FG Sge: НОВАЯ МНОГОЦВЕТНАЯ ФОТОМЕТРИЯ И КРАТКОВРЕМЕННОЕ ПРОСВЕТЛЕНИЕ ПЫЛЕВОЙ ОБОЛОЧКИ В 2019 ГОДУ

© 2022 г. В. П. Архипова¹, Н. П. Иконникова^{1*}, В. И. Шенаврин¹, М. А. Бурлак¹, А. М. Татарников¹, Д. Ю. Цветков¹, А. А. Белинский¹, Н. Н. Павлюк¹, С. Ю. Шугаров^{1,2}

¹Государственный Астрономический институт им. П.К. Штернберга Московского государственного университета им. М.В. Ломоносова, Москва, Россия ²Астрономический институт Академии наук Словакии, Татранска Ломница, Словакия Поступила в редакцию 14.03.2022 г. После доработки 29.03.2022 г.; принята к публикации 30.03.2022 г.

Представлены результаты нового этапа многолетнего фотометрического исследования FG Sge — быстро эволюционирующего ядра планетарной туманности Hen 1-5. Наши новые наблюдения в оптической (BVR_CI_C) и инфракрасной (UK) (JHKLM) областях за 2008—2021 гг. и 2013—2021 гг. соответственно, выполненные на телескопах ГАИШ МГУ, позволили проследить изменение блеска звезды в последние годы. Наиболее значимыми оказались наблюдения в 2019 г., когда звезда испытала на короткий срок просветление пылевой оболочки и оказалась доступной для наблюдений в полосах BVR_C . По распределению энергии в спектре FG Sge в ярком состоянии блеска в диапазоне 0.4—5 мкм получены параметры пылевой оболочки: размер пылевых частиц a = 0.01 мкм, температура пыли на внутреннем крае $T_{dust} = 900$ K, оптическая толща $\tau(K) = 0.5$ ($\tau(V) = 4.5$), масса пыли в оболочке $M_{dust} = 7 \times 10^{-5} M_{\odot}$. После кратковременного просветления пылевой оболочки в 2019 г. произошел сброс новой пылевой структуры, который привел к ослаблению блеска FG Sge во всем наблюдаемом нами диапазоне длин волн. По кривым блеска и показателям цвета в ИК-диапазоне получена оценка роста оптической толщи пылевой оболочки в 2019—2020 гг.

Ключевые слова: переменные звезды, фотометрические наблюдения, ядра планетарных туманностей, эволюция, пылевые оболочки, FG Sge.

DOI: 10.31857/S0320010822060018

ВВЕДЕНИЕ

Уникальное ядро планетарной туманности He1-5 — быстро эволюционирующая переменная звезда FG Стрелы — более 100 лет находится в стадии возвращения с классического эволюционного трека центральных звезд планетарных туманностей на асимптотическую ветвь гигантов. Это событие обусловлено, согласно современным представлениям, последней гелиевой вспышкой оболочечного источника звезды, в результате которой звезда стремительно начала охлаждаться и увеличиваться в размерах при практически постоянной болометрической светимости. Многолетние наблюдения звезды позволили заключить, что FG Стрелы на этом пути прошла последовательность сверхгигантов от спектрального класса В до К, став пульсирующей переменной при прохождении полосы нестабильности, а в 1992 г. вступила в стадию

звезд типа R CrB с мощными пылевыми выбросами, продолжающуюся и сейчас. Фотометрические наблюдения звезды после 1992 г. (Вудвард и др., 1993; Архипова и др., 1994, 1996, 2003, 2009; Гонсалес и др., 1998; Татарников, Юдин, 1998; Татарников и др., 1998; Архипова и др., Таранова, Шенаврин, 2002, 2013; Розенбуш, Ефимов, 2015) четко показали формирование пылевой оболочки вокруг звезды в результате конденсации пыли в веществе, сбрасываемом звездой.

В 2019 г. опубликована работа Ю.А. Фадеева (Фадеев, 2019), посвященная эволюции звезд I типа населения с массой на начальной главной последовательности в пределах $1M_{\odot} < M_{ZAMS} < 1.5M_{\odot}$ до стадии белого карлика. В ней показано, что последняя гелиевая вспышка типа LTP на post-AGB стадии возникает у звезд в очень узком интервале масс $1.30-1.32M_{\odot}$. Рассчитанную модель применили к эволюции FG Sge

^{*}Электронный адрес: ikonnikova@sai.msu.ru

Рис. 1. Изображение окрестностей FG Sge (var) с отмеченными звездами сравнения на снимке, полученном 31 июля 2019 г. на телескопе RC600 в полосе R_C .

для сравнения с наблюдательными оценками периода ее пульсаций в разные годы. Максимальное значение периода P = 117 дней, определенное для эволюционного трека с массой на начальной главной последовательности $M_{ZAMS} = 1.3 M_{\odot}$ при параметре овершутинга f = 0.016, согласуется с периодом P = 115 дней (Архипова и др., 2003), полученным из наблюдений после 1992 г. Кроме того, в работе определены значения современной массы звезды $M = 0.565 M_{\odot}$, температуры $T_* = 4445$ К и радиуса $R_* = 126 R_{\odot}$.

В настоящей работе мы представляем многоцветные наблюдения FG Sge, выполненные нами на нескольких телескопах ГАИШ МГУ в 2008— 2021 гг. в диапазоне длин волн от 0.4 до 5 мкм, и некоторые события в ее истории в последние годы.

НАБЛЮДЕНИЯ

BVR_CI_C-фотометрия в 2008–2021 гг.

