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Abstract. Uniform equiconvergence of spectral expansions associated with two second-order differential operators with involution
—u"”(—x) + q(x)u(x) and the Cauchy data u(—1) = 0, u’(—1) = 0 is obtained. The proof uses the Cauchy integral method and the
Green'’s function asymptotics of the considered operator. As a corollary, it is proved that the root functions of this operator form
the basis in L,(—1, 1) for any continuous complex-valued coefficient g(x).

Introduction

Consider the functional-differential operation
Mu] = —u"'(=x) + g(u(x), -1<x<1, €))
with a complex-valued continuous coefficient g(x) subject to the Cauchy data at the end-point x = —1:
u-1)=0, u'(-1)=0. 2)

Clearly, if the coefficient g(x) is real-valued then the operator (1)-(2) is symmetric and has the unique self-adjoint
extension L with the domain W22(— 1, 1). As the spectrum of L is discrete and non-empty, each function f(x) € Lr(—1, 1)
has the L,-convergent eigenfunction expansion in the orthogonal series.

There are two ways to enhance this convergence — either take the expanded function f(x) from some restricted
class, or compare this series with a simpler one with known properties. The second approach for ordinary differential
operators supposes such a comparison with the conventional Fourier series. Here, for the differential operator with
involution, it is natural to study the equiconvergence of the general biorthogonal series for (1)-(2) and the orthogonal
series that could be easily constructed in the case g(x) = 0. The central result of the paper (Theorem 2) states that
if S,,(x, ) and o, (x, f) are the partial sums of the biorthogonal series for (1)-(2) and of the orthogonal series in the
unperturbed case then

Sm(x’f)_o—m(x7f) = O(I)a m — oo, (3)

uniformly for x € [-1, 1].

The study of convergence for eigenfunction expansions related to ordinary differential operators is the classical
topic of the spectral theory (see e.g. Coddington and Levinson [1]). A different approach to this problem was proposed
by V.A.I’in (see survey in [2]). It is not connected directly with the form of the boundary conditions and could be
applied in the variety of non-self-adjoint cases [3—13]. The basis property of eigenfunctions for various types of
differential operators was lately discussed in [14—18].

The operation (1) under consideration has a peculiarity as it contains reflection v(x) = —x in its main term. This
is the simplest example of involution of the interval [—-1, 1] since v(v(x)) = x for all x € [-1, 1].
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Results on the basis properties for eigen or root functions for one-dimensional differential operators with involu-
tion are eagerly applied in research of PDE. The recent papers by Aleroev, Kirane and Malik [19], Kirane and Al-Sati
[20] give plausible examples. Various applications of differential operators with involutions could be found in [21].

Spectral expansions associated with differential operations with involution are less studied than the ODE case.
Spectral properties of the first-order differential operators with involution are considered in [22-24]. Sample second-
order differential operators with involution are discussed in [25-27]. A specific example of a boundary-value problem
for the second-order differential operator with involution that produces an infinite number of associated functions is
given in [28,29].

This paper consists of two parts. Its first section focuses on the properties of the unperturbed case (g(x) = 0). It
characterizes the spectrum, the eigenfunctions, constructs the Green’s function (Theorem 1), and gives its estimates.
The second section moves to the general case of (1)-(2). The study of its Green’s function gives tools to apply the
Cauchy integral technique for obtaining the equiconvergence result in Theorem 2. The important corollary on the
basis property of the root functions of (1)-(2) in Ly(—1, 1) is given in the final Theorem 3.

The case of g(x) =0

Consider the unperturbed boundary value problem (1)-(2)

—u”(-x) = Au(x), -l<x<1,
u(-1)=u'(-1)=0. )

The straightforward calculation shows that the eigenvalue of (1)-(2) are the roots to the equation (4 = pz):
w(p) = i(1 — exp2p))(1 — exp(2ip)) — (1 + exp2p))(1 + exp(2ip)) = 0. )

Lemma 1. The spectrum of (4) is non-empty, all the eigenvalues are non-zero and simple and the sequence of its
eigenvalues Ay = pi splits into two subsequences:

