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Abstract. In application to positron annihilation spectroscopy, Ps atom is considered not as a point
particle, but as a finite size ete™ pair localized in a bubble-like state in a medium. It is shown that
during transition from quasifree to localized state, variation of the internal Coulombic e -e~ attraction
energy (several eV) plays an important role, which may govern Ps localization process.

Introduction

Typical lifetimes (up to annihilation) of a para-positronium atom (p-Ps; spin = 0) in condensed medium
are about 130-180 ps. They are close to the p-Ps lifetime in vacuum (125 ps). The ortho-positronium
lifetime in a medium is considerably shorter than that in vacuum (some ns). This is due to the so-called
pick-off process -- prompt 2~y-annihilation of the e*, composing Ps atom, with one of the nearest e~
of surrounding molecules, whose spin is antiparallel to the e™ spin. Just this property turns Ps into a
nanoscale structural probe of matter. The theoretical task consists in establishing relation between the
observable pick-off annihilation rate \,, and size of the Ps trap and such properties of the medium like
surface tension, viscosity, external pressure.

Originally, to explain the unexpectedly long lifetime of the ortho-Ps atom in liquid helium R.Ferrel
[1] suggested that the Ps atom forms a nanobubble around itself. This is caused by a strong exchange
repulsion between the o-Ps electron and electrons of the surrounding He atoms. Ferrel approximated
this repulsion by a spherically symmetric potential barrier of radius R... To estimate the equilibrium
radius of the Ps bubble he minimized the sum of the Ps energy in a spherically symmetric potential
well, i.e. 72h?/4mR%, = X (rap/Re)? Ry=13.6 eV, and the surface energy, 47 R% o, where o is
the macroscopic surface tension coefficient. The following relationship is hereby obtained for the
equilibrium radius of the bubble:
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Ferrel's idea got further development in the studies of Tao [2] and Eldrup et al. [3]. They considered
the Ps atom as a point particle in a liquid, i.e. in a structureless continuum. The repulsive Ps-liquid
interaction was approximated by a rectangular infinitely deep spherically symmetric potential well of
radius R... In such a well, the wave function of a point particle has the following standard expression:

sin(7mr/ Ra)

Here, r is the Ps center-of-mass coordinate. Because the Ps wave function equals to zero at the
bubble radius (and outside), there is no e™ overlapping with outer electrons of a medium. So, pick-off
annihilation is absent. To overcome this difficulty it was postulated that molecular electrons, which
form a "wall" of the Ps bubble, may penetrate inside the potential well.
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This results in the appearance of a surface layer of thickness 0 = R., — R having the same average
electron density as in the bulk. As a result, the pick-off annihilation rate \,, becomes non-zero. It is
proportional to the et overlapping integral with the electrons inside the bubble:
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This is the well-known Tao-Eldrup formula. Here,
Ay &~ 2ns!is the et annihilation rate in an un-
perturbed medium (it is proportional to Dirac's 2+-
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Along with the development of the "infinite poten-
Fig. 2: Dependence of the pick-off annihilation  tja] well" Ps bubble model, another approach based
rates [8] vs. surface tension in different liquids.  on the finite potential well approximation was also
Solid curve shows the correlation given by the  elaborated [4--8]. However in both approaches, the
Tao-Eldrup at A, = 2 ns~" and optimal value Ps atom was approximated by a point particle. This
0 = 1.66 A (obtained from fitting of these leads to a significant simplification, but it is not jus-
data by means of Eq. (3)). Dashed curve illus-  tified from a physical viewpoint, because:
trates simplest approximation A, o< o'/2. 1t fol- 1) the size of the localized state of Ps (size of the Ps

sin x

lows from reasonable approximation *7* |,y ~ bubble) does not significantly exceed the distance

1— 33/7'(, which allows to write )\po X 6/Roo —  Dbetween e+ and e” in PS,
% ~ 202/ R%, o o'/?, 2) during Ps bubble formation takes place a substan-

tial variation of the internal energy of Ps ( namely,
the Coulombic e*-e attraction energy), which is completely ignored in the "point-like" Ps models. In
a vacuum or in a large bubble, the internal energy of Ps tends to —Ry/2 = —6.8 eV. In a continuous
liquid (no bubble) with the high-frequency dielectric permittivity e ~ n? (n ~ 2-3 is the refractive
index) the energy of the Coulombic attraction between e™ and e~ decreases in absolute value by a
factor e ~ 4-9. The same takes place with the total Ps binding energy, which tends to the value
—Ry/2¢? ~ —(0.8-1.7) eV (this is a simple consequence of the scaling e — ¢? /¢ of the Schrodinger
equation for Ps atom). Thus, the change in the Ps internal energy during Ps formation may reach 5
eV. Obviously, this represents an important contribution to the energetics of Ps formation. The aim of
the present work is to proceed with more accurate estimation of this contribution, which has not been
done yet.