Фотометрические наблюдения FG Sge в 2008– 2021 гг. проводились нами на нескольких телескопах с разными ПЗС-приемниками. В 2009– 2015 гг. часть данных получена на 70-см рефлекторе АЗТ-2 в Москве с помощью ПЗС-камеры Ародее Ар-7р (М70). Кроме того, в 2008–2019 гг. для наблюдений был задействован 60-см рефлектор Цейсс-2 Крымской астрономической станции ГАИШ МГУ, оборудованный в разные годы

Таблица 1. Звезды сравнения

Обозначение	В	V	R_C	I_C
1	13.84	12.33	11.54	10.77
2	16.18	15.39	14.97	14.63
3	16.22	14.64	13.80	12.98
4	15.92	15.06	14.61	14.11

ПЗС-матрицами Ародее АР-47р (С60а), FLI PL 4022 (С60b) и Аspen СG42 (С60c). Большой массив данных в фотометрических полосах системы Джонсона—Кузинса BVR_CI_C в 2019—2021 гг. был получен с помощью нового телескопа RC600 Кавказской горной обсерватории (КГО) ГАИШ МГУ, оснащенного ПЗС-камерой Andor iKon-L (2048 × × 2048 пикселей, размер пикселя 13.5 мк, масштаб 0.67 угл. сек на пиксель) (подробнее см. Бердников и др., 2020). Наблюдения и первичная обработка кадров, включающая исправление за темновой ток, нулевой уровень и плоское поле, проводились с помощью программы Maxim DL-6.

FG Sge существенно меняет свой блеск, поэтому в качестве фотометрических стандартов при разном уровне блеска звезды использовались разные звезды сравнения. Для измерения блеска FG Sge в ее ярком состоянии в основном использовался оптический спутник (2MASS 20115664+2020031) на расстоянии 7" к востоку от нее. Звездные величины спутника ранее были определены Архиповой и др. (2003). Принятые окончательные величины для спутника, а также для более слабых звезд сравнения приведены в табл. 1. На рис. 1 изображены окрестности FG Sge с отмеченными звездами сравнения.

Цветовые поправки, переводящие наблюдения из инструментальных систем в стандартные в полосах B, V, R_C и I_C , для некоторых вышеперечисленных комбинаций телескоп—фильтр—камера вычислялись по уравнениям из работы Цветкова и др. (2006).

Наблюдения, полученные в 2019–2021 гг. на телескопе RC600, были переведены в стандартную систему Джонсона-Кузинса с помощью следующих уравнений:

$$b = B - 0.061(B - V),$$
(1)

$$v = V + 0.027(B - V),$$

$$r = R_C + 0.076(V - R_C),$$

$$i = I_C + 0.074(R_C - I_C),$$

где bvri — инструментальные, а BVR_CI_C — стандартные величины. Уравнения системы получены по снимкам скопления M67 с использованием стандартов из работы Шевалье и Иловайского (1991).

Обработка наблюдений производилась апертурным методом с помощью программы В.П. Горанского WinFITS. Точность оценок блеска составляет около $0^{m}.005$ в ярком состоянии и при хорошем качестве изображений и не превышает $0^{m}.05-0^{m}.10$ в глубоких минимумах блеска.

В табл. 2 представлены оценки блеска FG Sge, полученные в 2008–2021 гг. на телескопах ГАИШ МГУ.

JD	В	V	R_C	I_C	Телескоп + + камера
2454781.17	_	_	16.973	15.047	C60a
2454787.18	_	18.418	17.264	15.047	C60a
2454795.15	_	_	17.394	14.907	C60a
2454956.45	_	_	_	15.707	M70
2455001.37	_	_	18.163	15.207	C60a
2455009.42	_	_	_	15.607	C60a
2455043.40	_	_	_	15.907	M70
2455054.36	_	_	_	15.807	M70
2455076.29	_	_	18.722	16.107	M70
2455145.20	_	_	18.843	16.007	C60a
2455367.52	_	17.628	15.823	13.457	C60a
2455407.51	_	_	16.183	13.987	C60a
2455448.34	_	16.995	14.832	12.777	M70
2455454.37	_	16.666	14.482	12.455	M70
2455474.27	_	16.405	14.502	12.207	M70
2455477.29	_	16.425	14.642	12.247	M70
2455488.28	_	16.715	14.882	12.487	M70
2455494.26	_	16.525	14.812	12.607	M70
2455501.22	_	16.655	14.842	12.607	M70
2455514.21	_	16.248	14.614	12.657	C60a
2455518.21	_	16.268	14.714	12.727	C60a
2455525.20	_	16.418	15.163	13.257	C60a
2455678.51	_	—	—	15.607	M70
2455701.46	—	—	—	15.907	M70
2455712.45	—	—	- 15.927		M70
2455725.52	—	—	—	15.887	C60a
2455726.53	—	—	—	15.847	C60a
2455728.49	—	—	—	15.867	C60a
2455732.51	—	—	—	15.727	C60a
2455744.36	—	—	18.264	15.607	C60a
2455749.38	—	—	18.633	15.707	C60a
2455753.43	_	_	18.823	15.747	C60a
2455755.38	—	—	18.644	15.667	C60a
2455757.39	—	_	18.733	15.657	C60a
2455783.45	—	_	18.573	15.507	C60a
2455789.41	—	_	18.453	15.667	C60a
2455874.21	—	_	—	15.897	C60a
2455879.20	—	_	—	15.857	C60a
2456118.48	_	_	_	16.836	C60a

Таблица 2. Фотометрические наблюдения FG Sge в 2008-2021 гг.

