ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ, 2013, том 47, № 4, с. 256-260

_____ РАДИАЦИОННАЯ ___ ХИМИЯ

УДК 541.15+541.28

ВЛИЯНИЕ АГРЕГАТНОГО СОСТОЯНИЯ НА ПРОЦЕСС ЗАХВАТА КВАЗИСВОБОДНЫХ ЭЛЕКТРОНОВ РАСТВОРЕННЫМ ВЕЩЕСТВОМ

© 2013 г. Ю. Д. Перфильев, В. М. Бяков, Л. А. Куликов, С. В. Степанов

Московский государственный университет имени М.В. Ломоносова 119899, Москва, Воробьевы горы E-mail: lakulikov@mail.ru Поступила в редакцию 17.01.2013 г.

Методом эмиссионной мессбауэровской спектроскопии в замороженных при 80 К спиртовых растворах тетрахлорида углерода исследована его реакционная способность по отношению к квазисвободным электронам, возникающим при распаде атомов 57 Со. Обнаружено, что увеличение концентрации CCl₄ вплоть до 10 М слабо влияет на выходы ионов 57 Fe²⁺ и 57 Fe³⁺ — продуктов распада атомов 57 Со. Инертность молекул CCl₄ интерпретирована как следствие изменения энергетического состояния квазисвободных трековых электронов, возникающих при замораживании спиртового раствора. Данный эффект подавляет реакцию захвата трекового электрона, протекающую по механизму диссоциативного присоединения, а также повышает энергию основного состояния квази-свободного электрона (при переходе к замороженной матрице), что радикально изменяет энергетический баланс реакции захвата электрона по сравнению с жидкой средой и соответственно уменьшает константу скорости его захвата молекулами CCl₄.

DOI: 10.7868/S0023119713040133

Эмиссионная мессбауэровская спектроскопия изучает валентные состояния и вероятности образования продуктов радиоактивных превращений материнских атомов [1]. Примерами продуктов могут служить ионы, возникающие после распада ⁵⁷Со и ^{119m}Sn, которые в ничтожных концентрациях вводятся в исследуемую твердофазную систему. В результате β-распада их ядер (соответственно электронного захвата и конвертированного изомерного перехода) возникают возбужденные дочерние атомы, ⁵⁷Fe или ¹¹⁹Sn, с возбужденными короткоживущими электронными оболочками и сравнительно долгоживущими возбужденными ядрами. Спустя 10^{-15} - 10^{-14} с атомы испускают по нескольку ожеэлектронов ($n \leq 7$) с энергиями от сотен до нескольких кэВ и обшей энергией ~6 кэВ. преврашаясь соответственно в *n*-кратно заряженные катионы ⁵⁷Fe^{*n*+} и ¹¹⁹Sn^{*n*+}. Производимая оже-электронами ионизация приводит к образованию двух-трех сотен ион-электронных пар в сфероидальной нанометровой окрестности катиона [2-4]. Подобное скопление согласно принятой в радиационной химии терминологии представляет собой очень крупный блоб. Мы назвали его оже-блобом.

Спустя ~ 10^{-7} с и 10^{-8} с, возбужденные ядра ⁵⁷Fe^{*n*+} и ¹¹⁹Sn^{*n*+} соответственно испускают по мессбауэровскому γ-кванту, которые детектируются спектрометром. Существенно, что энергия кванта зависит от числа электронов, имеющихся к этому времени в оболочке катиона и, таким образом, несет информацию о заряде катиона, n(t), на момент t испускания кванта. Заряд определяется различными взаимодействиями катиона с молекулами среды и многочисленными электронами оже-блоба.

