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Abstract: Reductions make it possible to reduce the solution of a PDE to solving an ODE. The best
known are the traveling wave, self-similar and symmetry reductions. Classical and non-classical
symmetries are also used to construct reductions, as is the Clarkson–Kruskal direct method. Recently,
authors have proposed a method for constructing reductions of PDEs with two independent variables
based on the idea of invariance. The proposed method in this work is a modification of the Clarkson–
Kruskal direct method and expands the possibilities for its application. The main result of this article
consists of a method for constructing reductions that generalizes the previously proposed approach
to the case of three independent variables. The proposed method is used to construct reductions of
the unsteady axisymmetric boundary layer equation to ODEs and simpler PDEs. All reductions of
this equation were obtained.
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1. Introduction
1.1. Preliminary Remarks

Constructing reductions of nonlinear PDEs is of fundamental importance for finding
exact solutions. Reductions make it possible to reduce the solution of a PDE to solving an
ODE. The best known are self-similar reductions [1]

u = tν ϕ(ζ) , ζ = xt−δ , (1)
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where u is a dependent variable, x and t are independent variables, and ν and δ are
constants. Self-similar reductions are a special case of symmetry reductions. Symmetry
reductions are found by applying group analysis methods [2]. Traveling wave reductions
have the form [3]

u = ϕ(ζ) + V0(t) , ζ = x−V(t) .

In [4], the reductions

u = λ(t) + µ(t)ϕ(ζ) , ζ = x p(t) + q(t) , (2)

were considered; they generalize the reductions found in (1).
A method for finding reductions of PDEs with two independent variables was pro-

posed in [5]; this is also known as the Clarkson–Kruskal direct method. For the Boussinesq
equation

utt +
1
2
(u2)xx + uxxxx = 0 (3)

all reductions of the form
u = U(x, t, w(z)) (4)

were obtained, where z = z(x, t) and the function w(z) is a solution of an ODE. It was
shown that there are reductions other than those obtained using the Lie group method for
finding group-invariant solutions of PDEs.

All reductions of the Burgers equation

ut + uux = uxx , (5)

the Korteweg–de Vries equation

ut + uux = uxxx, (6)

and the modified Korteweg–de Vries equation

ut + u2ux = uxxx (7)

were found in [5]. It was shown that reductions of these equations coincide with the
symmetry reductions. It was also shown that for Equations (3) and (5)–(7), reductions (4)
have the form

u = α(x, t) + β(x, t)w(z) . (8)

In the works of [6,7], a method for constructing reductions of PDEs with two inde-
pendent variables was proposed, based on the idea of invariance. In these articles, based
on the proposed approach, all reductions of the equation of a steady-state plane boundary
layer with a pressure gradient were found.

1.2. The Main Results

The main results of this article are the following:

• a method of constructing reductions, generalizing the previously proposed
approach [6,7] to the case of three independent variables;

• the construction of all reductions of the unsteady axisymmetric boundary layer equa-
tion.

2. Reductions of the Burgers Equation

We demonstrate the effectiveness of the method presented in [6,7] by finding the
reductions of the Burgers Equation (5).
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Substituting (4) into Equation (5), we obtain the relation

Uwz2
xw′′ + Uwwz2

x(w
′)2 + (2Uxwzx + Uwzxx −UUwzx −Uwzt)w′

+ Uxx −UUx −Ut = 0 .
(9)

We divide both sides of Relation (9) by the coefficient at the highest derivative by
Uwz2

x (normalization of the coefficients). The normalized coefficient at the term with (w′)2

has the form
Uww

Uw
= Γ(z, w) . (10)

Integrating Relation (10), we obtain

U(x, t, w) = β(x, t)Γ1(z, w) + α(x, t).

The transformation w→ F(z, w) maps ODE into ODE. Then, the reductions of the Burgers
equation can be sought in the form presented in (8).

Substituting (8) into Equation (5), we obtain the relation

βz2
xw′′ − β2zxww′ + [βzxx + (2βx − αβ)zx − βzt]w′

+ ββxw2 + (βxx − βαx − αβx − βt)w + αxx − ααx − αt = 0 .
(11)

Relation (11) is an ODE if the normalized coefficients depend on α(x, t), β(x, t), z(x, t)
and their derivatives are functions of z. From this condition, we obtain the overdetermined
system of equations

β

zx
= Γ1(z) ,

βx

z2
x
= Γ2(z) ,

βzxx + (2βx − αβ)zx − βzt

βz2
x

= Γ3(z) ,

βxx − βαx − αβx − βt

βz2
x

= Γ4(z) ,
(12)

αxx − ααx − αt

βz2
x

= Γ5(z)

for finding the unknown functions α(x, t), β(x, t), z(x, t) and Γ1(z), . . . , Γ5(z).
Let us state the main considerations underlying the method for constructing reductions

for PDEs with two independent variables [6,7] as applied to the system of Equation (12):

1. Each equation of the system of Equation (12) is equivalent to the condition that the
Jacobian of its left-hand side and the function z(x, t) is equal to zero. As a result, we can
derive an overdetermined system of equations for determining the unknown functions
α(x, t), β(x, t) and z(x, t) (A-system). A-system is not presented here because of its
cumbersomeness.

2. Consider the auxiliary functions µ1 = µ1(x, t), µ2 = µ2(x, t) and µ3 = µ3(x, t) defined
by the relations

µ1zx + zt = 0 ,

µ1βx + βy + µ2β = 0 , (13)

µ1αx + αt + µ2α + µ3 = 0 .

