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Abstract. Metamaterials are composite materials, the properties of which are determined primarily by their geometric 
cellular microstructure, and not by the properties of the components included in their composition. The article is devoted 
to the metamaterials with a negative thermal expansion coefficient (NTE). The thermal expansion effective coefficients 
of such materials are analyzed. Effective thermal expansion is calculated numerically, by solving a boundary value 
problem of thermoelasticity on the metamaterial’s periodicity cell using finite element method. A strain tensor is 
averaged over the cell. Effective thermal properties are estimated using the averaged solution results. Also, a stability of 
NTE-metamaterial’s cell under thermal loads is analyzed. The article presents a dependency of the metamaterial effective 
thermal expansion coefficients on various geometric parameters of its cell. Variation of these parameters allows to make 
the thermal expansion effective coefficient both zero and negative with a large absolute value. A metamaterial is proved 
to be stable under thermal loads in a wide range of temperatures. 

INTRODUCTION 

Metamaterials are composite materials, the properties of which are determined primarily by their geometric 
(cellular [1]) microstructure, and not by the properties of the components included in their composition. Meta-
materials may have unique optical, radiophysical, electrical, acoustic and other properties that open broad 
perspectives for different industrial applications. Such materials have a cellular structure [2] and are manufactured 
by 3D printing. 

This article is devoted to numerical modeling of metamaterials with a negative thermal expansion coefficient [3]. 
Such materials shrink when heated. Such metamaterials which do not change their sizes when heated or cooled are 
of practical interest. They can be used in microchip devices, adhesive and dental fillings and high-precision optical 
or mechanical devices under variable external temperatures. NTE-metamaterials are usually manufactured using 3D 
printing with two components with various mechanical and thermal properties: a harder one with a smaller thermal 
expansion coefficient and a softer one with a higher coefficient. It is important to note that both components have 
positive thermal expansion coefficients. 

A size of the metamaterial periodicity cell is about a millimeter. At the same time, products made of a 
metamaterial may have a size of about 10 cm or even a meter. Therefore while running numerical structural or 
thermal analysis of a full product or its part made of a metamaterial with a microstructure, it is impossible (and 
actually not necessary) to simulate the geometry of each cell. To speedup such calculations, a heterogeneous 
metamaterial is replaced by an anisotropic and homogeneous effective material which mechanical behavior 
corresponds, on average, to the initial metamaterial. At the same time, the question arises: How to estimate the 
mechanical and/or thermal properties of this effective material? 

The effective properties estimation for heterogeneous material is one of the main problems of the mechanics of 
composites. In this paper, the effective thermal characteristics of the NTE-metamaterial [4] are estimated by 
numerical solving a boundary value problem of thermoelasticity on its periodicity cell [5] with periodic boundary 
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conditions. The results are averaged over the volume of cell [6]. Finally effective linear thermal expansion 
coefficients are computed. 

NTE metamaterials are intended for using in a wide range of temperatures. This raises the problem of their 
stability under thermal loads. We present results of bucking analysis of a periodicity cell obtained using FEM. 

PROBLEM STATEMENT AND SOLUTION ALGORITHM 

First, let us give the definition of effective thermal expansion [7]. We call the effective (averaged) material (in 
terms of temperature expansion) such a homogeneous material that will satisfy the following condition: if we 
consider the periodicity cell [6] of the initial metamaterial and fill-in the same volume with the homogeneous 
material, then the averaged over the volume thermal strains on these cells are equal in case of equal temperature 
distributions in the volumes. The thermal expansion coefficients of this material will be called effective coefficients 
of thermal expansion. Using this definition, we describe a method of the estimation of the effective thermal 
conductivity coefficients of the metamaterial. To estimate the effective coefficient of thermal expansion of the 
metamaterial, we solve a boundary value problem of elasticity [8] on its periodicity cell V0 taking the thermal 
expansion into account: 

 
el

el th

0,

.
 (1) 

Here  is total stress tensor, el is mechanical (elastic) stress tensor [9], th is thermal stress tensor. 
The periodic boundary conditions [10] are applied to the cell, and then it is heated at T. Under the influence of 

a temperature, the cell is deformed. We derive the effective temperature expansion in the form of a linear relation 
between the thermal strain tensor and T: 

 th .ij ij T  (2) 

Effective thermal expansion coefficients are calculated from the ratio [7]: 

 
e

.ij
ij T

 (3) 

Boundary conditions applied to the periodic cell should be discussed in more details (see Fig. 1). The non-
periodic boundary conditions in this problem are zero pressure, which allows it to expand freely with increasing 
temperature. Periodic boundary conditions also allow the volume to expand freely with a limitation: the volume, 
which was the composite’s periodicity cell before the deformation, should remain a periodicity cell after the 
deformation. For this, a pair of points is fixed (1, 2), the first of which is on the face x = A, the second—on the face 
x = –A, and their projections coincide (these may be angular points.). And the corresponding restraint is applied on 
the displacements of each pair of points (i, –i):  

 1 2 ,i iu u u u   (4) 

where u is the displacement vector of a point. 
 