Pr1 = (k+ (1/4)mi + 6pai, k=0,1,2,..., 61 ~ exp(—(n/2) = 2rk), k — +oo, ©6)
P2 = (k+ (/A + 62, k=-1,-2,..., ko~ exp((n/2) - 2xlk]), k — —co. (N

The eigenfunctions of (4) constitute an orthogonal system in L,(—1, 1) and has the form

1) = exp(pra (1 +) = exppra (1 = 0) + = D{exp(ioea(1 +0) + explipea (1 = 0)). k=012, ®)

o () = (1 + i)(exp(pk,z(l + ) - explpral - x))) - (exp(ipk,z(l + ) + explipra(l - x))), k=-1,-2,.... (9

Lemma 1 unveils the main asymptotic terms of these eigenfunctions — these are the right-hand sides of (8) and
(9) with py1 and pi» substituted by their main asymptotic terms in (6) and (7) respectively.
It also follows from (6) and (7) that the eigenfunctions (8), (9) are almost normed, i.e.

JALA >0 A < lugll, llukpolls < Ax Vk

(here || - || denotes the norm in L,(—1, 1)). Thus, any function f(x) € L,(—1, 1) has the Fourier-type expansion in the

series and its partial sums
m

Tl ) = ) agu(x) + ) bt () (10)
k=1

k=0

with the coefficients
1 1
ayg = ||14k,1||£2f fOu (@) dt, by = ||M—k,2||§2f SOu_ (1) dt,
-1 -1

converge to f(x) with respect to the L,(—1, 1)-norm.
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Let us now construct the Green’s function for the problem (4). Following the classical notion, the Green’s function
G(x,1, 1) is introduced as the integral kernel in the representation

1
u(x)=f G(x,t, ) f(t)dt an
-1

of the solution to the problem
—u’(-x) = ux) + f(x), -1<x<l,

u(-1) =u'(-1) = 0. (12)

If f(x) is a continuous function then u(x) in (11) is the classical (pointwise) solution to (12). If f(x) belongs to
Li(—1, 1) then the representation (11) satisfies the equation in (12) almost everywhere.
Theorem 1. If A is not an eigenvalue of (4) then the solution of (12) has the form

u(x) = il {[—l fl(eip(]+’) + eip(l_’))f(t)dH
pw) L 2 )

+é(i(1 _ gzip)(efZP + 1) _ (1 + eZip)(efZP 3 1)) fl(ep(m) _ ep(l—t))f(t) dt](ep(l+x) _ ep(l—x)) +
-1

+[$(i(1 — ) e+ 1) - (1+ )2 - 1)) fl(eip(1+t) + eP170) £(0) -

-1

_% fl<ep(1+t) _ ep(l—t))f(t) dt](eip(lﬂc) + eip(lfx))}.,.

1

+i f—X[_ie—Zip(eip(l+x) + eip(l—x))(eip(l+t) _ eip(l—t)) + e—2p(ep(l+x) _ ep(l—x))(ep(l+t) + ep(l—t))]f(t) df +
80 J-i
+8i f"[ie_z,-p(e,-p(m) + eip(l—z)>(eip(l+x) _ eip(l—x)) _ e—Zp(ep(l+t) _ ep(l—t))<ep(l+x) 4 ep(]-x))]f(t) dt +
0 Jox
1
+if [ie—2ip(eip(1+x) + eip(l—x))(eip(lﬂ‘) B eip(l—t)) B e—Zp(ep(l+x) B ep(l—x))(ep(l+t) + ep(l—t))]f(t) di.
80 Jx

Theorem 1 is proved by the direct checking of (12).
Corollary. The Green’s function of (4) has the form

pwp) L 2

Gt = {30 4 D) (i1 = ) 1) - (1 2o = ) - )]
.(ep(l+x) _ ep(l—x)) + [é(l(l _ eZp)(e—Zip + 1) B (1 + eZp)(e—Zip B 1))(eip(1+t) + eip(l—t)) B %(ep(lﬂ) _ ep(l—t))] )

_(eip(1+x) + eip(l—x))} + g(x,t, )

where
g, t,) = (8p) "