Finding the auxiliary functions, we find the reductions. As was noted in [5], the
following transformations map a reduction of the form found in (8) into a reduction:

z→ F1(z) ,

β→ β

F2(z)
, (14)
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α→ α +
β

F3(z)
,

where F1(z), F2(z) and F3(z) are arbitrary functions. These transformations are as-
sociated with the arbitrariness of w(z) in finding an ODE. It can be shown that the
auxiliary functions µ1, µ2 and µ3 are invariant under the transformations in (14). It
can also be shown that the A-system admits transformations (14).

3. Finding the derivatives αx, βx and zx from the relations in (13) and substituting them
into the A-system, we obtain the following overdetermined system of equations for
determining the auxiliary functions:

µ1x − µ2 = 0 , µ2x = 0 ,

2µ1µ1x + µ1t + µ3 = 0 , (15)

2µ3µ1x + µ3t = 0 .

Thus, the A-system is reduced to the simpler system of Equation (15). The A-system
can be written only in terms of the invariants µ1, µ2 and µ3 of transformations (14)
because it is invariant under these transformations.

4. The overdetermined system of Equation (15) is easy to solve. The auxiliary functions
µ1, µ2 and µ3 are used to construct reductions.

Remark 1. According to the approach described in [5], the overdetermined system of Equation (12)
is solved directly. Reductions are found using modulo transformations (14).

3. Reductions of the Steady-State Plane Boundary Layer Equation
3.1. Basic Equation

We also demonstrate the effectiveness of the method for constructing reductions of
PDEs with two independent variables based on the idea of invariance by finding the
reductions of steady-state plane boundary layer equation [6,7].

We consider the equation

uyyy − uyuxy + uxuyy − P(x) = 0 , (16)

which describes the steady motion of a viscous incompressible fluid in a laminar plane
boundary layer with a pressure gradient [8]. Equation (16) is written in dimensionless vari-
ables. Here, u is the stream function, P(x) = ∂p/∂x is a given function and p is the pressure.
Self-similar solutions of Equation (16) were discussed in the classical monographs [1,8–11].
Symmetry reductions of Equation (16) can be obtained using the results of [2]. Reductions of
Form (2) were found and studied in [4]. In [12], the method of non-classical symmetries [13]
and its generalization were used to obtain new reductions of Form (8) for Equation (16). For
invariant and noninvariant exact solutions, see also [10,11,14–20]. An extensive list of exact
solutions to the boundary layer equation on a flat plane as well as related hydrodynamic
equations can be found in the handbook [19].

Remark 2. For some exact solutions and transformations of the unsteady plane boundary layer
equations [8,11], see [2,19,21–28].

Remark 3. The studies [17,18,29–32] present exact solutions and transformations for the steady-
state and unsteady equations of non-Newtonian fluids.

3.2. Construction of Reductions

We look for reductions of Equation (16) in the form

u = U(x, y, w(z)) , (17)



Mathematics 2022, 10, 1673 5 of 17

where z = z(x, y) and the function w(z) is a solution of an ODE. Substituting (17) into
Equation (16), we obtain the relation

Uwz3
yw′′′ + 3Uwwz3

yw′w′′ + zy(3Uywzy + UxUwzy −UyUwzx + 3Uwzyy)w′′

+ Uwwwz3
y(w

′)3 + (3Uywwz2
y −UwUxwz2

y + UwUywzxzy + UxUwwz2
y

−UyUwwzxzy + U2
wzxzyy −U2

wzyzxy + 3Uwwzyzyy)(w′)2 + (3Uyywzy (18)

−UwUxyzy + UwUyyzx −UyUxwzy −UyUywzx + 2UxUywzy + UxUwzyy

−UyUwzxy + 3Uywzyy + Uwzyyy)w′ + Uyyy −UyUxy + UxUyy − P(x) = 0 .

Both sides of Relation (18) are divided by the coefficient at the highest derivative by
Uwz3

y. Consider the normalized coefficient at the term with w′w′′. It has the form

3Uww

Uw
= Γ(z, w) . (19)

Remark 4. While deriving Relation (19), we assumed that zy 6= 0. The case zy = 0 corresponds to
a degenerate reduction. It is of no interest, and its detailed consideration is omitted.

The transformation w→ F(z, w) maps ODE into ODE. Then, the reductions of Equa-
tion (16) can be sought in the form

u = α(x, y) + β(x, y)w(z) , (20)

where z = z(x, y). Substituting (20) into Equation (16), we obtain the relation

βz3
yw′′′ + βzy(βxzy − βyzx)ww′′ + zy(3βzyy + 3βyzy + αxβzy − αyβzx)w′′

+ β(βzxzyy − βzyzxy + βyzxzy − z2
yβx)(w′)2

+ (βxβzyy + βzxβyy − β2
yzx + βyβxzy − βyβzxy − βzyβxy)ww′

+(βzyyy − αyβxzy − αyβyzx − αyβzxy − βzyαxy + 2αxβyzy

+ αxβzyy + βzxαyy + 3βyzyy + 3βyyzy)w′

+ (βxβyy − βyβxy)w2 + (βyyy + αxβyy − βyαxy − αyβxy + βxαyy)w

(21)

+ αyyy − αyαxy + αxαyy − P(x) = 0 .

