

Изучение термических и механических свойств легкоплавких смесей малеимидов,

модифицированных фталонитрильными группами Алексанова А.А., ¹ Нечаусов С.С.²

Студент, 2 курс магистратуры

¹Российский химико-технологический университет имени Д.И. Менделеева, Факультет нефтегазохимии и полимерных материалов, Москва, Россия ² Московский государственный университет имени М.В.Ломоносова, химический факультет, Москва, Россия

E-mail: aleksanova.aa@mail.ru

Бисмалеимидные смолы (БМИ) представляют класс термостойких термореактивных полимеров, обладающих целым рядом полезных свойств для промышленного применения, особенно в аэрокосмической области. В обзоре [1] показано, что по термо-и теплостабильности и комплексу механических свойств БМИ превосходят более широко используемые в промышленности эпоксидные связующие при этом имеют сравнимые с ними механические характеристики.

Основной проблемой, связанной с использованием БМИ в качестве связующих для ПКМ, является высокая хрупкость продуктов гомополимеризации БМИ. На практике их применяют только в смесях с сополимерами, одним из наиболее применяемых является дилаллил бисфенола A (**DABA**), однако его использование приводит к уменьшению теплостойкости.

С целью повышения термо- и теплостойкости полимеров из малеимидных композиций был синтезирован мономер, содержащий малеимидный и фталонитрильный фрагменты. Мономер PNBM имеет относительно низкую температуру плавления 107 °C и как следствие смесь PNBM с DABA характеризуется широким технологическим окном (180 °C). Был получен комплекс свойств смеси PNBM с DABA, из результатов анализов ДМА, ТГА и испытаний на трещиностойкость и изгиб. В таблице 1 приведены сравнение данных по тепло- и термостойкости, а также механических свойств смесей.

Таблица 1 Сравнение характеристик полученной смеси РNВМ-DABA с ВМІ-DABA

	$T_{5\%}^{N_2}$, °C	КО при 800°C, %	G' RT, MΠa	G′ 300°C, МПа	К _{Iс} , МПа*м ^{0.5}	G _{Ic} , Дж*м⁻²	σ _{изгиб} , МПа
BMI- DABA[2]	407	37	3954	512	0.8 - 1.4	250-500	115
PNBM- DABA	456	76.4	4367	2125	1.08	308	108

Как видно из таблицы, $T_{5\%}$ модифицированной матрицы значительно повысилась (на 50° C), коксовый остаток при 800° C увеличился вдвое вырос модуль упругости как при комнатной температуре, так и при 300° C. Это связано с тем что появились более термостойкие фталонитрильные фрагменты в структуре полимерной матрицы.

Работа выполнена при финансовой поддержке РНФ проект № 20-79-00146.

Литература

- 1. Iredale R.J., Ward C., Hamerton I. Modern advances in bismaleimide resin technology: A 21st century perspective on the chemistry of addition polyimides // Prog. Polym. Sci. Elsevier Ltd, 2017. T. 69. C. 1–21.
- 2. Gu J. и др. Fabrication of modified bismaleimide resins by hyperbranched phenyl polysiloxane and improvement of their thermal conductivities // RSC Adv. Royal Society of Chemistry, 2016. T. 6, № 62. C. 57357–57362.