There is only a small number of papers where the consequences of the finite size of Ps are discussed
in application to positron annihilation spectroscopy. To calculate \,,, the Kolkata group [9] suggested
to smear the Ps atom over the relative et-e™~ coordinate exactly in the same way as it is in a vacuum.
Such an approach is valid for rather large bubbles. However, they do not discuss the variation of the
internal Ps energy.
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In [10--12] there was used path integral Monte Carlo technique to simulate two particle e*-e~
system. However, to proceed with calculations they need potentials describing e~ -atom and e*-atom
interactions (they were taken from a variety of sources). However, the question about modification of
et-e~ interaction because of the presence of the medium remains open (in this paper we roughly take
this effect into account by means of introducing high frequency dielectric permittivity).

In [13] the Ps atom is considered as a finite sized e~ e™ pair, but the variation of the Coulombic
interaction because of dielectric screening is not discussed. It was assumed that e~ is confined in
an infinite potential well and e is bound to it due to the Coulombic attraction. The wave function
of the pair was taken as a series of orthogonal polynomials, their weights being determined from a
minimization procedure of the total energy of the pair.

Hamiltonian and wave function of the e" e~ pair in a medium. Minimization of the total energy
(H). Relative contact density and pick-off annihilation rate

Let the eTe™ pair (Ps atom) have already formed in a liquid a nanobubble (spherical cavity; Ps bubble)
of radius R (the onset of coordinates is taken at the center of the bubble, Fig. 3). Together with the
molecules surrounding the e™e™ pair, one has to deal with a quite intricate many-body problem with
a complex hamiltonian. We reduce it to the following form:

~J=ry-r|
2 o, A

“R r, Hr TS i V) 4 U) ~Ulre o R). ()

Terms with Laplacians A, and A_ over r, and r_ (e™ and e~ coordinates)
stand for the kinetic energies of the particles. U(r) and U(r_) describe the
individual interaction of e and e~ with the medium. For them we adopt the
following approximation:

0, 7r+<R, 0, r_<R,
U(T-i-) :{ ‘/0-&- ,r: >R U(T—) :{ VE)_ r_ > R. (5)

Here, V," and V;~ are the e™ and e~ work functions, respectively (V; is a commoner notation for the
electron work function). The work function is usually introduced as the energy needed for an excess
particle to enter the liquid without any rearrangement of its molecules and to stay there in a delocalized
state, having no preferential location in a bulk. One may say that V;" and Vj; are the ground state
energies of the quasifree e™ and e, because their energies at rest after having been removed from the
liquid to infinity are defined to be zero.

V, consists of 1) the e kinetic energy, arising from its exchange repulsion from the "core" elec-
trons of molecules (atoms), and 2) the energy due to the polarization interaction of e~ with the medium.
! According to the theory of the quasifree electron [14], this polarization interaction may be estimated
as a sum of two parts: a) interaction of the e~ with the molecule where it resides, U™ (to calculate
Unt the electron is considered as an electron cloud smeared over the molecule), and b) interaction
of the e~ with all the other molecules, U = (1 — 1/¢)e?/2Rws, (this expression is similar to the
well-known Born formula for the electron solvation energy).

! In case of e™ the kinetic contribution to V" is due to the Coulombic repulsion from the nuclei (the
exchange repulsion is absent).
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Table 1: Electron work function for different liquids at room temperature [15]

Liquid Vo, eV || Liquid Vo, eV
helium; 4.2 K 1.3 benzene -0.14
n-dodecane 0.2 isooctane -0.17
n-decane 0.18 toluene -0.22
n-heptane 0.12 neopentane -0.38
n-hexane 0.1 MeOH, EtOH, PrOH -04
nitrogen; 77.3 K 0.05 xenon; 170 K -0.57
n-pentane, c-hexane  0.01 water -1.2
argon; 86.4 K 0

Experimental values for Vj; are known for many liquids (Table 1). Because of a lack of the data
for e™ work functions, we shall admit that V" ~ V;;~ and therefore [V;" + V| < 1eV. So [V;" + V|
is less than the variation of the internal energy of the pair, &~ Ry(1 — 1/¢%)/2 ~ 5 eV, related with the
variation in the dielectric screening of the e™-e™ attraction in the bubble formation process. The case
Vit >V, will be considered later on.