Relation (21) is an ODE if the normalized coefficients depend on α(x, y), β(x, y) and
z(x, y) and their derivatives are functions of z. From this condition, we obtain the overde-
termined system of equations

βxzy − βyzx

z2
y

= Γ1(z) ,

3βzyy + 3βyzy + αxβzy − αyβzx

βz2
y

= Γ2(z) ,

β(βzxzyy − βzyzxy + βyzxzy − z2
yβx)

βz3
y

= Γ3(z) ,

βxβzyy + βzxβyy − β2
yzx + βyβxzy − βyβzxy − βzyβxy

βz3
y

= Γ4(z) ,

βzyyy − αyβxzy − αyβyzx − αyβzxy − βzyαxy

βz3
y

+
2αxβyzy + αxβzyy + βzxαyy + 3βyzyy + 3βyyzy

βz3
y

= Γ5(z) ,

(22)
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βxβyy − βyβxy

βz3
y

= Γ6(z) ,

βyyy + αxβyy − βyαxy − αyβxy + βxαyy

βz3
y

= Γ7(z) ,

αyyy − αyαxy + αxαyy − P(x)
βz3

y
= Γ8(z) .

Each of the equations in Equation (22) is equivalent to the condition that the Jacobian
of its left-hand side and z(x, y) is equal to zero. As a result, we can derive an A-system for
determining the unknown functions α(x, y), β(x, y) and z(x, y) (the system is not presented
because of its cumbersomeness).

Consider the auxiliary functions µ1 = µ1(x, y), µ2 = µ2(x, y) and µ3 = µ3(x, y)
defined by the relations

zx + µ1(x, y)zy = 0 ,

βx + µ1(x, y)βy + µ2(x, y)β = 0 , (23)

αx + µ1(x, y)αy + µ2(x, y)α + µ3(x, y) = 0 .

Finding the partial derivatives αx, βx and zx from (23) and substituting them into the
A-system, we obtain the following overdetermined system of equations for finding the
auxiliary functions:

µ1yµ2 − µ1xy − µ2
1y − µ1µ1yy = 0 ,

µ2
2 − µ2x − µ2µ1y − µ1µ2y = 0 ,

µ2µ3 − 3µ1yy − 3µ2y − µ3x − µ1µ3y − µ1yµ3 = 0 ,

µ2y(2µ1y − µ2) = 0 ,
µ2µ2yy − µ2

2y = 0 ,
(24)

4µ1yyy + 6µ2yy + µ2µ3y − 2µ2yµ3 + 2µ1yµ3y = 0 ,

µ2yyy + 2µ2yµ3y − µ2yyµ3 − µ2µ3yy = 0 ,

µ3yyy + µ2
3y − µ3µ3yy + 3P(x)µ1y + P(x)µ2 + P′(x) = 0 .

The first seven equations of the overdetermined system of Equation (24) are easy to
solve in explicit form. To solve them, it is enough to consider three cases: (1) µ2y = 0,
µ2 = µ2(x) 6= 0; (2) µ2 = 0; (3) 2µ1y − µ2 = 0. The solution of the system of Equation (24)
for functions µ1, µ2 and µ3 is not presented. The system of Equation (24) has a solution
only for the following functions P(x):

P(x) = λ(x + τ)ν, λ 6= 0 , ν 6= 0 ,

P(x) = σeγx , σ 6= 0 , γ 6= 0 ,
P(x) = σ0 ,

(25)

P(x) = λ1(x + τ1)
−5/3 + λ2(x + τ1)

−1/3 .

Here, λ, τ, ν, σ, γ, σ0, λ1, λ2, τ1 and τ2 are arbitrary constants.

3.3. The Existence of Non-Symmetry Reductions

Let us find the symmetries of Equation (16). A symmetry operator is sought in the
form [2]

X = ξ1(x, y, u)
∂

∂x
+ ξ2(x, y, u)

∂

∂y
+ η(x, y, u)

∂

∂u
.
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The system of equations for determining the components of the symmetry operator is
given by

ξ1
y = 0, ξ1

u = 0, ξ2
u = 0, ξ2

xy = 0,

ηx = 0, ηy = 0, ξ1
x − ξ2

y − ηu = 0,

ξ1P′(x) + (3ξ2
y − ηu)P(x) = 0.

The symmetries of Equation (16) depend on the form of the specified function P(x).
Let us present the result of the group classification:

1. for an arbitrary function P(x), the basis of symmetry operators is given by

X1 = b(x)
∂

∂y
, X2 =

∂

∂u
,

where b(x) is an arbitrary function;
2. for P(x) = λ(x + τ)ν, where λ 6= 0 and ν 6= 0, the basis of symmetry operators is

given by

X1 , X2 , Y1 = 4(x + τ)
∂

∂x
+ (1− ν)y

∂

∂y
+ (ν + 3)u

∂

∂u
;

3. for P(x) = σeγx, where σ 6= 0 and γ 6= 0, the basis of symmetry operators is given by

X1 , X2 , Y2 = 4
∂

∂x
− γy

∂

∂y
+ γu

∂

∂u
;

4. for P(x) = σ0, where σ0 6= 0, the basis of symmetry operators is given by

X1 , X2 , Z1 =
∂

∂x
, Z2 = 4x

∂

∂x
+ y

∂

∂y
+ 3u

∂

∂u
;

5. for P(x) = 0, the basis of symmetry operators is given by

X1 , X2 , Z1 , Z3 = x
∂

∂x
+ y

∂

∂y
, Z4 = x

∂

∂x
+ u

∂

∂u
.

Remark 5. The results of the group classification of Equation (16) correspond to those of the system
of equations describing a laminar steady-state plane boundary layer with a pressure gradient [2].