ПИСЬМА В АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 48 № 6 2022

Таблица 2. Продолжение

JD	В	V	R_C	I_C	Телескоп + + камера	
2456447.44	—	_	17.872	15.599	M70	
2456490.39	—	—	17.944	15.137	C60a	
2456492.44	—	—	17.964	15.207	C60a	
2456493.47	—	—	17.994	15.137	C60a	
2456532.32	—	—	17.834	15.117	C60a	
2456537.37	—	—	17.843	15.247	C60a	
2456921.42	—	—	—	17.067	M70	
2456937.45	—	—	—	17.027	M70	
2456967.22	—	—	—	17.167	C60a	
2457253.43	—	—	17.273	14.886	C60b	
2457257.31	—	—	16.649	14.311	C60b	
2457330.12	—	16.695	14.432	12.167	M70	
2457333.11	—	16.715	14.532	12.277	M70	
2457340.28	—	17.360	15.030	13.230	C60b	
2457344.14	—	17.201	15.333	13.090	C60b	
2457355.50	—	—	16.202	13.577	M70	
2457602.50	—	—	—	16.460	C60b	
2457978.29	—	—	—	16.282	C60c	
2457992.27	—	—	—	16.447	C60c	
2458338.37	—	16.665	14.687	12.974	C60c	
2458340.28	19.169	16.431	14.506	12.818	C60c	
2458360.43		—	14.358	12.789	C60c	
2458361.49	—	16.335	14.459	12.871	C60c	
2458362.47	—	16.417	14.556	12.970	C60c	
2458369.30	—	16.956	15.161	13.502	C60c	
2458371.38	—	17.012	15.246	13.584	C60c	
2458379.36	—	17.234	15.451	13.741	C60c	
2458380.39	—	17.267	15.456	13.730	C60c	
2458618.49	16.228	13.231	11.508	10.049	C60c	
2458634.50	16.428	13.198	11.498	10.072	RC600	
2458635.50	16.471	13.319	11.550	10.133	RC600	
2458642.50	16.608	13.514	11.742	10.315	RC600	
2458650.41	16.851	13.839	12.035	10.582	RC600	
2458657.38	17.102	14.093	12.321	10.849	RC600	
2458662.45	17.286	14.329	12.581	11.130	RC600	
2458666.42	17.552	14.595	12.845	11.370	RC600	
2458667.39	17.563	14.645	12.899	11.425	RC600	
2458668.40	17.697	14.737	12.969	11.500	RC600	
2458669.46	17.729	14.809	13.045	11.558	RC600	

Таблица 2. Продолжение

JD	В	V	R_C	I_C	Телескоп + + камера
2458672.35	17.971	15.011	13.240	11.755	RC600
2458675.45	18.095	15.183	13.401	12.046	RC600
2458679.41	18.298	15.422	13.686	12.318	RC600
2458691.52	—	—	15.165	13.665	RC600
2458693.42	19.956	17.171	15.350	13.842	RC600
2458694.35	—	17.251	15.641	13.959	RC600
2458696.40	—	17.635	15.882	14.322	RC600
2458699.50	—	17.95	16.380	14.704	RC600
2458703.48	—	—	—	14.918	RC600
2458707.38	—	—	—	15.018	RC600
2458708.32	—	18.729	17.044	15.026	RC600
2458711.40	_	18.629	17.224	15.086	RC600
2458716.40	_	_	17.535	_	RC600
2458718.43	—	—	17.738	15.672	RC600
2458719.33	—	—	17.898	—	RC600
2458722.40	—	—	17.718	—	RC600
2458724.40	_	_	17.788	16.124	RC600
2458727.40	—	—	17.932	—	RC600
2458730.40	_	_	17.942	16.155	RC600
2458732.35	_	_	18.173	16.144	RC600
2458740.40	_	_	18.202	16.032	RC600
2458741.27	_	_	18.198	16.096	RC600
2458742.43	_	_	18.142	16.032	RC600
2458744.35	_	_	—	16.068	RC600
2458745.30	_	_	—	16.044	RC600
2458749.37	—	—	—	16.218	RC600
2458750.24	_	_	18.124	16.148	RC600
2458761.22	—	—	18.006	16.163	RC600
2458766.25	_	_	18.107	16.372	RC600
2458767.22	_	_	—	16.291	RC600
2458769.22	_	_	_	16.513	RC600
2458770.33	—	—	17.958	16.458	RC600
2458771.30	—	—	18.106	16.458	RC600
2458773.22	_	—	18.136	16.500	RC600
2458774.25	—	—	—	16.632	RC600
2458777.17	_	—	_	16.650	RC600
2458778.25	—	—	18.116	16.650	RC600
2458779.20	—	—	18.304	16.748	RC600
2458780.23	—	—	18.345	16.720	RC600

ПИСЬМА В АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 48 № 6 2022

Таблица 2. Окончание

JD	В	V	R_C	I_C	Телескоп + + камера
2458781.27	_	_	18.502	16.828	RC600
2458783.18	_	_	18.492	16.841	RC600
2458784.18	_	_	_	16.905	RC600
2458785.17	_	_	18.562	16.835	RC600
2458786.18	_	_	18.573	16.832	RC600
2458790.24	_	_	_	16.730	RC600
2458792.21	_	_	18.694	16.879	RC600
2458793.23	_	_	18.413	16.916	RC600
2458794.19	_	_	18.506	17.006	RC600
2458795.22	_	_	18.459	17.021	RC600
2458800.21	_	_	_	17.188	RC600
2458805.18	_	_	18.801	17.113	RC600
2458807.18	_	_	18.643	17.283	RC600
2458808.16	_	_	18.895	17.333	RC600
2458811.17	_	_	18.640	17.305	RC600
2458813.14	_	_	18.760	17.393	RC600
2458824.17	_	_	18.890	17.568	RC600
2458948.55	_	_	_	17.846	RC600
2458958.51	_	_	—	17.710	RC600
2458997.50	_	_	—	18.004	RC600
2459006.50	_	_	—	17.976	RC600
2459028.47	—	_	—	18.303	RC600
2459030.50	_	_	—	18.469	RC600
2459051.40	_	_	—	18.175	RC600
2459055.50	—	_	—	18.446	RC600
2459060.43	_	_	—	18.515	RC600
2459070.43	—	_	—	18.318	RC600
2459166.20	—	—	—	18.519	RC600
2459185.16	_	—	—	18.560	RC600
2459471.29	_	—	_	18.128	RC600
2459514.20	_	—	_	18.424	RC600
2459524.19	_	—	_	18.461	RC600
2459555.13	_	—	_	18.501	RC600

Рис. 2. Кривая блеска в полосе *V* и изменение показателя цвета *B* – *V* в 1992–2019 г. Новые данные располагаются справа от вертикальной штриховой линии.

JHKLM-фотометрия в 2013-2021 гг.

JHKLM-фотометрия FG Sge проводится с 1985 г. на 125-см телескопе Крымской астрономической станции ГАИШ МГУ с помощью InSbфотометра. Описание методики наблюдений, параметры аппаратуры и данные наблюдений за 1985— 2008 гг. можно найти в работе Шенаврина и др. (2011). Результаты *JHKLM*-фотометрии FG Sge в 2009—2013 гг. представлены в работе Тарановой и Шенаврина (2013). Новые наблюдения, полученные нами в 2013-2021 гг., приведены в табл. 3.