Usage of Egs. (4-5) implies that polarization interactions of the e™ and e~ with the medium remains
same either e™ and e~ are well separated (being in the quasifree states), or when e™ and e~ form
the quasifree Ps atom (qf-Ps). Since qf-Ps is nearly an electrically neutral particle, the contributions
Ut =~ U™, which come from a long-range polarization interaction of ¢ and e~ with the medium,
should be subtracted from the sum U (r_) 4 U(ry) in Eq. (4). Therefore, it is reasonable to consider at
least two cases: 1) when the above mentioned polarization correction is neglected and V[, + V. — 0
and 2) when the terms U ~ U ~ —1 eV are subtracted from the work functions and therefore
Vo~ + V5" — 2 eV. Both cases are considered below.

In Eq. (4) U, stands for the Coulombic interaction between et and e~ in a polarizable medium.
Assuming that the medium has the dielectric permittivity € of the bulk and a spherical cavity of radius
R (inside the cavity € = 1), one may calculate U, by solving the Poisson equation. Denoting the e and
e~ coordinates as ry and r_, U. may be written in the form of the following series via the Legendre
polynomials P,(z = cos @) [16]:

Uclry < Ryr— < R) 2ap 1 2ap  (1+)P(z) rlrt
Ry r ( ) ( +Zl i+ w ) ©

Ulr, <Ryr_>R) 2ap (Hi(uzzm(z) #)

Ry T e L+i+1/c oL

Ulry > Rir_ < R)  2ap <1+i(1+2lm($) rl_>_

Ry :am 1+1+41/e 'rl+

Udry > R,r->R) 2ap N <1 B 1) 205 ~~ [P(z) < R2 )H-l
. )

Ry T er e) R lzll—l—e—l—lg. L

Here, the argument of the Legendre polynomials is x = cos 1), where ¥ is the angle between the z axis
and the direction of r_. Note that the summation of these series is simplified considerably when using
the following recurrent relationship (Fy = 1, P, = x)

F(z) =[2 = DaP(x) — (I = 1) Po(x)]/L.
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Fig. 4: Dependence of the e*-e~ Coulombic interaction energy for different locations of e and e~
around the bubble (here we adopt the radius of the bubble R equal to 4ap ~ 2 A). z, and ~_ are the
et and e~ displacements from the center of the bubble along the z-axis. The dashed curves describe
the unscreened (red) and completely screened (e times less; blue) Coulombic energies between e and

c .

Particular dependencies of U,. for some selected arrangements of e™ and e~ and the cavity are shown
in Fig. 4. Thus, we are able to take into account the variation of the e" e~ Coulombic energy during
the formation of the Ps bubble. Similarly, the dielectric screening is used in the polaron problem and
the ion-electron recombination problem (Onsager's formula) [17, 18].

Keeping in mind further use of the variational procedure, let us choose the normalized e™e™ wave
function in the following simplest form:

_exp(—7r/2a — ¢y /2b) rptr B -
= 8 ,—a3b3 ) Yem = 2 ;, I=Iy —r_. ( )
In both cases of a rather large bubble and a uniform dielectric continuum, W, _ breaks into a product
of two terms: the first one depends on the distance r between e™ and e, and the second one depends
on the center-of-mass coordinate r.,,,. Parameters a and b are the variational ones, over which we have
minimized the energy of the e*e™ pair:

Wy (ry,r)

E(a,b,R) = (V. _|H|V,_) = min = a(R),b(R). (8)

The simplest verification of the calculations is to recover two limiting cases. In case of large bubbles
(R — 00), one should reproduce the “vacuum" state of the Ps atom: its total energy must tend to
—Ry/2 = —6.8 eV, the kinetic energy to +Ry/2 and the Coulombic energy to —Ry. In case of small
bubbles (R — 0), the delocalized qf-Ps state must be reproduced. The Schrédinger equation for qf-Ps
has the same form as for the vacuum Ps, but with the substitution e — ¢*/e. Then the total qf-Ps
energy tends to Vb + V- — Ry/2&?, its kinetic part tends to +Ry/2c*> = 1.7 eV (¢ = 2) and the
Coulombic energy tends to —Ry/e? = —3.4 eV. Fig. 5 displays optimal values of a and b as well as
different contributions to the total energy of the e~ pair when V" + V;” = 0 and 2 eV.