From the group classification, it follows that the last of the types of the function P(x)
presented in Formula (25) leads to reductions other than those obtained using symmetries.

In conclusion, we note that the proposed method for finding reductions associated
with the construction of a A-system and the introduction of invariant auxiliary functions is
general and applicable to PDEs with two independent variables. The proposed method is a
modification of the Clarkson–Kruskal direct method and expands the possibilities for its
application.

4. Reductions of the Unsteady Axisymmetric Boundary Layer Equation
4.1. Basic Equation

Let us consider an equation describing the unsteady flow of a viscous incompressible
fluid in a laminar boundary layer on the surface of an axisymmetric body of rotation [8,10]

uyt − uyyy + uyuxy −
(

ux +
r′0(x)
r0(x)

u
)

uyy − f (x, t) = 0 . (26)
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Equation (26) is written in dimensionless variables. Here u(x, y, t) is a stream function and
a given function f (x, t) = −∂p/∂x is a pressure gradient. Function r0(x) describes the
shape of the streamlined body. For the simplicity of further calculations, it is convenient to
use Stepanov–Mangler variables [8,10,11] by using the following formulas:

x̄ =

x∫
0

r2
0(τ)dτ, ȳ = r0(x)y, ū = r0(x)u . (27)

This reversible transformation of variables maps the equation of a steady-state axisymmetric
boundary layer into the equation of a steady-state plane boundary layer [8,10,11].

Applying the transformation of the variables in (27) to Equation (26), we obtain

1
r2

0(x)
uȳt − uȳȳȳ + uȳux̄ȳ − ux̄uȳȳ −

f (x, t)
r2

0(x)
= 0 .

Expressing x by x̄ and omitting the bars, we have

r(x)uyt − uyyy + uyuxy − uxuyy − F(x, t) = 0 , (28)

where r(x̄) = 1/r2
o(x(x̄)), F(x̄, t) = f (x(x̄), t)/r2

o(x(x̄)). We consider Equation (28) as the
basic one. In the following, all two-dimensional and one-dimensional reductions of this
equation are found.

Remark 6. Some exact solutions to unsteady axisymmetric boundary layer equations are found
in [24,33,34].

Remark 7. Some exact solutions of axisymmetric boundary layer equations for non-Newtonian
fluids are found in [24].

4.2. Reductions to Simpler PDEs (Two-Dimensional Reductions)

Let us find all two-dimensional reductions of Equation (28), i.e., reductions to a PDE
with two independent variables. We are looking for two-dimensional reductions in the
following form:

u = U(x, y, t, w(s(x, y, t), q(x, y, t))) . (29)

Substituting Expression (29) into Equation (28), we have

−Uws3
ywsss −Uwq3

ywqqq − 3Uwws3
ywswss − 3Uwwq3

ywqwqq + · · · = 0 . (30)

Here, for simplicity, only four terms are written out.
Next, we divide both parts of Equation (30) by a coefficient with a derivative of wsss,

i.e., by −Uws3
y (the procedure for normalizing coefficients).

The condition that the resulting equation is a PDE for the function w(s, q) is the
dependence of each of the normalized coefficients for derivatives of the function w(s, q)
only on the variables s, q and w. Consider the normalized coefficient for the term wswss.
This term has the following form:

3Uww

Uw
= Γ(s, q, w) . (31)

Integrating (31) twice by w gives the following:

U(x, y, w) = β(x, y, t)Γ̃(s, q, w) + α(x, y, t) .
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Since an arbitrary function of the variables s, q and w can be taken as a function of w(s, q),
then two-dimensional reductions of Equation (28) can be searched in the form of a linear
function of w(s, q), so we have

u = β(x, y, t)w(s, q) + α(x, y, t) . (32)

Remark 8. When deriving Expression (31), it was assumed that sy 6= 0. If sy = 0, then with
qy 6= 0 from Expression (30), similarly, we obtain Form (32). Case s2

y + q2
y = 0 corresponds to

degenerate reduction that does not contain partial derivatives of the third and second orders. This
case is not of particular interest, and its detailed consideration is not given here.

Let us show that one of the independent variables of the function w(s, q) can, without
loss of generality, be used independently of the variable y. Indeed, considering in Ratio (30)
the normalized coefficient for the partial derivative wqqq, we obtain qy/sy = G(s, q). We
can present the function G(s, q) as G(s, q) = −Γs(s, q)/Γq(s, q). From which it follows that

Γssy + Γqqy = 0 . (33)

From Expression (33), it follows that Γ(s, q) = h(x, t). Let us take, instead of the indepen-
dent variable s, a new independent variable s̄ = Γ(s, q), i.e., let us move on to the new
independent variables s̄, q. Then, in Expression (32), we assume s = s(x, t).

Let us now show that it is possible, without loss of generality, to state β = β(x, t).
Substituting Expression (32) into Equation (28), we have

−βq3
ywqqq + β2sxq2

y(wqwsq − wswqq) + ββysxqywwsq + · · · = 0 .

Here, for simplicity of recording, only three terms are written out. Considering the ratio
of coefficients for derivatives of the function w in the third and second terms, we obtain
βy/β = qyΓ(s, q). Whence it follows that ln β = Γ̃(s, q)+ g(x, t). Since the function β(x, y, t)
is defined up to an arbitrary multiplier depending on the variables s and q, then we can
state β = β(x, t).