  
FIGURE 1. Periodic boundary conditions. FIGURE 2. NTE metamaterial. 
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We note again that in this equation, a pair of points (i, –i) vary, passing throughout the surface of the faces x = A 
and x = –A; and the pair of points (1, 2) is fixed, the same for all restraints of the equation. Similar restraints are 
applied on corresponding to each other points from faces y = B and y = –B and from faces z = C and z = –C. Such 
boundary conditions allow the models to freely change their volume, while keeping the shape of a periodicity cell. 

RESULTS 

In the paper, we simulate the effective thermal properties of the NTE metamaterial and study their dependence 
on the geometric cell parameters. Calculations are carried out using a software module Fidesys Composite of CAE 
Fidesys [11]. For constructed periodicity cells, a set of numerical experiments is carried out, in which the effect of 
the geometric parameters of the model on the metamaterial thermal expansion coefficient is shown. The 
metamaterial components’ properties are described by Young’s modulus, Poisson’s ratio and thermal expansion 
coefficient.  

The study examines the cell’s model with two materials: copper (hard, but with a smaller thermal expansion 
coefficient) and polymer (soft, but with a large thermal expansion coefficient) with a large number of voids. 
Figure 2 shows the cell structure of such a metamaterial. Black color corresponds to copper (a more solid component 
with a smaller thermal expansion coefficient), grey is a polymer (a softer component with a higher thermal 
expansion coefficient). For this metamaterial model we present dependency of the effective thermal expansion 
coefficients on geometric parameters—the angle of inclination of polymer rods with respect to the copper contour. 
These calculations are carried out for different combinations of the original model parameters: the thickness of the 
cell contour, the thickness of the polymer rod and the thickness of the diagonal copper rods. Also, a buckling 
analysis of the cell under thermal deformations is carried out. As a result, a temperature range was determined, 
within which this structure is stable. For a model consisting of two materials: copper and polymer, a dependency of 
the temperature expansion coefficient on the angle  was analyzed with a fixed thickness of the frame. As a result 
we may conclude the following terms. Firstly, it’s possible to choose the parameters of the cell, for which the 
metamaterial has a zero effective thermal expansion coefficient—that is, when the temperature changes, it keeps its 
size. Secondly, with certain combinations of parameters, the effective coefficient is negative, and its module is large 
enough (equal to the thermal expansion coefficient of the polymer). Figure 3 shows the dependence of thermal 
expansion coefficient (units of the K–1) on the angle  between the copper contour and the polymer rod. The 
following notation was introduced on the graph: T is the thickness of the copper contour of the cell, P is the 
thickness of the polymer rod, C is the thickness of the copper diagonal. Sizes are given in relation to the total cell 
size. 

For a deeper analysis of the properties of the resulting model, the buckling analysis under thermal loads is 
performed on the cell. The results show that an increase in the thickness of the copper diagonals and the contour 
allows one to expand the temperature range in which the metamaterial remains stable. The thickness of the polymer 
rod also influences on the stability: there is some optimal value (depending on the thickness of the contour and the 
diagonals), at which the temperature range is the widest. 

The plots of the dependence of the critical temperatures on the thickness of the contour and the diagonals are 
shown in Fig. 4. The vertical axis corresponds to the thickness of the contour in the hundredths, the horizontal axis is 
the temperature axis.  

 

 
FIGURE 3. An effective thermal expansion coefficient versus an angle  

between the periodicity cell’s contour and the polymer rod. 
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FIGURE 4. Stability areas. 

 
The blue line corresponds to the cell with P = 0.025, the red line corresponds to the cell with P = 0.05. For the 

first cell, the area of stability is I. For the second cell, the areas of stability are I and II. The graphs show that the 
increase of the thickness of the contour and the diagonals causes the non-linear increase of the critical temperature 
value for the metamaterial. 

Finally we perform the buckling analysis for the cell with the smallest effective thermal expansion coefficient 
(the lower graph in Fig. 3,  = 0.03,  = 0.025,  = 0.08,  = 14°) and for the cell with almost zero coefficient (the top 
graph in Fig. 3,  = 0.09,  = 0.025,  = 0.09,  = 18°). The critical temperature is 105º  for the first cell and 129º  
for the second cell. In indicates that NTE metamaterials with different cell parameters are stable under thermal 
loading in a wide temperature range. 

CONCLUSION 

Thus, the results of the calculations demonstrate that a proper choice of the geometric parameters of the 
periodicity cell of the specified shape allows one to achieve a negative effective coefficient of thermal expansion 
with a large absolute value or almost zero effective coefficient. At the same time, NTE metamaterials are stable 
under thermal loading in a wide temperature range. 
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