ФОТОМЕТРИЧЕСКИЙ АНАЛИЗ

На рис. 2 показаны кривая блеска в полосе Vи изменение показателя цвета B - V за 1992— 2019 гг. по данным из наших работ в этом журнале за период с 1994 по 2009 г. и новым наблюдениям, представленным в настоящей статье.

С 1992 по 2009 г. звезда показывала в полосах B и V колебания блеска с амплитудой от 2 до 8 звездных величин с тенденцией к уменьшению среднего блеска, присутствием периода 115 дней и хорошо выраженным поголубением на его нисходящей ветви, что подробно обсуждалось в нашей

работе (Архипова и др., 2009). Однако уже в 2010 г. блеск V упал до 16^m и ниже, а в полосе B звезду удалось измерить лишь в 2019 г., и об этом будет рассказано далее.

На рис. З показаны кривая блеска в полосе I и изменение показателя цвета R - I за 1998—2020 гг. по нашим данным из работ Архиповой и др. (2003, 2009) и новым наблюдениям за 2008—2020 гг. Последние были переведены из системы Кузинса в систему Джонсона с использованием уравнений из работы Бесселя (1979) и поправок, полученных по одновременным наблюдениям в полосах R_C и R.

В отличие от *В* и *V* наблюдений, в полосах *R* и *I* FG Sge все время оставалась доступной для наших наблюдений, и на рис. З мы видим ее поведение в этих фильтрах до и после 2009 г.: падение среднего блеска *I* вплоть до 2019 г., взлет в 2019 г. до 10^m и ослабление до 18^m к началу 2020 г. Показатель цвета R - I в среднем систематически краснел от $0^{m}5$ до $2^{m}5$ к 2011 г., после чего уменьшился до $1^{m}5$ в начале наблюдений в 2019 г.

Пульсационная активность звезды в R и I была выражена почти так же, как в полосах V и B, однако показатель цвета R - I не показывал явного поголубения к минимуму блеска.

Рис. 3. Кривая блеска в полосе *I* и изменение показателя цвета *R* – *I* в 1998–2020 гг. Новые данные располагаются справа от вертикальной штриховой линии.

На рис. 4 и 5 показаны изменения ИК-блеска и цвета FG Sge за период с 1994 по 2021 г. по наблюдениям из работ Шенаврина и др. (2011), Тарановой и Шенаврина (2013) и нашим новым данным. Подробное описание ИК-наблюдений FG Sge за период 1993—2013 гг. было представлено в работе Тарановой и Шенаврина (2013).

В полосах J и H с 1994 по 2016 г. присутствовали большие колебания суммарного блеска, связанные как с самой пульсирующей переменной звездой, так и с ее пылевой оболочкой, с выраженным трендом вниз до $H \sim 11^m$ и $J \sim 13^m$ и уменьшавшейся амплитудой колебаний.

После этого последовал подъем среднего блеска в обеих полосах на 3^m5-4^m к 2019 г. А в 2019 г. наблюдались стремительное падение блеска в полосе H почти на 5 звездных величин и прекращение видимости объекта в полосе J, что указывало на сильный рост оптической толщи пылевой оболочки в обоих фильтрах. В 2020 г. ослабление блеска в полосе H продолжались до рекордно низкого значения 11^m62 , тогда как в 2021 г. блеск объекта начал повышаться. В полосе K блеск повторил историю полосы H.

В полосах L и M пылевая оболочка с 1994 г. поярчала к 2019 г. на 1^m и 0^m 8 соответственно, а к концу 2020 г. стала слабее на 1^{*m*}5-2^{*m*}0. Наблюдения 2021 г. показали незначительное поярчание объекта в этих полосах.

Как было показано в работе Тарановой и Шенаврина (2013) и на рис. 5, до 2013 г. наблюдалось монотонное покраснение источника в наблюдаемом ИК-диапазоне 1.25—5 мкм. В *JHK*-полосах покраснение было связано с ростом оптической толщи пылевой оболочки на луче зрения, а в более далеком ИК-диапазоне 3.5—5 мкм — с удалением пылевых структур от нагревающей звезды и, как следствие, уменьшением температуры пылевой оболочки.

После 2013 г. поведение показателей цвета H - K, K - L и L - M существенно изменилось. Так, с 2013 г. до начала 2019 г. H - K при колебаниях с амплитудой до 1 звездной величины показал уменьшение среднего значения. В диапазоне 2.2– 5 мкм (*KLM*) также наблюдалось поголубение источника. В 2019–2020 гг. при стремительном ослаблении блеска во всех ИК-полосах показатели цвета H - K, K - L и L - M значительно увеличились. В 2021 г. наблюдалось обратное явление — поголубение при повышении блеска.

Таблица З. Л	<i>HKLM</i> -фотометрия	я FG Sge в 2013—2021 гг.	
--------------	-------------------------	--------------------------	--