Thus, we have the result that two-dimensional reductions of Equation (28) can be
searched in the following form:

u = β(x, t)w(s(x, t), q(x, y, t)) + α(x, y, t) . (34)

Substituting Expression (34) into Equation (28), we have

−βq3
ywqqq + β2sxq2

y(wqwsq − wswqq)− ββxq2
ywwqq + βqy[αysx + r(x)st]wsq

− βqy[3qyy − αyqx + αxqy − r(x)qt]wqq − β2sxqyywswq

+ β(βqyqxy − βqxqyy + βxq2
y)w

2
q − ββxqyywwq − βαyysxws

−[β(qyyy − αyqxy + αxqyy + αyyqx)− (βαxy + βxαy)qy

− r(x)(βqyt + βtqy)]wq

(35)

− βxαyyw− αyyy + αyαxy − αxαyy + r(x)αyt − F(x, t) = 0 .

From the condition that Relation (35) is a PDE, we obtain the following overdetermided
system of differential equations:

βsx

qy
= Γ1(s, q) ,

βx

qy
= Γ2(s, q) ,

αysx + r(x)st

q2
y

= Γ3(s, q) ,

3qyy − αyqx + αxqy − r(x)qt

q2
y

= Γ4(s, q) ,
βsxqyy

q3
y

= Γ5(s, q) ,
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βqyqxy − βqxqyy + βxq2
y

q3
y

= Γ6(s, q) ,
βxqyy

q3
y

= Γ7(s, q) ,
αyysx

q3
y

= Γ8(s, q) , (36)

β(qyyy − αyqxy + αxqyy + αyyqx)− (βαxy + βxαy)qy − r(x)(βqyt + βtqy)

βq3
y

= Γ9(s, q) ,

βxαyy

βq3
y

= Γ10(s, q) ,
αyyy − αyαxy + αxαyy − r(x)αyt + F(x, t)

βq3
y

= Γ11(s, q) .

The system of Equation (36) allows the following transformations:

s→ G1(s) , q→ G2(s, q) ,

β→ G3(s)β , α→ α + G4(s, q)β ,
(37)

where G1(s), G2(s, q), G3(s) and G4(s, q) are arbitrary functions. These transformations
are associated with arbitrariness in finding a reduction of Form (34). Let us introduce
the auxiliary functions µ1 = µ1(x, t), µ2 = µ2(x, y, t), µ3 = µ3(x, t) and µ4 = µ4(x, y, t),
determined from the following relations:

sx − µ1st = 0 , qx − µ2qy − µ1qt = 0 ,

βx − µ1βt − µ3β = 0 , αx − µ2αy − µ1αt − µ3α− µ4 = 0 .
(38)

It can be shown that the introduced auxiliary functions are invariants of the transformations
in (37).

From the first two relations in (38), it follows that Xs = 0, Xq = 0, where the operator
X has the form

X =
∂

∂x
− µ2

∂

∂y
− µ1

∂

∂t
.

By acting with the operator X on the left and right sides of Equation (36), one can obtain a
system of equations that does not contain unknown functions Γ1(s, q), . . . , Γ11(s, q). Further,
in the resulting system of equations, the corresponding partial derivatives of the form sx,
qx, βx, αx, . . . can be excluded using the relations in (38). So, it is possible to obtain a system
of equations containing only auxiliary functions. This system of equations has the form

µ1x − µ1µ2y + µ1µ3 = 0, µ1µ2yy = 0, µ1µ4yy = 0,

µ2xy − µ2µ2yy + µ3x − µ2
2y + µ2

3 = 0, µ3x − µ3µ2y + µ2
3 = 0,

2r(x)µ2y − µ1µ4y − r(x)µ1t − r′(x) = 0, µ3µ2yy = 0, µ3µ4yy = 0,

3µ2yy + µ4x − µ4µ2y − µ2µ4y − r(x)µ2t + µ3µ4 = 0, (39)

µ2yyy − µ4xy + µ4µ2yy + µ2µ4yy − r(x)µ2yt − 2µ3µ4y − r(x)µ3t = 0,

µ4yyy + µ4µ4yy − r(x)µ4yt − µ2
4y − 3F(x, t)µ2y + Fx(x, t)

− µ1Ft(x, t)− F(x, t)µ3 = 0.

The overdetermined system of Equation (39) is solved explicitly. To solve it, it is
enough to consider four cases: (1) µ1 = µ3 = 0; (2) µ1 = 0, µ3 6= 0; (3) µ1 6= 0, µ3 = 0;
(4) µ1 µ3 6= 0. The system of Equation (39) has a solution only for certain types of functions
r(x) and F(x, t). Let us write out these solutions.

1. r(x) = α0(x + β0)
γ, F(x, t) = (x + β0)2(γ+δ)+1G

[
(t + ε)(x + β0)δ

]
.

In this case, we have

µ1 =
δ(t + ε)

x + β0
, µ2 =

y(γ + δ)

2(x + β0)
,

µ3 =
γ + δ + 2
2(x + β0)

, µ4 = 0 .
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Then, from the relations in (38), we find

s(x, t) = (x + β0)
δ(t + ε) , q(x, y, t) = y(x + β0)

γ+δ
2 ,

β(x, t) = (x + β0)
γ+δ

2 +1 , α(x, y, t) = 0 .

The corresponding two-dimensional reduction has the form:

wqqq +

(
1 +

γ + δ

2

)
wwqq − δs(wqwsq + wswqq)− α0wsq

− (γ + δ + 1)w2
q + G(s) = 0 .

2. r(x) = α0 exp(β0x), F(x, t) = exp(2γx)G[(t + ε) exp(−x(β0− γ))].