Ввиду большого сродства к электрону, значительно превосходящего первый потенциал ионизации молекул среды, нейтрализации катиона поначалу происходит путем отрыва им электронов от соседних молекул. К моменту испускания γ -кванта (~10⁻⁷ с) ион ⁵⁷Fe^{*n*+}, например, успевает частично восстановить свою электронную оболочку и оказывается в одном из своих стабильных состояний в виде ⁵⁷Fe³⁺-иона. Последующее восстановление его происходит не посредством отрыва очередного электрона от одной из соседних молекул, а в результате рекомбинации ⁵⁷Fe³⁺ с одним из квазисвободных электронов оже-блоба [2–4]:

$$\mathrm{Fe}^{3+} + \mathrm{e}_{\mathrm{qf}}^{-} \to \mathrm{Fe}^{2+}.$$
 (1)

Наличие в среде молекул акцептора S квазисвободных электронов приводит к реакции захвата электронов ожэ-блоба,

$$e_{gf}^- + S \rightarrow S^-,$$
 (2)

уменьшающей восстановление иона ⁵⁷Fe³⁺.

Исследование конкуренции реакций (1) и (2), проявляющейся в различном соотношении меж-

Рис. 1. Спектр Co⁵⁷ в спиртовом растворе 4 М, CCl₄.

ду вероятностями образования стабильных ионов 57 Fe³⁺ и 57 Fe²⁺, позволяет изучать реакционную способность акцептора S по отношению к квазисвободным электронам.

В настоящей работе методом эмиссионной мессбауэровской спектроскопии исследуется влияние тетрахлорида углерода (CCl₄), одного из наиболее эффективных акцепторов избыточных электронов в молекулярных жидких средах, на выход образования ионов 57 Fe²⁺, появляющихся при радиоактивных превращениях ядер 57 Co, предварительно введенных в растворы этанола, замороженных затем при 80 К.

В диэлектрических полярных и неполярных жидкостях CCl_4 реагирует как с электроном в сольватированном состоянии (e_s^-), так и с предсольватированным, квазисвободным электроном (e_{qf}^-). В отличие от изучавшихся нами ранее низкотемпературных реакций простого присоединения квазисвободных электронов к ионам Cr^{2+} и Cu^{2+} в спиртовых средах [5], реакция электронов с CCl_4 , будь то в газовой или в жидкой фазе, протекает по механизму диссоциативного захвата [6, 7]:

$$e^{-} + CCl_4 \leftrightarrow CCl_4^{-*} \rightarrow CCl_3 + Cl^{-}.$$
 (3)

Последнее обстоятельство побудило нас исследовать влияние концентрации молекул CCl₄ на выход образования ионов ⁵⁷Fe²⁺ в стеклообразных растворах этанола при 80 К.

МЕТОДИКА ЭКСПЕРИМЕНТА

Для приготовления образцов был использован абсолютированный этиловый спирт и дважды перегнанный над P_2O_5 тетрахлорид углерода. Активность в виде солянокислого раствора ⁵⁷CoCl₂ без носителя в количестве 70 МБк выпаривалась в тефлоновой кювете под лампой. Затем в кювету

Рис. 2. Суммарный эмиссионный месбауэровский спектр 57 Со в спиртовых растворах CCl₄.

вносился раствор CCl₄ необходимой концентрации, перемешивался и быстро замораживался в жидком азоте. Образец помещался в криостат. Мессбауэровские измерения проводились при температуре 80 К. В качестве стандартного поглотителя использовался ферроцианид натрия, обогащенные по ⁵⁷Fe спектры измерялись на спектрометре MC1101Э фирмы MosTec. Для обработки спектров использовалась программа UNIVEM. Изомерные сдвиги приведены относительно α -Fe.

