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Label Distribution in Tissues of 
Wheat Seedlings Cultivated with 
Tritium-Labeled Leonardite Humic 
Acid
Natalia A. Kulikova1,2, Dmitry P. Abroskin1, Gennady A. Badun3, Maria G. Chernysheva3, 
Viktor I. Korobkov3, Anton S. Beer4, Eugenia A. Tsvetkova5, Svetlana V. Senik6, Olga I. Klein2 & 
Irina V. Perminova3

Humic substances (HS) play important roles in the biotic-abiotic interactions of the root plant and 
soil contributing to plant adaptation to external environments. However, their mode of action on 
plants remains largely unknown. In this study the HS distribution in tissues of wheat seedlings was 
examined using tritium-labeled humic acid (HA) derived from leonardite (a variety of lignites) and 
microautoradiography (MAR). Preferential accumulation of labeled products from tritiated HA was 
found in the roots as compared to the shoots, and endodermis was shown to be the major control 
point for radial transport of label into vascular system of plant. Tritium was also found in the stele and 
xylem tissues indicating that labeled products from tritiated HA could be transported to shoot tissues 
via the transpiration stream. Treatment with HA lead to an increase in the content of polar lipids of 
photosynthetic membranes. The observed accumulation of labeled HA products in root endodermis 
and positive impact on lipid synthesis are consistent with prior reported observations on physiological 
effects of HS on plants such as enhanced growth and development of lateral roots and improvement/
repairs of the photosynthetic status of plants under stress conditions.

Crop productivity is dependent on the capability of plants to adapt to external environments. Humic substances 
(HS) are the major components of soil organic matter1,2 which play important roles in the biotic-abiotic interac-
tions of the root plant and soil contributing to plant adaptation3. Due to complexity of HS structure, exploration 
of their mode of action on plants has been a vivid field of the research for more than hundred years3–11. The most 
documented effect is stimulation of the root growth including root hair formation10 and lateral root develop-
ment11 which was first reported in the pioneering work by Khristeva5.

Recently the extensive reviews on the effects of HS on plant metabolism were published12,13. A variety of 
enzymes were identified which are involved in a plant response to HS action including plasma H+–ATPase14–16, 
H+–pyrophosphatase17, Fe(III) chelate-reductase14, glycolytic enzymes, and enzymes of the tricarboxylic acid 
cycle18. A consensus was achieved with regard to multiple regulating functions of HS including direct stimulation 
of root growth and root hair proliferation, modulation of the release of protons and root exudates, regulation of 
ion-uptake rates, redox reactions, and others13. However, the further progress in this direction is limited by a lack 
of data on the primary targets of HS action.

To overcome this problem, a transcriptomic approach was applied, which does not require a preliminary 
hypothesis on the mode of action of HS12,19. It was demonstrated that HS affected expression of 133 genes in 
Arabidopsis thaliana responsible for the processes of binding, catalytic activity, and activity of transporters. The 
authors hypothesized that HS influence plant development by interfering with the transcription of genes involved 
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in meristem formation and organization, cell cycle, microtubule organization and cytokinesis. Still, they could 
not surmise exact mechanisms of HS effects on plant physiology from the obtained results. This is also because 
the authors used whole homogenized plants for their studies when spatial variation in transcripts which could 
be seen in the different tissues and cell types is largely obscured or lost. In addition, the minor cell components 
inherent to only certain cell types are thereby strongly diluted, particularly when those cells represent a very small 
portion of the organ20. Therefore, genetic studies could add a value via the knowledge of spatial distribution of HS 
among the plant cells and tissues.

To facilitate this task, direct observations of HS entry into the root interior, as well as on transport and spatial 
distribution among the plant tissues are needed. The previous studies have confirmed feasibility of HS uptake 
by plants relying on a use of 14C-labelled synthetic humic materials6,7,21. These studies have shown that both low 
and high molecular weight fractions of HS were capable to enter the plant interior, but the larger penetration was 
observed for the lighter fraction. This was confirmed by the studies on HS conjugated with fluorescein isothioci-
anate (FITC), which was performed on cultured carrot cells22. Only the low molecular weight humic fraction was 
able to interact with the plasma membrane of cultured carrot cells. In our recent studies, we used tritium-labeled 
HS23 to demonstrate that the wheat seedlings accumulated labeled products in the roots, and they were able to 
translocate the minor portion into the shoots. Moreover, the analyses of lipid fraction extracted from the treated 
seedlings revealed that the tritium label was present mainly in the neutral lipid fraction consisting of alkanes and 
alkenes, which are usually found in plant waxes, associated with the cuticle and suberized tissues. However, direct 
influence of HS on the plant lipid biosynthesis still remains unclear.