In the framework of the developed scheme using the wave function (7) it is easy to obtain the
relative contact density 7). in Ps atom:

_ J @ dr |Uy_(roro)Po(ry — 1) _ aj 9)
T T drdPr_ |05 (ry v )20(ry — 1) a3 (R)’
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Fig. 5: Dependencies of the optimal parameters a and b vs. R, the bubble radius. They enter the eTe™
wave function and yield the minimum of the total energy (H). The relative contact density 7. and
different energy contributions to (H) (at optimal a and b) are shown as well. The upper drawings
correspond to the case V" + V;~ = 0 and the lower ones to V" + V;” = 2 eV. In both cases it was
assumed that ¢ = 2.

This quantity determines the observable Ps annihilation rate constant (including the case with applied
permanent magnetic field). The resulting dependencies of 7). are shown in Fig. 5 (on the left). Because,
for qf-Ps, parameter a is equal to ap, for qf-Ps the value of 7). should be 1/&3 = 1/8, which is well
recovered in numerical calculations. When R increases, 7). approaches unity, because a tends to its
vacuum value a. Knowing the expression for the wave function (7), one may calculate the positron
overlapping Pr with molecular electrons, surrounding the Ps atom, and therefore find out the pick-off
annihilation rate constant:
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V_4+V,=2 eV Fig. 6: Pick-off annihilation rate constant of Ps, lo-
calized in a bubble of R when V, + V_ = 0 (green
curve) and V., + V_ = 2 eV (brown curve). For small
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206 R (< 2 A) the calculated values of A, are equal to A .
;—" . The red line shows pick-off annihilation rate constant,
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Here, A, ~ 2 ns™! is the annihilation rate constant of "free" positrons. Results of calculations of

Apo(R) for optimal @ and b values, which correspond to the minimal Ps energy at a given R, are shown
in Fig. 6.

Results and Conclusions

1) It is usually considered that Ps is a solvophobic particle, i.e., it forms a bubble when entering a liquid
because of exchange repulsion between e~ in Ps and the surrounding molecular electrons. If the work
functions of e* and e~ are negative (V;© ~ V,~ < 0), each particle considers a cavity as a potential
barrier. So they are pulled to the bulk by polarization interaction with the medium. Nevertheless, even
in this case the Ps bubble may be formed due to an enhancement of the Coulombic e*e™ attraction
inside the cavity (no dielectric screening inside). This feature cannot be taken into account when Ps is
simulated as a point particle.

2) It is seen that the behavior of the total energy of the pair (red curves in Fig. 5) strongly differs
from the Tao-Eldrup prediction (green dashed curves; the first term in Eq. (1), where R is replaced by
R), as well as from the expectation based on the finite potential well model (brown curves in Fig. 5; the
Coulombic potential cannot be approximated well by a rectangular spherically symmetric potential).
The same is true for the pick-off annihilation rate, Fig. 6.

3) Calculations demonstrate one common feature: up to R < 1.5 — 2.2 A all dependencies remain
the same as in a medium without any cavity, but at larger R there are significant deviations. This is
related to the known quantum mechanical phenomenon -- absence of a bound state of a particle in
a small finite 3d-potential well. In such cavities, Ps cannot be bound, it does not exert any repulsive
pressure on their walls and does not stimulate their transformation towards the equilibrium Ps bubble.
The possibility of finding a suitable preexisting cavity, sufficient at least for preliminary localization
of qf-Ps, may be a limiting factor for the formation of the Ps bubble state.

4) One may find an equilibrium Ps bubble radius by minimizing the sum of the total e"e~ energy
(H) and the surface energy of the bubble. For water it turns out to be 5-5.2 A which is about 2 A
larger than predicted by the Tao-Eldrup model. For such a large bubble, the relative contact density is
n. ~ 0.9, Fig. 5. It is somewhat higher than the experimental values (0.65-0.75 [19]). This discrepancy
may indicate that ™ and e~ really interact with a medium in a different way, for example, V;" > V.
It means that the Ps positron may be trapped by a cavity, and e~ will be bound to this trapped e~ by the
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Coulombic attraction. This scenario may be also considered in the framework of the present approach,
but the expression for the trial wave function of the new pair must be written in an “asymmetric"
(towards et and ™) form:

oxp(—ry —r_|/2a —ry/2b)
U, (ry,r )= P : (11)
5) Any Ps bubble model reduces the original many-body (multi-particle) problem to a simpler
one, that of one or two particles in an external field, which simulates the interaction with the medium.
To calculate this field one usually relies on some macroscopic approaches. However, their validity
always remains uncertain (for example, how to relate the actual arrangement of molecules around the
Ps bubble with the jump of dielectric permittivity outside the bubble and so on).
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