РЕЗУЛЬТАТЫ

Эмиссионный спектр Со⁵⁷ в спиртовом растворе CCl₄ представлен на рис. 1. Спектры для растворов при других концентрациях CCl₄ были аналогичны. Это позволило считать, что образующиеся после ядерного превращения формы железа одинаковы. Поэтому, чтобы иметь достаточно точные мессбауэровские параметры этих форм, спектр с хорошей статистикой был получен суммированием всех индивидуальных спектров при разных концентрациях CCl₄. Итоговый спектр представлен на рис. 2. Обработка этого спектра проводилась по различным моделям. По оптимальной модели спектр разлагался на два дублета с параметрами, соответствующими иону Fe⁺² в двух различных позициях, и два дублета, которые по изомерному сдвигу соответствуют степени окисления Fe⁺³ (таблица). Две формы железа для ионов различной валентности в растворах, содержащих CCl₄, вероятно, обусловлены присутствием различного количества молекул в ближайшем окружении атома.

Используя эту модель, т.е. фиксируя значения изомерных сдвигов и квадрупольных расщеплений, получили выходы обоих зарядовых форм же-

ПЕРФИЛЬЕВ и др.

Дублет	Изомерный сдвиг, б	Квадрупольное расщепление, Δ	Ширина	Плошали 5 %
	мм/с			Площадь, 5, 70
Первый, Fe ⁺²	1.13(1)	2.91(2)	1.22(3)	63
Второй, Fe ⁺²	1.16(1)	1.82(5)	0.55(8)	7
Третий, Fe ⁺³	0.67(3)	1.70(5)	0.67(9)	10
Четвертый, Fe ⁺³	0.30(3)	0.99(4)	1.0(1)	20

Параметры суммарного эмиссионного спектра ⁵⁷Со в спиртовом растворе CCl₄₊

леза для всех концентраций. Эта модель использовалась при обработке спектра на рис. 1. Ошибка в определении площадей составляла 20%. Выход железа в степени окисления Fe^{+3} практически не изменялся с увеличением концентраций CCl_4 в этиловом спирте (рис. 3).

Тот факт, что в эмиссионных мессбауэровских спектрах замороженных растворов наблюдается значительное уширение резонансных линий по сравнению с абсорбционными спектрами, обсуждался нами в [6]. Его возможная причина состоит в захвате электронов в окрестности дочернего атома, создающим неоднородность химического состояния последнего.

Вопреки ожиданиям, ингибирующее действие CCl_4 в отношении возникновения ⁵⁷Fe²⁺ не проявляется. Казалось бы, это находится в противоречии с известной высокой акцептирующей способностью CCl_4 , по отношению к избыточным электронам. Однако следует иметь в виду, что данное свойство установлено только для жидкой и газовой фаз [6, 8].

Рис. 3. Зависимость выхода Fe^{2+} от концентрации CCl_4 (моль/л).

ОБСУЖДЕНИЕ

Согласно сказанному выше, наличие в среде таких эффективных акцепторов электронов, каковыми считаются молекулы CCl_4 , должно приводить к уменьшению выхода ионов ⁵⁷Fe²⁺. Но, как видно из рис. 3, ингибирующее действие CCl_4 в отношении ⁵⁷Fe²⁺ не проявляется.

Скорее всего, низкая ингибирующая способность CCl_4 связана с дефицитом свободного пространства, возникающим вследствие резкого падения концентрации нанополостей при температурах ниже температуры плавления этанола. Наличие достаточного свободного объема, разрыхляющего структуру среды, необходимо, во-первых, для разъединения продуктов диссоциации реакции (3) аниона Cl⁻ и радикала 'CCl₃. Во-вторых, молекулы этанола, равномерно распределенные вокруг молекулы CCl₄, создают для атакующего ее электрона, мигрирующего по нанополостям, непреодолимый потенциальный барьер. И только флуктуации в упаковке этих молекул дают возможность электрону присоединится к молекуле CCl₄.

Вторая вероятная причина потери химической активности молекулами CCl_4 в замороженных спиртовых растворах связана с резонансным характером реакции захвата этими молекулами электронов, обладающих вполне определенной энергией. Зависимость поперечного сечения реакции резонансного захвата от энергии налетающего электрона имеет колоколообразную форму. В газовой фазе при нормальных условиях максимумы большинства сечений достигаются при энергиях атакующих электронов в интервале ~0.1–1 эВ. Максимум для CCl_4 расположен в области тепловых энергий налетающих электронов ~0.03 эВ [9].