			1							
JD	J	σJ	Н	σH	K	σK	L	σL	M	σM
2456467.5	10.65	0.06	9.27	0.03	6.89	0.01	3.81	0.01	2.89	0.02
2456472.5	10.84	0.08	9.18	0.03	6.88	0.01	3.84	0.01	2.88	0.01
2456485.5	11.09	0.07	9.38	0.01	6.92	0.01	3.82	0.01	2.90	0.01
2456492.4	10.78	0.07	9.09	0.02	6.94	0.01	3.91	0.01	2.92	0.01
2456514.4	11.44	0.06	9.58	0.02	7.07	0.01	3.91	0.01	3.02	0.02
2456524.4	11.43	0.07	9.74	0.03	7.10	0.01	3.85	0.01	2.86	0.01
2456587.2	10.99	0.11	9.82	0.06	7.36	0.01	4.01	0.01	2.88	0.02
2456591.2	11.02	0.06	10.01	0.04	7.35	0.01	3.99	0.01	2.91	0.02
2456848.5	-	-	10.58	0.12	8.01	0.01	4.27	0.02	3.17	0.03
2456876.4	10.74	0.09	10.13	0.08	8.07	0.02	4.36	0.02	3.08	0.02
2456937.3	-	_	10.89	0.06	8.12	0.02	4.31	0.02	3.17	0.02
2457205.4	-	-	10.88	0.11	8.21	0.02	4.31	0.01	3.10	0.02
2457241.4	-	-	10.33	0.05	7.90	0.01	4.33	0.02	3.12	0.02
2457265.3	_	-	8.83	0.02	7.11	0.01	4.08	0.01	2.94	0.02
2457289.3	11.13	0.09	9.30	0.07	7.30	0.01	4.10	0.01	2.91	0.02
2457328.2	9.84	0.02	8.43	0.02	6.77	0.01	3.93	0.01	2.97	0.02
2457561.5	12.48	0.23	9.82	0.04	7.14	0.01	3.78	0.01	2.76	0.01
2457586.5	10.54	0.06	9.14	0.04	7.03	0.02	3.85	0.02	2.70	0.02
2457620.4	_	-	9.62	0.04	7.28	0.01	3.87	0.02	2.86	0.02
2457643.4	10.57	0.06	9.13	0.02	7.28	0.01	3.89	0.01	2.85	0.02
2457943.5	-	-	9.49	0.04	7.02	0.01	3.76	0.01	2.65	0.01
2457970.5	-	-	9.44	0.02	6.85	0.01	3.68	0.01	2.68	0.01
2458006.3	-	-	9.31	0.02	6.84	0.01	3.67	0.01	2.69	0.02
2458254.5	10.92	0.04	8.82	0.01	6.57	0.01	3.56	0.01	2.65	0.01
2458333.4	9.97	0.03	8.30	0.01	6.47	0.01	3.62	0.01	2.69	0.02
2458361.4	9.88	0.02	8.32	0.01	6.53	0.01	3.64	0.01	2.71	0.01
2458386.3	10.10	0.03	8.40	0.01	6.46	0.01	3.58	0.01	2.65	0.02
2458410.2	10.11	0.02	8.34	0.01	6.41	0.01	3.51	0.01	2.57	0.01
2458630.5	7.86	0.01	6.61	0.01	5.34	0.01	3.13	0.01	2.38	0.01
2458656.5	8.36	0.01	7.01	0.01	5.55	0.01	3.18	0.01	2.44	0.01
2458684.5	9.62	0.02	7.84	0.01	5.94	0.01	3.26	0.01	2.42	0.01
2458707.3	10.44	0.04	8.32	0.01	6.17	0.01	3.25	0.01	2.43	0.02
2458738.3	10.76	0.04	8.52	0.02	6.34	0.01	3.32	0.01	2.33	0.01

ПИСЬМА В АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 48 № 6 2022

Таблица 3. Окончание

JD	J	σJ	Н	σH	K	σK	L	σL	M	σM
2458773.3	_	_	8.88	0.02	6.50	0.01	3.44	0.01	2.49	0.01
2458798.2	—	—	9.17	0.02	6.70	0.01	3.48	0.01	2.50	0.01
2458981.5	—	—	9.88	0.09	7.56	0.01	3.92	0.01	2.85	0.02
2459030.5	—	—	10.59	0.11	7.84	0.01	4.06	0.01	2.97	0.01
2459068.4	—	—	11.03	0.12	8.06	0.01	4.16	0.02	2.93	0.02
2459165.2	—	—	11.62	0.11	8.44	0.03	4.66	0.02	3.36	0.02
2459199.2	—	—	—	—	9.00	0.02	4.71	0.01	3.47	0.02
2459394.4	—	—	—	—	8.76	0.05	4.65	0.02	3.37	0.03
2459420.4	—	—	10.08	0.08	8.07	0.02	4.55	0.01	3.27	0.02
2459450.4	—	—	—	—	8.55	0.02	4.45	0.02	3.30	0.02
2459517.2	—	—	9.47	0.06	8.24	0.02	4.56	0.01	3.22	0.02

Фотометрические наблюдения FG Sge в 2019–2021 гг.

В 2019 г. нам удалось зарегистрировать FG Sge в оптическом диапазоне (полосах *B*, *V*, *R_C*) после нескольких лет невидимости.

Кривые блеска и показателей цвета FG Sge за 2019 г. по наблюдениям на телескопе RC600 весьма полно представлены на рис. 6. В 2020– 2021 гг. звезда снова находилась в слабом состоянии блеска и была нами зарегистрирована лишь в полосе I_C на уровне блеска $18^m 1-18^m 5$.

В 2019 г. после поярчания в полосе *В* до 16^{*m*}2 звезда потеряла в блеске более 3^{*m*} за 75 дней и стала недоступной для наблюдений.

В полосе V блеск удалось зафиксировать от $V \sim 13^m$ до $V \sim 19^m$, тогда как в полосах R_C и I_C мы проследили падение блеска звезды от $11^{m}_{\cdot}56$ до 19^m и от $10^m.12$ до $18^m.0$ соответственно. Причиной ослабления блеска является рост поглощения света FG Sge на луче зрения, вызванный потерей ее массы в форме звездного ветра и образованием новых пылевых структур. Изменение показателей цвета B - V и $R_C - I_C$ с блеском в полосах V и R_{C} соответственно показано на рис. 7. В 2019 г. показатель цвета звезды B - V поголубел на $0^m.4$, $V - R_C$ — на 0^{*m*}. Поголубение связано с присутствием в новой формирующейся пылевой оболочке мелких частиц, вызывающих рассеяние света. Показатель $R_C - I_C$ испытал покраснение от 1^{*m*} 4 до 2^m0 во время ослабления блеска до 18^m и затем вернулся к значению $\sim 1^{m}$ 4.

Такое поведение показателя цвета $R_C - I_C$, на наш взгляд, может быть следствием проявления в эти дни взаимодействия пульсационной активности звезды с усиленным звездным ветром. Отметим, что еще в 2001 г. звезда показала необычный двойной глубокий минимум блеска около $V = 17^m$, показатель цвета V - I в котором дважды увеличивался от $2^m 5$ до $3^m 5 - 3^m 7$ и затем возвращался к $2^m 5$ (Архипова и др., 2003).