Here, we will further exploit an advantage of using the labeled humic materials for elucidating the spatial dis-
tribution of the uptaken HS in the treated plants by a use of microautoradiography (MAR) and evaluate influence 
of HS on the content of plant polar and neutral lipids. Used in this study as a model HS is a humic acids (HA) 
fraction derived from leonardite (a variety of lignite), which is the major source for commercial humates applied 
in agriculture. In addition, physiological activity of leonardite HA is widely known24–26. The isolated HA is treated 
by using thermal bombardment to ensure incorporation of tritium label into the non-exchangeable sites of humic 
backbone as described previously27. This technique provides for even distribution of the label among all molecu-
lar weight fractions of the humic materials. To avoid overinterpretation of the obtained MAR images, we assign 
the observed patterns to distribution of either “the tritiated humic products” ([3H]HPs), or “tritium label”, rather 
than to distribution of the tritiated HA themselves. This is because we cannot exclude that the tritiated HA are 
transformed by plant or microbial metabolism during their uptake and utilization or that only some fractions of 
HA might be uptaken by the plant. The corresponding abbreviation [3H]HPs is used throughout the manuscript.

Results
Characterization of parent and tritium-labeled HA.  The HA fraction extracted from leonardite was 
used for tritium-labeling. The HA isolate was characterized by prevailing contribution of aromatic structures as 
follows from the corresponding 13C NMR data (Fig. 1, Table 1). The 13C NMR spectrum was typical for leon-
ardite HA whose most peculiar feature is domination of aromatics-related structural groups28. The content of 
aromatic carbon in the isolated HA accounted for 52.5%. This is consistent with the data of elemental analysis 
which yielded H/C value of 0.87 (Table 1) indicative of high unsaturation degree and hydrophobicity of the humic 
material used in this study.

To monitor possible alteration during the labeling procedure, the comparative analysis of molecular weight 
distributions within the parent and labeled HA ([3H]HA) was performed using size-exclusion chromatography 
(SEC). To detect HS at the column exit we registered UV-absorbance and radioactivity of the eluate as described 
in our previous studies27. The data are presented in Fig. 2.
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Figure 1.  13C NMR spectrum of the leonardite HA used in this study. 

Elemental composition MW, kD
Acidic groups,  

mg-eqv g−1
Carbon content in the structural 

fragments, %

H/C O/C C/N COOH PhOH CC=O CCOO ∑​CAr ∑​CAlk

0.87 0.50 53 9.9 4.2 1.1 4.4 14.1 52.5 28.9

Table 1.   Structural characteristics of the leonardite HA used in this study.
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The UV-profiles for HA and [3H]HA were characterized with very similar monomodal distributions indicat-
ing a lack of significant change during labeling procedure. Of particular importance is that UV-profile of [3H]
HA was also identical to the radioactivity profile indicating even distribution of tritium label among HA fractions 
with different molecular weights.

[3H]HPs distribution in the tissues of the treated wheat plants as followed by film MAR.  To 
select HA concentration for studies on tissue distribution of plants study HA entry and accumulation in plants, 
wheat seedlings were cultivated with different concentrations of [3H]HA varied from 5 to 60 mg L−1. The tested 
HA concentrations laid in the range of those occurring in soil solutions. They are more physiologically rele-
vant as compared to the higher concentrations, which might cause phytotoxic effects to plants. Accumulation of 
[3H]HPs in wheat plants was characterized with smooth saturation curve reaching plateau at about 50 mg L−1 
(Fig. 3). Based on these results, we have cultivated wheat plants for the tissue distribution experiments at this HA 
concentration.

The [3H]HA-treated plants were microtomed into different root and shoot zones (e.g., root cap, root hair zone, 
root elongation zone, middle part of leaf blade, and leap apex) and filmed using tritium sensitive film. At the 
identical exposure time of the film, blackening of the root sections (Fig. 4c–e) was much stronger as compared to 
the shoot ones (Fig. 4a,b). This could be indicative of preferable accumulation of the label by the root: only small 
portion of the label was available for the transfer into the shoot along the vascular system. The similar phenome-
non was observed by Nardi et al.3 who reported that the amount of humic materials transferred from pea roots to 
the shoots did not exceed 10–12% wt.