In this case, we have

µ1 = (γ− β0)(t + ε) , µ2 =
γy
2

, µ3 =
γ

2
, µ4 = 0 .

Then, from the relations in (38), we find

s(x, t) = (t + ε) exp[(γ− β0)x)] , q(x, y, t) = y exp
( γx

2

)
,

β(x, t) = exp
( γx

2

)
, α(x, y, t) = 0 .

The corresponding two-dimensional reduction has the form:

wqqq − (γ− β0)swqwsq − α0wsq + (γ− β0)swswqq

+
γ

2
wwqq − γw2

q + G(s) = 0 .

3. r(x) = α0 exp(β0x) + γ,

F(x, t) = − γ(α0 exp(β0x)+γ)
β0(t+ε)2 + G[(t + ε) exp(−β0x)].

In this case, we have

µ1 = −β0(t + ε) , µ2 = 0 , µ3 = 0 , µ4 = − γy
t + ε

.

Then, from the relations in (38), we find

s(x, t) = (t + ε) exp(−β0x) , q(x, y, t) = y ,

β(x, t) = 1 , α(x, y, t) =
γy

β0(t + ε)
.

The corresponding two-dimensional reduction has the form:

wqqq − α0wsq + β0s(wqwsq − wswqq) + G(s) = 0 .

4. r(x) = α0(x + β0)−4/3 + γ(x + β0)−2/3,

F(x, t) = −3α0γ(x+β0)
δ−1/3

(3δ+2)(t+ε)2 − 9α2
0(δ+1)

(3δ+2)2(x+β0)5/3(t+ε)2 + G[(x+β0)
−δ−2/3]

(x+β0)1/3 .

In this case, we have

µ1 = − (t + ε)(3δ + 2)
3(x + β0)

, µ2 = − y
3(x + β0)

,

µ3 =
2

3(x + β0)
, µ4 = − αy(3δ + 4)

(3δ + 2)(t + ε)(x + β0)4/3 .
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Then, from the relations in (38), we find

s(x, t) = (t + ε)(x + β0)
−δ−2/3 , q(x, y, t) =

y
(x + β0)1/3 ,

β(x, t) = (x + β0)
2/3 , α(x, y, t) =

3αy
(3δ + 2)(t + ε)(x + β0)1/3 .

The corresponding two-dimensional reduction has the form:

3wqqq − 3γ(3δ + 2)wsq + (3δ + 2)s(wqwsq − wswqq)

+ 2wwqq − w2
q + 3G(s) = 0 .

5. r(x) = α0(x + β0)−4/3,

F(x, t) = G
[
(x + β0)1/3 exp

(∫
dt/a(t)

)]
exp

[∫
dt/a(t)

]
+

3α2
0(a′(t)−1)

(x+β0)5/3a(t)2 .

In this case, we have

µ1 =
a(t)

3(x + β0)
, µ2 = − y

3(x + β0)
,

µ3 =
2

3(x + β0)
, µ4 =

α0y(2− a′(t))
a(t)(x + β0)4/3 .

Then, from the relations in (38), we find

s(x, t) = (x + β0)
1/3 exp

(∫ dt
a(t)

)
, q(x, y, t) =

y
(x + β0)1/3 ,

β(x, t) = (x + β0)
2/3 , α(x, y, t) = − 3α0y

a(t)(x + β0)1/3 .

The corresponding two-dimensional reduction has the form:

3wqqq + s(wqqws − wqwsq) + 2wwqq − w2
q + 3G(s) = 0 .

4.3. Reductions to ODEs (One-Dimensional Reductions)

Let us find all one-dimensional reductions of Equation (28), i.e., its reduction to an
ODE. We are looking for such one-dimensional reductions in the following form:

u = U(x, y, t, w(z(x, y, t)) . (40)

Substituting Expression (40) into Equation (28), we obtain the following:

−Uwz3
yw′′′ − 3Uwwz3

yw′w′′ + · · · = 0 . (41)

Here, for simplicity, only two terms are written out. Similarly to the above, using the condi-
tion that the normalized Ratio (41) is an ODE, we obtain a linear form of one-dimensional
reduction

u = β(x, y, t)w(z(x, y, t)) + α(x, y, t) . (42)

Remark 9. When deriving Expression (42), it was assumed that zy 6= 0. The case zy = 0
corresponds to a degenerate reduction. This case is not of particular interest, and its detailed
consideration is not given here.

Substituting Expression (42) into Equation (28), we obtain the following equation:

−βz3
yw′′′ + βzy(βyzx − βxzy)ww′′ + w′2(z)β(−zxβzyy
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+ zy(βxzy − βyzx + βzxy)) + ww′(−βx(2βyzy + βzyy)− βzxβyy

+ βy(βxzy + βyzx + βzxy) + βzyβxy) + w2(βyβxy − βxβyy)

+ w′′(−3βzyzyy + r(x)βzyzt − αxβz2
y + αyβzyzx − 3βyz2

y)

+ w′(−αx(2βyzy + βzyy)− βzxαyy + αy(βxzy + βyzx + βzxy)
(43)

− 3βyzyy + r(x)(βtzy + βyzt + βzty)− 3βyyzy + βzyαxy − βzyyy)

+ w(−αxβyy + r(x)βty − βxαyy − βyyy + αyβxy + βyαxy)

+ r(x)αty − αyyy + αyαxy − αxαyy − F(x, t) = 0 .