Наблюдения FG Sge в 2019 г. показали стремительное падение блеска звезды в оптическом диапазоне и более плавное и существенно меньшее в ближнем ИК (до 5 мкм).

В ИК-диапазоне в 2019 г. изменения блеска составили: в полосе J — падение на 3^m , в полосе H — на $4^{m}_{..}5$, в K — на $2^{m}_{..}7$. В сравнении с предыдущими годами необычно сильно ослабел блеск в полосах L и M — на 1 $\stackrel{n}{.}0$ и 0 $\stackrel{n}{.}8$ соответственно. В 2020 г. падение блеска во всех полосах ИКдиапазона продолжилось, и к концу 2020 г. звездные величины в К, L и М-полосах достигли своих максимальных значений за всю историю наших наблюдений. Звезда покраснела как никогда ранее. 11 ноября 2020 г. (JD2459165) показатели цвета H - K и L - M увеличились до $3^{m}_{\cdot}2$ и $1^{m}_{\cdot}3$, соответственно, а 15 декабря 2020 г. K - L достиг рекордного значения 4^m29. Немногочисленные наблюдения в 2021 г. показали некоторое поярчание объекта в *KLM* и более существенное — на 2^{*m*} в *H*-полосе. Показатели цвета *H* – *K* и *K* – *L* при этом уменьшились, а L - M практически не изменился.

Распределение энергии в спектре и оценка параметров пылевой оболочки

Многоцветная фотометрия позволяет получить абсолютное распределение энергии в спектре FG Sge и ее пылевой оболочки, если выполнить абсолютную калибровку всех измеренных величин BVR_CI_CJHKLM (Страйжис, 1977; Курниеф, 1983; Бессель, 1998).

Рис. 4. Кривые блеска FG Sge в полосах *JHKLM* в 1994–2021 гг. Новые данные располагаются справа от вертикальной штриховой линии.

Рис. 5. Изменение ИК-показателей цвета FG Sge в 1994—2021 гг. Новые данные располагаются справа от вертикальной штриховой линии.

Рис. 6. Кривые блеска и показателей цвета FG Sge в 2019 г. по наблюдениям на телескопе RC600.

Рис. 7. Диаграммы цвет-блеск по наблюдениям в полосах BV (а) и $R_C I_C$ (б).

На рис. 8 приводятся потоки излучения звезды в абсолютных единицах в 2019–2020 гг., исправленные за межзвездное поглощение света FG Sge с избытком цвета $E(B - V) = 0^{m}4$ (Архипова, 1988).

Видно, что поток излучения от звезды в полосах V, R_C и I_C за 73 дня (JD2458634-2458707) уменьшился почти в 200 раз, а за 163 дня (JD2458634-2458797) в полосах R_C и I_C — в 550 раз. В полосах V, R_C и I_C и в разной степени в J и H наблюдаемое излучение является суммой прямого излучения центральной звезды, ослабленного пылевой оболочкой, и рассеянного оболочкой излучения. Потоки в K, L и M полосах принадлежат пылевой оболочке.

Сложное строение пылевой оболочки FG Sge, связанное с многочисленными эпизодами сброса вещества и пылеобразования, клочковатая структура (ответственная за поголубение оптических показателей цвета) затрудняет моделирование системы. Тем не менее можно получить оценки основных параметров системы в наиболее простых предположениях: оболочка является сферически

Рис. 8. Распределение энергии в спектре FG Sge в 2019–2020 гг., исправленное за межзвездное поглощение света. Указаны юлианские даты наблюдений. Штриховой линией изображена модельная кривая для даты JD2458634.

симметричной, образована при постоянном темпе потери вещества и содержит углеродные пылинки малых размеров (для обеспечения высокого уровня рассеянного света в оптическом диапазоне).

Используя указанные выше предположения, мы провели моделирование спектрального распределения энергии FG Sge в диапазоне длин волн 0.4— 5.0 мкм с помощью программы CSDUST3 (Иган, 1988) для даты JD2458634. Для моделирования были приняты параметры звезды $T_* = 4445$ K и $R_* = 126R_{\odot}$ из работы Фадеева (2019).

Результат показан на рис. 8 в виде штриховой линии. Наблюдаемое до начала резкого падения в 2019 г. распределение энергии в спектре FG Sge удается воспроизвести только с очень малыми пылевыми частицами: a = 0.01 мкм и меньше. Внутренний радиус оболочки при этом получается равным примерно $40R_*$, температура пыли на внутреннем крае 900 К, оптическая толща $\tau(K) = 0.5$ ($\tau(V) = 4.5$), масса пыли в оболочке $M_{\rm dust} = 7 \times 10^{-5} M_{\odot}$.

В 2019 г. наблюдалось сильное (более, чем в 4 раза) падение интегрального потока излучения от FG Sge в представленном широком интервале длин волн. Подобное поведение совместно с наблюдаемым уменьшением потока и на длине волны 5 мкм можно было бы объяснить появлением на луче зрения плотного поглощающего облака, которое закрыло не только центральную звезду, но и значительную часть горячей пылевой оболочки. Однако большие характерные размеры этой части оболочки (десятки а.е.) и относительно короткое время явления требуют больших скоростей движения этого облака (порядка 1000 км/с), что невозможно. Можно предложить другой сценарий, качественно объясняющий наблюдаемое ослабление блеска, — образование новой очень плотной сферически симметричной пылевой оболочки вокруг центральной звезды. Для того чтобы не привнести дополнительного излучения в рассматриваемом диапазоне длин волн, эта оболочка должна быть оптически толстой даже для собственного излучения в ближнем ИК-диапазоне. В этом случае уже существующая оболочка, лишившись источника нагрева, также снизит температуру, и ее максимум излучения уйдет в средний ИК-диапазон.

Многоцветная фотометрия позволила нам оценить изменение оптической толщи на луче зрения в 2019–2020 гг. для звезды и пылевой оболочки. Первое наблюдение FG Sge с формирующейся

Рис. 9. Диаграмма цвет-блеск по данным 2019-2020 гг. Черные точки — наши наблюдения. Штриховая линия представляет линейную аппроксимацию данных. Стрелка показывает направление стандартного закона межзвездного поглощения.