Inspection of the different sections of the root has shown that for the zones with meristematic (undifferenti-
ated) cells present (e.g. root cap, Fig. 4e) the label was adsorbed only at the outer layer. On contrary, a significant 
amount of the label was accumulated in the zones with differentiated cells (e.g., root hair zone, Fig. 4c,d). It can be 
seen that in the root hair zone the label entered the stele through the epiblema and cortex. Once inside the stele, 
the label moved upward into the xylem vessels, and then, to the shoots. Such a route is confirmed by the presence 
of the label in the xylem (Fig. 4c,d), and shoot apices (Fig. 4a). At the same time, the concentration of the label 
was extremely low in the plant shoot (Fig. 4b) indicating a crucial role of endodermis in impeding translocation 
of the [3H]HPs into the plant vessels.

Similar to the root zone, the distribution of [3H]HPs within the shoot (Fig. 4a,b) was not homogeneous with 
preferred accumulation in the leaf tip (Fig. 4a) and in the vascular system (Fig. 4c,d). The observed pattern 
could be related to retardation of the labeled products in the upper part of longitudinal veins due to increased 
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Figure 2.  SEC profiles of the parent leonardite HA and [3H]HA obtained by dual detection of UV 
absorbance at 254 nm (left ordinate) and of radioactivity counting (right ordinate). The UV-profile of the 
parent HA is shown by open dots, [3H]HA - by black dots. Radioactivity profile of [3H]HA is shown by black 
triangles.
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Figure 3.  Concentration dependence of [3H]HPs uptake by wheat seedlings. Bars represent standard 
deviation, fr wt, fresh weight.
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Figure 4.  Light microscope images (left) and the corresponding tritium sensitive film MARs (right) of the 
slides with the cross-sections of the eight-day old wheat seedling treated with [3H]HA (50 mg·L−1, ~0.7 mCi L−1,  
24 h). Exposure time for MARs was 97 days. (a) the transverse section of the shoot tip; (b) The longitudinal 
section of the leaf blade; (c) the longitudinal section of the root elongation zone; (d) the transverse section of the 
root elongation zone; (e) the transverse section of the root cap. Vb – vascular bundle; S – stele (c,d) Rh – root 
hair; Ep – epiblema; En – endodermis. The sections were alphabetically labelled with regards to the upward 
water movement in the plant from the root to the shoot.
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concentrations of the label in the xylem sap associated with water evaporation. As a result, the label accumulation 
in the leaf tip could be explained by the high level of vascularisation in that region in monocots.

[3H]HPs distribution in the plant tissues as followed by nuclear emulsion MAR.  To overcome 
low resolution of tritium-sensitive film, which is not sufficient for detecting the label distribution within the plant 
tissues at the cellular level, the MAR experiments were performed using tritium sensitive nuclear emulsions. The 
slides with root sections were used for this purpose, whereas the sections of the medium part of leaf were excluded 
due to very low radioactivity. The corresponding emulsion MARs are shown in Fig. 5 (right panel) along with 
an autoradiogram of the whole wheat plant with the highlighted locations where root and leave cross-sections 
were sampled from (left panel). For comparison, autoradiogram of the whole cucumber plant is given in Fig. 6. 
Autoradiograms of both wheat and cucumber plants were characterized with similar features of the label distribu-
tion: it has mostly accumulated in the roots with much smaller portion translocated in the shoots. It was displayed 
as black-colored root zone and faintly colored leaves.

Deeper insight into the label penetration into the plant could be obtained from MARs of microtomed wheat 
plants shown in right panel of Fig. 5. Sharp contrast in the color of the outer and inner zones of the root cap can 
be observed in Fig. 5a and might be indicative of the preferred accumulation of [3H]HPs at the root surface, and 
of minor penetration of the tritium label into the root interior. This pattern corroborates well the film images 
of the same root section (Fig. 4e). The MAR of the hair root zone demonstrate darkening of the xylem vessels 
(Fig. 5c) which might be indicative of the label penetration into the vascular system. This is in line with the 
images obtained for the leaf tips (Fig. 5d), which displays characteristic darkening in the vessels. Besides, strong 
tritium signal was also detected in the leaf epidermis including trichome (Fig. 5d,e). Of particular importance is 
the substantial darkening in the region of the endodermis, which indicates strong accumulation of the label by 
endodermis (Fig. 5b) demonstrating its crucial role in the radial transport of [3H]HPs into the vascular system 
of the plant.