Составим уравнение энергетического баланса для реакции диссоциативного захвата электрона в оже-блобе. Энергия электрона в мессбауэровском оже-блобе складывается из работы входа, V_0 , электрона в конденсированную молекулярную среду на дно зоны проводимости, а также той части трансляционной энергии, K_{tr} , которую он получил при ионизации родительского атома и не успел растратить в ходе термализации. Энергия V_0

ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ том 47 № 4 2013

квазисвободного электрона на дне зоны проводимости меняется с изменением состава, температуры, агрегатного состояния среды. Она может иметь как положительные, так и отрицательные значения.

Захват электрона молекулой CCl₄ начинается с образования (за время ~ 10^{-15} с) возбужденного анионного состояния, CCl₄^{-*} (квазианиона). Конечный продукт диссоциативного присоединения, сольватированный анион Cl_s⁻, появляется спустя время (~ 10^{-13} с), порядка периода внутримолекулярных колебаний после встречи реагентов [9]:

$$e_{qf}^{-*} + CCl_4 \ (\le 10^{-15} \text{ c}) = CCl_4^{-*},$$
 (3a)

$$\operatorname{CCl}_{4}^{*}(\sim 10^{-13} \,\mathrm{c}) = \operatorname{CCl}_{3} + \operatorname{Cl}_{s}^{-}.$$
 (3b)

После захвата акцептором энергия электрона дополнительно понижается на величину, равную разности энергий электронного сродства CCl₄ и

энергии $P(\text{CCl}_4^{-*})$, сольватации квазианиона CCl_4^{-*} : $[(EA)_{\text{CCl}_4^*} - P(\text{CCl}_4^{-*})]$.

Энергия, необходимая для диссоциации ква-

зианиона CCl_4^{-*} , по-видимому, соизмерима с энергией *D* диссоциации молекулы CCl_4 . Она черпается частично из энергии $V_0 + K_{tr}$ атакующего электрона, частично заимствуется из энергии $(EA)_{\text{CCl}_4^*}$ электронного сродства молекулы CCl_4 ,

частично из энергии $P(CCl_4^{-*})$ сольватации квазианиона CCl_4^{-*} . Таким образом, энергетический порог диссоциативного захвата электрона определяется из условия:

$$V_0 + K_{tr} + (EA)_{CCl_4^*} - P(CCl_4^{-*}) \approx D.$$
 (4)

Оно упрощается применительно к реакциям в разбавленных растворах, где можно пренебречь величиной K_b :

$$V_0 + (EA)_{CCL_4^*} - P(CCL_4^{-*}) \approx D.$$
 (5)

Для газовой фазы аналогичное условие, очевидно, имеет вид:

$$(EA)_{CCI^*} + K_{gas} \approx D. \tag{6}$$

Здесь K_{gas} — та кинетическая энергия электрона, которая обеспечивает максимальную величину сечения реакции его диссоциативного захвата.

Используя соотношение (6), перепишем уравнение (5) в виде:

$$V_0 \approx K_{gas} + P(\text{CCl}_4^{-*}). \tag{7}$$

Таким образом, реакция диссоциативного присоединения квазисвободного электрона к электро-

ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ том 47 № 4 2013

Рис. 4. Величины константы $k(e_{qf} + CCl_4)$ скорости квазисвободного электрона с CCl_4 в углеводородных растворах CCl_4 с разными значениями V_0 , отложенными вдоль оси абсцисс в порядке возрастания слева направо [6].

фильному акцептору с наибольшей эффективностью совершается в такой молекулярной конденсированной среде, где энергия V_0 квазисвободного электрона несколько меньше оптимальной кинетической энергии электрона, K_{gas} , необходимой ему для осуществления той же реакции в газовой фазе. В средах, где V_0 заметно отличается от оптимального значения в ту или другую сторону, протекание реакции сопровождается передачей энергии молекулам среды или, наоборот, заимствованием энергии у них. И то, и другое тормозит реакцию и даже может сделать ее протекание практически невозможным.