новой пылевой оболочкой в 2019 г. (JD2458634) показало с учетом межзвездного поглощения света звезды $J_0 = 7^{m}54$, $H_0 = 6^{m}41$ и $(J - H)_0 = 1^{m}13$. Поскольку у звезды нормальный блеск в полосе J равен $J_0 = 6^{m}59$ (Таранова и Шенаврин, 2013), изменение интегральной оптической толщи в полосе J составило всего около одной звездной величины.

Через 108 дней (JD2458738) наши наблюдения показали $J_0 = 10^m$ 43, $H_0 = 8^m$ 33, $(J - H)_0 = 2^m$ 10. Такое изменение интегрального блеска могло бы быть достаточным условием для оценки роста оптической толщи пыли в полосе J за 108 дней, равной $\Delta \tau(J) = A_{\lambda}/0.912 = (10.43 - 7.54)/0.912 = 3.10$. Однако вокруг этой даты в оптике наблюдались минимум (пульсационный?) блеска звезды в полосах V, R_C, I_C и четкое поголубение показателя цвета B - V — сама звезда могла иметь свой минимальный блеск, поэтому было бы неправильным использовать значение интегрального блеска в полосе J в эту дату для вычисления оптической толщи.

Падение блеска в ИК-диапазоне продолжалось до конца 2020 г., однако в полосе Ј объект стал для нас недоступен, поэтому мы перешли в диапазон KL для оценки оптической толщи к концу 2020 г. Диаграмма цвет-блеск (K - L) --K (рис. 9) демонстрирует характер ослабления блеска и увеличения показателя цвета в 2019-2020 гг. (JD2458630-2459199). Линейная аппроксимация данных приводит к выражению: $\Delta K =$ $= (1.81 \pm 0.36) \Delta (K - L)$. Коэффициент корреляции составляет 0.98. Для нормального закона межзвездного поглощения в ИК-диапазоне (Курниеф, 1983) $\Delta K = 2.0\Delta (K - L)$, т.е. наклоны линий регрессии нормального закона межзвездного поглощения и наблюдаемой зависимости в пределах ошибок совпадают. На основании этого можно сделать вывод, что по своим оптическим свойствам пылинки в новой пылевой оболочке FG Sge близки к межзвездным.

В полосе *K* за интервал 569 дней (JD2458630– 2459199) блеск упал на 3^m66, что дает увеличение оптической толщи пыли в полосе *K* на $\Delta \tau(K) =$ = $A_{\lambda}/0.912 = 3.66/0.912 = 4.0.$

ЗАКЛЮЧЕНИЕ

Представленные здесь фотометрические наблюдения FG Sge, выполненные нами в 2008— 2021 гг. в оптическом диапазоне и ближней ИК-области в 2013—2021 гг., подтвердили продолжающуюся активность звезды после начала сброса пылевой оболочки в 1992 г. и характер формирования и эволюции пыли.

В 2010—2018 гг. звезда в полосе V была слабее 16^m , а в B — невидимой до 2019 г., тогда как в

полосах R_C и I_C наблюдались два заметных максимума блеска. В начале 2019 г. звезда испытала кратковременное просветление пылевой оболочки, что привело к повышению блеска до $V = 13^{m}2$ и $B = 16^{m}_{2}$. Затем последовали сброс очередной пылевой структуры и довольно быстрое ослабление блеска звезды во всем наблюдаемом диапазоне длин волн. Звезда оставалась видимой в течение 75 ночей в B, 93 ночей в V и 206 ночей в R_C , после чего в очередной раз стала недоступна для наблюдений на наших телескопах в этих фотометрических полосах. Использование, начиная с 2019 г., нового телескопа RC600 и современной ПЗС-камеры позволило увеличить предельную величину наблюдений в полосе I_C. В результате мы получили данные в этой фотометрической полосе в глубоком минимуме блеска вплоть до конца 2021 г. и зафиксировали блеск звезды в 2020-2021 гг. в пределах $18^{m}_{\cdot}1 - 18^{m}_{\cdot}5$.

Следует отметить, что на спуске блеска в 2019 г. появилось четкое поголубение показателя цвета B – V. Подобное явление наблюдалось неоднократно во время глубоких минимумов блеска, описанных, в частности, в работах Архиповой и др. (1994, 2003, 2009). Такой эффект характерен для глубоких минимумов звезд типа R CrB, а также является важной особенностью молодых переменных звезд типа UX Ori. В настоящее время это явление объясняется усилением вклада излучения звезды, рассеянного околозвездной пылью. Такая модель впервые была предложена Грининым (1988) для объяснения поголубения в глубоких минимумах блеска двух молодых неправильных переменных звезд UX Ori и WW Vul и была подтверждена наблюдениями линейной поляризации звезд типа UX Ori. Опираясь на нее, Пугач (1991) предложил феноменологическую модель глубоких ослаблений блеска звезды R CrB, которая правильно описывала не только форму треков показателей цвета на диаграммах цвет-величина, но и направление движения звезды по этим трекам.

По распределению энергии в спектре FG Sge перед спуском в глубокий минимум 2019 г. получены параметры пылевой оболочки для даты JD2458630: размер пылевых частиц a = 0.01 мкм, температура пыли на внутреннем крае $T_{dust} =$ = 900 K, оптическая толща $\tau(K) = 0.5$ ($\tau(V) =$ = 4.5), масса пыли в оболочке $M_{dust} = 7 \times 10^{-5} M_{\odot}$.

Отличительной особенностью оболочки, сформированной в 2019 г., стала ее чрезвычайно большая оптическая толща. Впервые за все время наблюдений FG Sge в фазе сброса пылевых оболочек (после 1992 г.) звезда показала значительное ослабление блеска и в среднем ИК-диапазоне (полосы L и M). Мы предположили сценарий, качественно объясняющий наблюдаемое ослабление блеска. Для того чтобы не привнести дополнительного излучения в рассматриваемом диапазоне длин волн, эта новая пылевая структура должна быть оптически толстой даже для собственного излучения в ближнем ИК-диапазоне. В этом случае уже существующая оболочка, лишившись источника нагрева, также снизит температуру, и максимум ее излучения переместится в средний ИК-диапазон. Увеличение оптической толщи при этом привело к падению блеска звезды во всем наблюдаемом нами диапазоне длин волн. С первой даты наблюдений 2019 г. до конца 2020 г. (569 дней) оптическая толща в полосе K возросла на $\Delta \tau(K) \sim 4.0$.