From the condition that Equation (43) is an ODE, we obtain the following overdeter-
mined system of differential equations:

βyzx − βxzy

z2
y

= Γ1(z) ,

−βxz2
y + zyβyzx − zyβzxy + zxβzyy

z3
y

= Γ2(z) ,

−βyβxzy + β2
yzx + βyβzxy + βzyβxy − βxβzyy − βzxβyy

βz3
y

= Γ3(z) ,

βyβxy − βxβyy

βz3
y

= Γ4(z) ,

r(x)βztzy + αyβzyzx − αxβz2
y − 3βyz2

y − 3βzyzyy

βz3
y

= Γ5(z) , (44)

r(x)(βyzt + βtzy + βzty) + αy(βxzy + βyzx + βzxy) + βzyαxy

βz3
y

+
−αx(2βyzy + βzyy)− βzxαyy − 3βyyzy − 3βyzyy − βzyyy

βz3
y

= Γ6(z) ,

r(x)βty + αyβxy + βyαxy − αxβyy − βxαyy − βyyy

βz3
y

= Γ7(z) ,

r(x)αty + αyαxy−αxαyy−αyyy−F(x,t)

βz3
y

= Γ8(z).

Similarly to the case of two-dimensional reduction, the system of Equation (44) admits
the following transformations:

z→ G1(z) , β→ βG2(z) , α→ α + βG3(z) , (45)

where G1(z), G2(z) and G3(z) are arbitrary functions. These transformations are associ-
ated with arbitrariness in finding a reduction of Form (42). Consider auxiliary functions
µ1 = µ1(x, y, t), µ2 = µ2(x, y, t), µ3 = µ3(x, y, t), µ4 = µ4(x, y, t), µ5 = µ5(x, y, t) and
µ6 = µ6(x, y, t), determined from the following relations:

zx − zyµ1 = 0, zt − zyµ2 = 0 ,

βx − βµ3 − βyµ1 = 0 , βt − βµ4 − βyµ2 = 0 , (46)

αx − µ5 − αyµ1 − αµ3 = 0 , αt − µ6 − αyµ2 − αµ4 = 0 .

It can be shown that the introduced auxiliary functions are invariants of the transformations
in (45).

Each of the equations of the system of Equation (44) can be rewritten as two equations
φxzy − φyzx = 0, φtzy − φyzt = 0, where φ(x, y, t) is the left-hand side of the corresponding
equation. From here, we can obtain a system of sixteen equations, which is not given



Mathematics 2022, 10, 1673 14 of 17

here due to its bulkiness. Expressing the derivatives of zx, αx, βx, zt, βt, αt . . . via the
derivatives zy, βy, αy . . . using the relations in (46), it is possible to rewrite the resulting
system only in terms of the invariants µ1 . . . , µ6. To the resulting sixteen equations for
µ1 . . . , µ6, three more compatibility conditions should be added, obtained from the relations
zxt = ztx, βxt = βtx and αxt = αtx. Thus, the following overdetermined system of equations
consisting of nineteen equations for six unknown functions is subject to solution:

µ1yµ3 + µ1µ3y − µ3x − µ2
3 = 0, µ3µ2y − µ3t − µ3µ4 + µ2µ3y = 0,

µ2
1y − µ1xy + µ1µ1yy − µ1yµ3 = 0, µ1yµ4 − µ1yµ2y + µ1ty − µ2µ1yy = 0,

µ3y(2µ1y − µ3) = 0, µ4y(2µ1y − µ3) = 0,

µ2
3y − µ3µ3yy = 0, µ3yµ4y − µ3µ4yy = 0,

2r(x)µ2µ1y − r′(x)µ2 − r(x)µ1t + µ3µ5 − µ5µ1y − µ1µ5y + 3µ3y + µ5x + 3µ1yy = 0,

2r(x)µ2µ2y − r(x)µ2t − µ2yµ5 − µ2µ5y + 3µ4 + 3µ2yy + µ5t + µ3µ6 = 0,

2r(x)µ1yµ4 − r(x)µ2µ3y + 2r(x)µ1yµ2y − r′(x)µ2y − r(x)µ1ty − 2µ3µ5y + µ1yyµ5

+ µ1µ5yy + µ3yµ5 − r(x)µ3t − r′(x)µ4 + µ1yyy − µ5xy + 3µ3yy = 0,

r(x)µ2µ4y − 2r(x)µ2yµ4 − 2µ2yµ5y − µ2µ5yy − µ2yyµ5 + 2µ1yµ6y + 2µ3µ6y + µ3yµ6

− 2µ4yµ5 − µ2yyy − 3µ4yy + µ5ty + r(x)µ2ty + r(x)µ4t − 2r(x)µ2
2y = 0,

µ3µ5yy − r(x)µ3ty − r′(x)µ4y + µ3yyy + µ3yyµ5 − 2µ3yµ5y

− r(x)µ3yµ4 + 2r(x)µ1yµ4y = 0,

r(x)µ4µ4y − 2r(x)µ2yµ4y + r(x)µ4ty − µ3µ6yy − µ4yyy

+ µ3yµ6y − µ4yyµ5 + µ4yµ5y = 0,

2r(x)µ1yµ6y − r(x)µ3yµ6 + µ5yyy − µ2
5y + Fx(x, t)− r(x)µ5ty + µ5yyµ5

− r′(x)µ6y − 3F(x, t)µ1y − F(x, t)µ3 = 0,

r(x)µ4yµ6 − 2r(x)µ2yµ6y − Ft(x, t)− µ6yyy + r(x)µ6ty + 3F(x, t)µ2y

− µ6yyµ5 + F(x, t)µ4 + µ6yµ5y = 0,

(47)

µ1t + µ1µ2y − µ2x − µ2µ1y = 0, µ4x + µ2µ3y − µ3t − µ1µ4y = 0,

µ5t + µ1µ6y + µ3µ6 − µ6x − µ2µ5y − µ4µ5 = 0.

