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Abstract. Using the method of averaged Lagrangian and diffraction approximation, an 

approximate analytical solution is obtained and analyzed, which describes the propagation 

of two-color vortex light bullets in a quadratic-nonlinear graded-index waveguide.  

 

 

1. Introduction 
The stable bunches of light energy localized in time and space are often called light bullets or 

spatiotemporal solitons [1]. For the formation of a light bullet in a homogeneous medium, the presence 

of focusing nonlinearity, dispersion, and diffraction is necessary. These factors are not always enough. 

Sometimes, for the formation of a light bullet, a spatial inhomogeneity of the medium is required. 

Such conditions are created, for example, in the graded-index focusing waveguides [2]. This applies to 

media with both quadratic [3] and cubic (Kerr) nonlinearities [4].  

Light bullets can have different internal structures. This structure can be defined using a 

topological charge that takes integer values. The simplest bullets have a topological charge of zero. 

They can also be called fundamental spatiotemporal solitons. Otherwise, we can talk about vortex light 

bullets. They are of considerable interest from both fundamental and applied points of view [1].  

To date, both single-color and two-color (parametric) vortex light bullets propagating in 

homogeneous media or in waveguides have been studied in sufficient detail [1, 5, 6]. The formation of 

two-color bullets occurs quite efficiently, provided that carrier frequencies of both components belong 

to spectral range with anomalous dispersion of the group velocity (DGV). Recently, it was found that 

fundamental two-color light bullets are capable of forming in a homogeneous medium, provided that 

the group dispersion at the fundamental frequency is negative, and at the second harmonics one is 

equal to zero [7]. A reasonable question arises: can vortex two-color light bullets be formed under 

such conditions? This work is devoted to an analytical consideration of this possibility in a nonlinear 

graded-index waveguide. 

 

2. Modified Gross - Pitaevsky equation for soliton parametres 
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Let the light pulse propagates along the z -axis of the quadratic-nonlinear graded-index waveguide. 

Then the set of equations for the envelopes 
1  and 

2  of electric fields for the first and second 

harmonics, respectively, has the form [3, 8] 
2

1 1
1 1 2 1 1 122 2

c
i q

z n

  
    

 





 
     

 
 ,  (1) 

 

22
2 1 2 2 22

4

c
i q

z n


    





   


.    (2) 

Here / gt z v   , t  is the time, gv  and n  are the group velocity and the linear refractive index on 

the central axis of the waveguide, respectively, the same for both frequencies   and 2 , c  is the 

speed of light in vacuum, 
  is the transverse Laplacian, 

1 /gv     is the coefficient of DGV for 

the fundamental frequency   (for second harmonic, this coefficient is zero), 
1  and 

2  are the 

coefficients of quadratic nonlinearity, determined through nonlinear susceptibilities 
(2)

1  and 
(2)

2  at 

the fundamental frequency and the second harmonics, respectively, using the expressions 
(2)

1 12 / cn   and 
(2)

2 24 / cn  , the coefficients 1,2( )q r  determine the linear refraction of 

the waveguide: 
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where r  is the transverse radius vector originating on the central axis of the waveguide. 

Since 
2

1,2(0)n n , then 1,2(0) 0q  . 

In the case of a one-dimensional (
1 2 0      ) and homogeneous (

1 2 0q q  ) medium, 

the system (1), (2) has exact solutions in the form of temporal solitons [7]: 
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Here p  is a free parameter that has the meaning of the soliton temporal duration. 

To take into account the transverse inhomogeneity of the medium, we use the results obtained by 

means of method of the averaged Lagrangian [3, 7, 8]. For this, in accordance with (4) and (5), we 

choose trial solutions in the form 
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Here   and   are functions of the coordinates obeying the set of equations (see details in [3, 7, 8])  
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where 
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Let us define the complex function  

     exp
2
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Then the system (8), (9) is equivalent to the modified Gross - Pitaevsky equation  
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For an unambiguous dependence of the function Q  on the azimuthal angle   of the cylindrical 

coordinate system, it is necessary to satisfy equality 2 /g c n  [8] (see (10) and (13)). Then, taking 

into account the approximate nature of the averaged Lagrangian method, instead of (12) and (14), we 

write  
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3. Vortex light bullets in the diffraction limit  

Let us define the dispersion 
dl  and diffraction  

Dl  scale lengths by means of relations   
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where 0R  is the characteristic transverse size (aperture) of the optical pulse. 

In the diffraction limit  

 
D dl l      (16) 
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the second term on the right-hand side of equation (14a) can be neglected. Then we arrive at the 

nonstationary Schrödinger equation for an imaginary quantum particle  
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where the z - coordinate plays the role of time, and the function ( )q r  plays the role of potential 

energy (see (11) and (3)). 

Let the axially symmetric dependence of the refractive indices 1,2n  on the transverse coordinate r  

of the waveguide have the form 
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where a  is the radius of waveguide.   

Then we have   
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We will find a solution of the equation (14а) in the following form 
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where   is a constant to be determined, m  is an integer. 

This type of solution corresponds to optical vortices [1]. As a result, we arrive at the eigenvalue 

problem  
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and, the eigenvalue   is determined by the expression 
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The eigenfunctions satisfying condition (22) have the form  
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where 
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2 /c    is the wavelength corresponding to the frequency  , ( )m

lL   are the Laguerre 

polynomials, 0,1,2,...l   A parameter    is determined by the expression   
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From (25), (20), (13), and (10) we find  
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      z m   .     (29) 

Taking the topological charge of the vortex at the fundamental frequency 1m  , for the fundamental 

soliton mode of the waveguide ( 0l  ) we have 
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z   .     (31) 

In this case, the topological charge of the vortex at the second harmonic is equal to two. 

Thus, the expressions (6), (7), (30), and (31) under condition (16) describe the propagation of two-

color vortex light bullets in a nonlinear graded-index waveguide. These bullets are localized both in 

space and in time. In this case, near the central axis of the waveguide (
0r R ) for the intensities of 

both components of the vortex we have 
2 8/3

1,2 1,2~ ~I r .  

 

4. Concluding remarks  
Thus, the using of the averaged Lagrangian method and the diffraction approximation (16) made it 

possible to obtain an approximate analytical solution of the system of equations (1), (2) in the form of 

two-color localized optical vortices (two-color vortex light bullets).  

Due to the diffraction approximation, we neglected the nonlinear term in the equation (14a). As a 

result, the study was reduced to solving a linear eigenvalue problem. It is important to note that the 

original problem is highly non-linear. In particular, the second harmonic generation is a essentially 

nonlinear effect. In addition, it is due to the nonlinearity that the vortex bullet is localized in the 

direction of its propagation. In this case, transverse localization occurs due to the linear refraction of 

the pulse in the focusing gradient waveguide. I.e. in the diffraction limit (16), it is possible to 

effectively separate the longitudinal and transverse dynamics of a light pulse. 
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