_ie—2ip(eip(l+x) + eip(l—x))(eip(lH) _ eip(l—z)) + e—Zp(ep(l+x) _ ep(l—x))(e/1(1+t) + ep(l—t))’ t< -,
sgn (x)[ie—Zip(eip(lth) + eip(l—t))(eip(l+x) _ eip(l—x)) _ 872p(ep(l+t) _ ep(kx))(ep(nx) + ep(lfx))], It < |x],
ie—Zip(eip(l+x) + eip(l—x))(eip(l+r) _ eip(l—t)) _ e—Zp(ep(l+x) _ ep(l—x))(ep(1+l) + ep(l—l)), £> x|

Remark. The explicit form of the Green’s function for the first-order linear differential equation with involution
was recently obtained by Cabada and Tojo [30].
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The Green’s function helps to rewrite the eigenfunction expansion related to (4) using the Cauchy contour inte-
gral.
As the poles of the Green’s function of (4) are the zeroes of w(p) in (5), we introduce the circles Cy in the
complex A-plane that separate these poles from each other. Due to the asymptotics in Lemma 1, the circles Cy :
2
1] = ((k + (1/4))m + 1) do not cross the spectrum of (4) for large values of k. It follows from the general theory of
self-adjoint operators that, for large values of m, the partial sum (10) can be rewritten in the form

1
om(x, ) = —ﬁ f(fl G(x,t, ) f () dt) da. (13)

m

In order to use (13) for the equiconvergence analysis one needs an appropriate estimate for the Green’s function.
Lemma 2. There exists a constant C > 0 such that, for sufficiently large ||, the Green’s function of (4) satisfies

the estimate
IG(x, 2, )| < Clpl ™" r(x, 1,p) (14

where p = VA lays outside the collection B of the circles {Ip —pijl < 1/16}, j = 1,2, centered at the zeroes of (5) and
r(x, t, p) denotes the function:

r(x,1,p) = exp(—pollx| = Itl]) + exp(—po(2 — Il = t)),  po = min([Re pl, [Im pl).

Lemma 2 follows from the explicit form of the Green’s function G(x, 7, 1).

Equiconvergence Property

Let us consider the problem of equiconvergence of the eigenfunction expansions related to the unperturbed problem
(4) and to the general problem (1)-(2) with an arbitrary continuous complex-valued coefficient g(x).
Denote by G4(x,t, 1) the Green’s function of (1)-(2). It follows from the relations

PG 1)
0x?

8G (~x,1,2)

= AG(x, 1, D), e
X

+g(x0)Gy(x,1,4) = AG4(x,1, ), t# *x,

that
PGy, ) = GE,1, )
aé;z lf:—x

Since the difference G,(x, t, 1) — G(x, t, A) satisfies the initial conditions (2), one can apply (11) outside the poles
of w(p):

+ A(Gy(x,1,. 1) = G(x,1, ) = ~q()G(x, 1, A).

1
Gy(x, 1, ) = G(x,1,4) = - f G(x, s, Dg(s)G4(s,t, D) ds. (15)
1

Lemma 3. For sufficiently large |p| outside the collection B of circles in Lemma 2, the integral equation (15) has
a unique solution G(x, t, A).
In order to prove Lemma 3 we introduce the iterative kernels

1
GO, t,)=0, GIV(x,1,0) = Gx,1,2) - f G(x, 5, Vq()GL (5,1, ) ds
-1

and, for a fixed ¢ € [—1, 1], the related constants

— 1 —
yo= max |G (5, t, Dl (x,1,0), ¥y = max |GV, 1,0) = G (x, 1, D)l ol (x, 1, p).
—1<x<1 —1<x<1

We prove that, for sufficiently large p laying outside the collection B of circles in Lemma 2, the estimate

y, <27°C (16)
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holds with the constant C from the estimate (14) of Lemma 2.
In fact, the estimate (16) with p = 0 repeats (14). Then, by the induction reasoning, one deduces the relations:

1
yoor < max fioh ) [ 160a, DNIONIGY(511.0 = G .1, Dl ds) <
—lsx< -1

1
<ol max ) [ s oG tpla(o)lds a7
—lsx< -1

Since r(x, s, p)r(s, t, p) < 2r(x, t, p), the estimate (17) yields

1
Ype1 < 2Cy,lol™ f lg(s)lds
-1

which delivers the estimate (16) if

1
AC|p|™! f lg(s)lds < 1.
-1

Estimate (16) provides that the series Z;": I(G(qp +1)(x, t,A)— G(qp )(x, t, /l)) converges uniformly for x € [-1, 1]. As

its m-th partial sum equals G(qm“)(x, t, 1) — G(x,t, 1), the sequence G(qm)(x, t, A) also converges uniformly and its limit
G,(x,t, 2) satisfies (15).
Lemma 3 is proved.

Remark. Under the assumptions of Lemma 3, G,(x, t, A) satisfies the estimate
IG,(x, 1, V)| < 2Clo[ ' r(x, 1, p). (18)

In particular, it means that, for sufficiently large |p|, the poles of G,(x, t, 1) could lay solely within the collection B of
circles around the poles of the Green’s function G(x, ¢, A).

Let Cy be the same contours as in (13). Lemma 3 implies that the partial sum S ,,(x, f) of the spectral expansion
related to the problem (1)-(2) has the same integral representation

1 1
S(x, ) = _Tmf(fl Gq(x,t,/l)f(t)dt) da. (19)

m

We say that the sequence S ,,(x, f) equiconverges with the sequence o, (x, f) on [—1, 1] if the difference S ,,(x, f)—
om(x, f) vanishes as m — oo uniformly for -1 < x < 1.
Theorem 2. For an arbitrary function f(x) € Li(—1, 1), the sequence S ,,(x, f) equiconverges with the sequence

om(x, f)on[-1,1].
Proof. Taking into account (13) and (19), we consider the difference S ,,(x, f) — o, (x, f) in the form

1 1
S, f) = Tl ) = = fr { f 1 [Gq<x, 6A) - G, /l)]f(t) dt}pdp 20)

where I, denotes the set of complex p : p? € C,,.
It follows from the estimates (14), (18) and the relation (15) that, for sufficiently large m and p € I,

1
IG,(x, 1, 1) = G(x, 1, D)| < 4C?|p|*r(x, 1, p) f lg(s) ds.
-1

This inequality combined with the relation (20) gives the estimate
1 dp
1S m(x, £) = ol NI < Ci s plfoldrf || @
I \V-1

where C; denotes the constant 4C27~! f_ 11 lg(s)l ds.
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Now taking sufficiently small ¢ > 0, we split the interval (-1, 1) into two parts:

Ar=(=1,D\Ay, Ar=(-1,-14+8)U(=x—=6,-x+0)Ux—8x+8)U(l=61).

Therefore, the estimate (21) turns into the relation

Sute$) = el < Cr [ [ (embieene it ya| ] 20m [ roian @)
T, JA p A

Since the function f(x) is in L;(—1, 1), by the Lebesgue theorem, there exists § > 0 such that the second term in

the right-hand side of (22) is less than &/2. The first term satisfies the estimate

1
ff(efpol\xlflt\l+efpo(Z—lelfItH))|f(t)|d,|d_p|S3f |f(t)|dtf exp(—poé)'@|.
T, JA, Y -1 T 14

If p,, is the radius of [, then

/4 3r/4
d
f exp(—p06)|?p|=4 f exp(=8p,| sin #]) dt + 2 f exp(=8pm| cos ) dt < Calom| ™.
1™
0 /4

Therefore, the second term in the right-hand side of (22) could be also made less than &/2 provided m is suffi-

ciently large.

Theorem 2 is completely proved.
As the equiconvergence property is obtained in the uniform over [—1, 1] metric for any integrable function f(x)

and the orthogonal series (10) converges for any function f(x) € L,(—1,1) in the metric of L,(—1, 1), Theorem 2
immediately delivers the following result on the basis property.

Theorem 3. The system of root functions of the problem (1)-(2) with an arbitrary continuous complex-valued

coefficient q(x) constitutes the basis in Ly(—1, 1).
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