The overdetermined system of Equation (47) is solved explicitly. To solve it, it is
enough to consider two cases: (1) µ3 = µ3(x, t), µ3 6= 0; (2) µ3 = 0 (it can be shown that
µ3 = µ3(x, t) and µ4 = µ4(x, t)). The system of Equation (47) has a solution only for certain
types of functions r(x) and F(x, t). Let us write out these solutions.

1. r(x) = α0(x + β0), F(x, t) = γ(x + at + b) + α(αx + β).

In this case, we have

µ1 = 0 , µ2 = 0 ,

µ3 =
1

x + at + b
, µ4 =

a
x + at + b

,

µ5 = − ay(α(at + b)− β

x + at + b
, µ6 =

a2y(α ∗ x + β)

x + at + b
.

Then, from the relations in (46), we find

z(x, y, t) = y , β(x, t) = (x + at + b) ,

α(x, y, t) = −ay(αx + β) .

The corresponding one-dimensional reduction has the form:

aα(w′ − zw′′)− w′2 + w′′′ + ww′′ + γ = 0 .
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2. r(x) is an arbitrary function, F(x, t) = α(x + β)γ−3, γ 6= 0.

In this case, we have

µ1 =
y(γ− 4)
4(x + β)

, µ2 = 0 ,

µ3 =
γ

4(x + β)
, µ4 = 0 ,

µ5 = 0 , µ6 = 0.

Then, from the relations in (46), we find

z(x, y, t) = y(x + β)γ/4−1 , β(x, t) = (x + β)γ/4 ,

α(x, y, t) = 0 .

The corresponding one-dimensional reduction has the form:

4w′2 + 4w′′′ + 4α + γww′′ − 2γw′2 = 0 .

3. r(x) = α0(x + β0)
γ, F(x, t) = δ(x + β)2γ+1/t2.

In this case, we have

µ1 =
γy

2(x + β0)
, µ2 = − y

2t
,

µ3 =
γ + 2

2(x + β0)
, µ4 = − 1

2t
,

µ5 = 0 , µ6 = 0.

Then, from the relations in (46), we find

z(x, y, t) = y2(x + β0)
γ/t , β(x, y, t) = (x + β0)/y ,

α(x, y, t) = 0 .

The corresponding one-dimensional reduction has the form:

z(2 + 3γ)ww′ + 2z2(2 + γ)ww′′ − 4z2(γ + 1)w′2 + zw′(α0z + 6)

+ 2α0z3w′′ − 6w + w2 + 8w′′′z3 = 0 .

4. r(x) = α0 exp(β0x), F(x, t) = γ(x + δ)−3+ε.

In this case, we obtain

µ1 =
(ε− 4)y
4(x + δ)

, µ2 = 0 ,

µ3 =
ε

4(x + δ)
, µ4 = 0 ,

µ5 = 0 , µ6 = 0.

Then, from the relations in (46), we find

z(x, y, t) = y(x + δ)γ/4−1 , β(x, y, t) = (x + δ)ε/4 ,

α(x, y, t) = 0 .

The corresponding one-dimensional reduction has the form:

2(2− ε)w′2 + εww′′ + 4w′′′ + 4γ = 0 .
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5. r(x) = α0(x + β0)
−4/3 + γ(x + β0)δ,

F(x, t) = t−2(x + β0)2δ+1[ε− 3α0(2 + 3δ)−2(3α0(δ + 1)(x + β0)−8/3−2δ

+γ(2 + 3δ)(x + β0)−4/3−δ)].
In this case, we obtain

µ1 = − δy
2(x + β0)

, µ2 = − y
2t

,

µ3 =
δ + 2

2(x + β0)
, µ4 = − 1

2t
,

µ5 = − α(4 + 3δ)y
(2 + 3δ)t(x + β0)4/3 , µ6 = 0.

Then, from the relations in (46), we find

z(x, y, t) =
t(x + β0)

−δ

y2 , β(x, y, t) =
(x + β0)

y
,

α(x, y, t) =
3α0y

(x + β0)1/3t(2 + 3δ)
.

The corresponding one-dimensional reduction has the form:

2z4(δ + 2)ww′′ + z3(δ + 6)ww′ − 4z4(δ + 1)w′2 + 3z2(γ− 18z)w′

+ 2z3(γ− 24z)w′′ + z2w2 − 8z5w′′′ − 6wz2 + ε = 0 .

5. Conclusions

In this work, a method for constructing reductions of PDEs with two independent
variables was considered. The method is based on the idea of invariance. An equation de-
scribing a steady-state laminar flat boundary layer with a pressure gradient was considered,
and all reductions of this equation were obtained.

Further development of this method for finding reductions, based on the idea of invari-
ance, was proposed for a PDE with three independent variables. The proposed method is a
modification of the Clarkson–Kruskal direct method and expands the possibilities for its ap-
plication. An equation describing a laminar unsteady axisymmetric boundary layer with a
pressure gradient was analyzed. All reductions of this equation to ODEs (one-dimensional
reductions) and simpler PDEs (two-dimensional reductions) were obtained.
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