В заключение хотелось бы обратить внимание на новую оценку расстояния до FG Sge, полученную по результатам Gaia EDR3 (Браун и др., 2021). В работе Байлера-Джонса и др. (2021) она составляет $D = 2278^{+1475}_{-748}$ пк. С этим расстоянием средняя светимость звезды в эпоху до начала пылевых выбросов в 1992 г. получается равной $\lg L/L_{\odot} = 3.44$, если использовать среднее значение $V = 9^m 2$ для 1991 г. из работы Архиповой и др. (2003) и избыток цвета FG Sge $E(B-V) = 0.4^{m}$ (Архипова, 1988). Блеск звезды в полосе V в пульсационном максимуме 1991 г. дает светимость FG Sge на $0^{m}_{\cdot\cdot}3$ выше: lg $L/L_{\odot} = 3.74$. Наши оценки светимости FG Sge, полученные с использованием параллакса звезды из EDR3, согласуются с принятыми в работе Фадеева (2019).

Работа выполнена с использованием оборудования, приобретенного за счет средств Программы развития Московского государственного университета им. М.В. Ломоносова. Работа одного из соавторов (СЮШ) поддержана грантами Академии наук Словакии VEGA 2/0030/21 и APVV-20-0148.

СПИСОК ЛИТЕРАТУРЫ

- 1. Архипова В.П., Переменные звезды **22**, 631 (1988).
- Архипова В.П., Зайцева Г.В., Иконникова Н.П., Носкова Р.И., Шугаров С.Ю., Письма в Астрон. журн. 20, 916 (1994).
- Архипова В.П., Зайцева Г.В., Иконникова Н.П., Носкова Р.И., Шугаров С.Ю., Письма в Астрон. журн. 22, 836 (1996) [V.P. Arkhipova, et al., Astron. Lett 22, 750 (1996)].
- Архипова В.П., Иконникова Н.П., Комиссарова Г.В., Носкова Р.И., Шугаров С.Ю., Есипов В.Ф., Письма в Астрон. журн. 29, 858 (2003) [V.P. Arkhipova, et al., Astron. Lett 29, 763 (2003)].

- Архипова В.П., Есипов В.Ф., Иконникова Н.П., Комиссарова Г.В., Шугаров С.Ю., Письма в Астрон. журн. **35**, 592 (2009) [V.P. Arkhipova, et al., Astron. Lett **35**, 534 (2009)].
- 6. Байлер-Джонс и др. (C.A.L. Bailer-Jones, J. Rybizki, M. Fouesneau et al.), Astron. J. 161, 147 (2021).
- Бердников Л.Н., Белинский А.А., Шатский Н.И., Бурлак М.А., Иконникова Н.П., Мишин Е.О., Черясов Д.В., Жуйко С.В., Астрон. журн. 97, 284 (2020) [L.N. Berdnikov et al., Astron. Rep. 64, 310 (2020)].
- 8. Бессель (M.S. Bessell), Publ. Astron. Soc. Pacific **91**, 589 (1979).
- 9. Бессель и др. (M.S. Bessell, F. Castelli, and P. Planesas), Astron. Astrophys. **333**, 231 (1998).
- 10. Браун и др. (A.G.A. Brown, A. Vallenari, T. Prusti, et al. (Gaia Collab.)), Astron. Astrophys. **649**, A1 (2021).
- 11. Вудвард и др.(С.Е. Woodward, G.F. Lawrence, F.D. Gehrz, et al.), Astrophys. J. **408**, 37, (1993).
- 12. Гринин В.П., Письма в Астрон. журн. 14, 65 (1988).
- Гонсалес и др.(G. Gonzalez, D.L. Lambert, G. Wallerstein, N.K. Rao, V.V. Smith, and J.K. McCarthy), Astrophys. J. Suppl. Ser. 114, 133 (1998).
- 14. Иган и др. (М.Р. Egan, С.М. Leung, and G.F. Spagna), Comput. Phys. Comm. 48, 271 (1988).
- 15. Курниеф (J. Koornneef), Astron. Astrophys. **128**, 84 (1983).
- 16. Пугач А.Ф., Астрон. журн. 68, 122 (1991).
- Розенбуш А.Е., Ефимов Ю.С., Астрофизика 58, 46 (2015).
- 18. Страйжис В.Л., *Многоцветная фотометрия звезд* (Вильнюс: Мокслас, 1977).
- 19. Таранова О.Г., Шенаврин В.И., Астрон. журн. **79**, 1118 (2002).
- 20. Таранова О.Г., Шенаврин В.И., Письма в Астрон. журн. **39**, 867 (2013) [О.G. Taranova and V.I. Shenavrin, Astron. Lett. **39**, 781 (2013)].
- Татарников А.М., Юдин Б.Ф., Письма в Астрон. журн. 24, 359 (1998) [А.М. Tatarnikov and B.F. Yudin, Astron. Lett. 24, 303 (1998)].
- 22. Татарников А.М., Шенаврин В.И., Юдин Б.Ф., Астрон. журн. **75**, 428 (1998).
- 23. Фадеев Ю.А. Письма в Астрон. журн., **45**, 706 (2019) [Yu.A. Fadeyev, Astron. Lett. **45**, 655 (2019)].
- 24. Цветков и др. (D.Yu. Tsvetkov, A.A. Volnova, A.P. Shulga, S.A. Korotkiy, A. Elmhamdi, I.J. Danziger, and M.V. Ereshko), Astron. Astrophys. **460**, 769 (2006).
- 25. Шевалье, Иловайский (С. Chevalier and S.A. Ilovaisky), Astron. Astrophys. Suppl. Ser. **90**, 225 (1991).
- 26. Шенаврин В.И., Таранова О.Г., Наджип А.Э., Астрон. журн. **88**, 34 (2011).