (kT JnU;
Since Zk Z I d;; by =1, then we have > . S dy )b
1, Zf Old +1) < 1. We also know that bjb, !, > 1, when j < k—1,b;",

£ and b~ ask — oo (see [27]). Then together with [[R|| <M

from [18], we obtain

<
<

IValke)ll < MT2-a)et sup [[fuGrllY. Y dlt)

0<j<k—1 =0 =0

-

k—1k—j—1

_ . , ~(k+1
MT-a)eb, sup ([6Gm)lS S dlie,

0<j<k—1 =0 i=0

IN

k—1k—j—1

= MT(2—a)yb’y sup |[fu(ia)||

1<j<k
_ k*
§MF<2—OC)‘L’°‘1 " sup |[fu(jTa) ||
0<j<k—1

— MT(1-2)(ke,)* sup [[fs(e)ll

0<j<k—1

O
From the theorem above and Theorem 3.10 in [18], we have the follow-
ing conclusion.

Theorem 3.6. Assume that analytic Cy-semigroups e satisfy condition
(By)wi 0‘A || < c. Then there exists a constant M, such
that

1Un (k)| < M||xall + MT(1—0) (kta)” sup |{fu(jTa)]l

0<j<k—1
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Now we get the order of convergence of the explicit difference
scheme (3.2).

Theorem 3.7. The representation of the difference =z, (kt,) =
u,(kt,)—Uy,(kt,) is
L 0D
zy, (kty) = T'(2—a rﬁz J+ Rrun(nn (3.4)
j=1 i=0
where r,,(kt,) = A} tn(-)—(Dfu,)(t—1) and d are the same as them in
[18, 19]. Then Lmder the assumption of Theorem 3.5 and x, € D(A?),1,(-) €
C*([0, T];Ey), Aufu(+) € CY([0,T);E,), there are the following estimate for
2y, (kt,),

120, (k)| < Clo) Tymax{||A

ol s [[fn ()| 2 ([0,T};E,)° Anful: >||C1([0,T];E")}'

Proof. Since z,,(kt,) = u,(kt,)—U,(kt,), one has that U,(kt,)=
tn(kTn) =2y, (kTn). Then Ak, (n(-)=2u,(-)) = An(un((k—1)7,)
_Zun((k_l)fn)) +fn((k_1)7n)’ and

AL zu, () = Anzu, (te-1) + Ay un(-) = (DFun) (tc-1)
= Anzy, ((k—1)tn) + 14, (kTy). (3.5)
Here
Tu,(Tn) = A% n(-) = Antin(0)—£u(0)

_ T, " un(tn)—ua(0)
T T(2-0a) Tn ~Annul(0)

Uy (Ty) —%n

= 7F(2 ) —Auxy,—1(0).

While we know that u,(t,) = Sy(t, An)x, + fo 2 (Tn—5, Ap)fu(s)ds
Together  with equation (2.6), one has that Uy(ty) = x, +
OT "AP,(s, Ap)x,ds + Jo (T =5, Ap)fn(s)ds. Hence from Lemma

Tun(fn)\l < CmaX{HAnan, W (| cqo, 78 -
For k > 2, one has

Tu, (ktn) = Af un(-) — (D) (k1)
= Aj un()—(Dfun) (t) + (Dfun) (tk) — (Df ) (te-1)
Tu, (ktn) + Anttn (k) + fu(ktn) —Antin (k—1)70) —fu((k—1)7,)
Fu, (ktu) + (A, (E10) + £, (L))t &L € ((k=1),K)
if u,(-) € C'([0, T); D(A,)) and £, (-) € C'([0, T]; E.,)
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We know from (3.3) that |[u,(¢)]] < C(1+ #* )max{||A.x,||,
faC)llcro, 138,y Therefore  [|A,u, (£)]] < C(1 + 7" )max{[|AZxal],
Anfu(- >||C1 (0, T);E )}- Together ~ with |7y, (kt,)|| < Crymax{||Asxal|,
fallez(o, 11:6,) 3> we can get

ry, (kt,) < Ctimax{||A

w2l [ U ()l ez o, 7

nfn( )||C1 ([0, TIE } k>2.