При замораживании углеводородных, водных и спиртовых сред происходит значительное возрастание V_0 . Если для жидкого этанола $V_0 \approx -0.7$ эВ, то ниже температуры его плавления (≈ 159 K) V_0 становится положительной, хотя и не очень хорошо определенной величиной: (0.34–1.1) эВ [10]. Это значение намного превышает энергию, при которой константа скорости реакции (1) имеет максимум, так что условие резонанса (7) заведомо не выполняется. Проделав на рис. 4 экстраполяцию констант скорости $k(e_{qf} + CCl_4)$ до величин, соответствующих $V_0 \approx (0.34 - 1.1)$ эВ, находим, что соответствующие им значения $k(e_{af} + CCl_4)$ на 3-4 порядка величины ниже значений $k(e_{qf} + CCl_4)$ в жидких средах, для которых $V_0 \approx -(0.7-0.4)$ эВ. Столь сильное снижение реакционной способности означает, что молекулы CCl₄ как акцепторы

квазисвободных электронов в замороженных при 80 К спиртовых растворах не в состоянии препятствовать образованию ионов ${}^{57}Fe^{2+}$ в оже-блобах, а потому присутствие тетрахлорида углерода не должно сказываться на соотношении выходов ионов ${}^{57}Fe^{2+}$ и ${}^{57}Fe^{3+}$ в условиях упомянутых выше мессбауэровских экспериментов.

выводы

Наблюдавшееся нами отсутствие влияния концентрации CCl₄ на соотношение выходов ионов ${}^{57}\text{Fe}^{2+}$ и ${}^{57}\text{Fe}^{3+}$ в условиях мессбауэровских экспериментов, вероятно, является следствием дефицита свободного объема, возникающего при замораживании спиртового раствора. Изменение агрегатного состояния среды (переход от жидкой к замороженной фазе) изменяет нулевую энергию квазисвободного электрона. Последнее в одних случаях может благоприятно сказываться на протекании реакции, а в других подавлять ее, что и происходит с обсуждаемой в данной работе реакцией квазисвободного электрона с CCl₄ в замороженном этиловом спирте.

СПИСОК ЛИТЕРАТУРЫ

- Friedt J.M., Danon J. // Atomic energy review. 1980. V. 18. № 4. P. 893.
- Бяков В.М., Куликов Л.А., Перфильев Ю.Д., Степанов С.В. // Ядерная физика. 2005. Т. 68. С. 1057.
- Бяков В.М, Перфильев Ю.Д., Куликов Л.А., Степанов С.В. // Вестн. Моск. ун-та. Сер. 2. Химия. 2009. Т. 50. № 5. С. 328.
- Byakov V.M., Kulikov L.A., Perfil'ev Yu. D., Stepanov S.V. // Materials Science Forum. 2011. V. 666. P. 35.
- 5. Перфильев Ю.Д., Куликов Л.А., Бяков В.М., Степанов С.В., Альхатиб Х., Бугаенко Л.Т. // Химия высоких энергий. 2003. Т. 37. № 5. С. 390.
- 6. *Пикаев А.К.* Современная радиационная химия. Основные положения. Экспериментальная техника и методы. М.: Наука, 1985.
- 7. *Buehler R.* // Radiat. Phys. Chem. 2001. V. 60. № 4–5. P. 323.
- 8. *Lam K.Y., Hunt J.W.* // Radiat. Phys. Chem. 1975. V.7. № 2–3. P. 317.
- 9. Christophorou L.G. // Chem. Rev. 1976. V. 76. № 4. P. 409.
- Hiraoka K., Nara M. // Bull. Chem. Soc. Jpn. 1981. V. 54. P. 3317.