Similar to the proof of Theorem 3.7 in [19], we can get our conclu-
sion. O

Theorem 3.8. Under the assumptions of Theorem 3.6 and
xn € D(A2),fu(:) € C¥([0, T]; E), Aufu(-) € C'([0, T); E,), one has the follow-
ing estimate for z,, (kt,) :

[|2u, (kta) || < C(er) Tmax{ || Apxal],

n(Mleqo,me

Anfa(ller o, 13-

The proof is the same as in Theorem 3.7 just with correspondent
changes of the assumption for stability.

Remark 3.2. In the implicit difference scheme, the error which is
Zy, (kty) = uy(kt,)—U,(kt,), satisfies the estimate

|12, (kza) || < Clor) Tpmax{ || Al [[fa ()l 210, 7.8, }-

While in the explicit difference scheme, z,, (kt,) = u,(kt,)—U,(kt,) sat-
isfies the estimate

1z, (k)| < Cle)rymax{ [|Awxall, [|AZxalls [ (oo, 71, 1Anfa Ol e o, 71, -
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Appendix

In this part, we recall the following version of Trotter-Kato’s Theorem [28, 29] on general
approximation scheme.

Theorem 4.1. [4] (Theorem ABC) Assume that A € C(E),A, € C(E,) and they generate
Co-semigroups. The following conditions (A) and (B) are equivalent to condition (C).
(A) Consistency. There exists A€ p(A) NN, p(A,) such that the resolvents converge

(L—Ay) "B (-A)

(B) Stability. There are some constants M > 1 and w, which are not depending on n and
such that || exp (tA,)|| < Mexp (wt) for t > 0 and any n € N;
(C) Convergence. For any finite T>0 one has

maXico, 7] || exp (tAn)ug_Pn exp (tA)”OH —0

P
as n — oo, whenever ul—u’ for any u° € E,,u’ € E.

Remark 4.1. In case of approximation of analytic semigroups they have some changes in
formulation of Theorem 4.1:
(B1) Stability. There exist constants M > 1 and w independent of n such that for any

Rel>w, ||(AL,—A) Y| < M]XI’W for all n € N;
(Cy) Convergence. For any finite x>0 and some O<97)<§ we have max,czg, )
|| exp (nAn)ud—pn exp (A)u°|| — 0 as n — co whenever  u’—u’. Here we denote

20, u) ={z€Z(0) :|z] <pu}and 2(0) = {z € C : |arg z| < 0}.

For the semidiscrete approximation of «-times resolvent family, we have the following
ABC Theorems:
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Theorem 4.2. [16] Suppose that 0<o <2 and A, A, generate exponentially bounded
oa-times resolvent families Sy(-,A), S4(+, Ayn) in the Banach spaces E, E,, respectively. The fol-
lowing conditions (A) and (B) are equivalent to condition (C).

(A) Consistency. There exists A € p(A) NN, p(A,) such that the resolvents converge
(Li—Ay) 1)

(B) Stability. There are some constants M > 1 and c, which are not depending on n and
such that |[S,(t, Au)||p(g,) < Me™ for t > 0,n € N;

(O) Convergence. For some finite >0 one has
maXefo, o€ " |[Su(t, An)Xu—puSu(t, A)x||p, — 0 as n— oo, whenever xnix for
any x, € E,,x € E.

Theorem 4.3. [17] Suppose that 0<o < 2 and A, A,, generate exponentially bounded ana-
Iytic a-times resolvent families S,(-,A), Sy(+, An) in the Banach spaces E, E,, respectively. The
following conditions (A) and (B') are equivalent to condition (C').

(A) Consistency. There exists 2 € p(A) NN, p(A,) such that the resolvents converge
(L—Ay) " 01-4)"
(B') Stability. There are some constants M > 1, 0<60 < n/2 and w which are independent of
n, such that the sector (w + Zg, /)" is included in p(A,) and

sup H/I“’IR(E“;AH)HB(E” <M/|A—w| for any n€N and for any 0<f<0.
/lE(JJ*i’Zf;Jrn/z
(C') Convergence. For some finite w,>0 one has

sup e_“”Rez||Sa(z,An)xn—ana(z,A)x||En — 0 as n — o0,
ZEE/;

P
whenever x,—x for any x, € E,,x € E and for any 0<f<0.
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