The nuclear emulsion MARs were characterized with the lower intensity of [3H]HPs in the cortex region, 
whereas both epiblema and endodermis were darkly colored (Fig. 5b). This is different from the film MARs which 
showed high intensity throughout the whole cortex region. The observed differences might be explained by lower 
sensitivity of the nuclear emulsion as compared to the film. Therefore, [3H]HPs were seemingly accumulated 
mainly by epiblema and endodermis rather than uniformly distributed in the root. It is of interest given that the 
root endodermis is characterized by the presence of Casparian strip and suberin lamellaes which serve as two 
hydrophobic barriers restricting the free diffusion of molecules between the inner cell layers of the root and the 
outer environment. Another hydrophobic region where strong signals of [3H]HPs were observed was leaf epi-
dermis (Fig. 5d). This might be indicative of preferred accumulation of [3H]HPs onto lipophilic cell wall barriers 
including both suberin-(endodermis) and cutin (exoderma). To explore on that, we have undertaken further 
examination of HA influence on lipid profile.

Influence of the leonardite HA on lipid profile of wheat seedlings.  The following polar lipids were 
found in the wheat plants used is this study: monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol 
(DGDG), glucosylceramide (GC), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidic 
acid (PA), phosphatidylinositol (PI), phosphatidylglycerol (PG), and sulfoquinovosyl diacylglycerol (SQDG). 
The plants treatment with the leonardite HA caused statistically significant increase in MGDG, DGDG, SQDG, 
and PC (Fig. 7a).

Neutral lipids were presented by triacylglycerol (TAG), diacylglycerol (DAG), sterols (Ster) and free fatty 
acids (FFA). Introduction of the leonardite HA did not alter the content of TAG, DAG, and Ster, but it induced an 
increase in the content of FFA (Fig. 7b).

Discussion
The results of the undertaken autoradiographic examinations of the wheat plants treated with the labeled leonar-
dite HA have demonstrated substantial variations in penetration pattern of the [3H]HPs into the different plant 
zones. Autoradiogram of the whole wheat plant (Fig. 5) showed much higher accumulation of the label in the 
roots as compared to the shoots. Of importance is that similar pattern was observed in the whole cucumber plant 
when used in the same experiments: much stronger darkening of the roots as compared to the shoots (Fig. 6). 
This might be indicative of the common features in HS penetration into monocotyledonous plants (wheat) and 
dicotyledonous plants (cucumber). Deeper insight into the tissue distribution of the labeled humic materials was 
obtained upon examining microtomed sections of the wheat plants. In the root cap zone, the label did not pene-
trate into the plant interior and was mostly absorbed by the root epiblema (Figs 4e and 5a). In the root hair zone, 
which is the central entry pathway for nutrients into the plant, the strong tritium signals were observed both in 
the epiblema and endoderma (Figs 4d and 5b). In the stele, the presence of solid black spots indicated the radial 
transport of [3H]HPs (e.g., HA, some of their fractions, or metabolized products) into the wheat plant vascula-
ture. The observed accumulation of the label on epiblema and endoderma as well as a lack of the label in the root 
tip interior conforms to predominantly apoplastic pathway of the radial transport of [3H]HPs. For a univocal 
conclusion on the entrance of the humic materials into the vascular system of the plants, a special study is needed.

The results obtained allow us to assume that both the epiblema and the endodermis act as filters for the [3H]
HPs resulting in accumulation of [3H]HPs in these zones and entrance of only particular fractions of the humic 
materials into the vascular system of the plants. According to the modern view in the field, the endodermal mem-
brane together with the Casparian strips form a tight barrier, which regulates the apoplastic pathway, thus forcing 
the solutes to move through the selectively permeable plasma membrane into the cytoplasm29. The important 
consequence is that radial transport of molecules with high molecular weights (higher than that of a tracer dye 
propidium iodine, 668 Da) is restricted at the outer side of the endodermis, and they can not diffuse radially in 
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the cell wall space across the endodermis30. Only relatively small molecules could be therefore expected to be 
found in the stele region of the root. The same might be true for humic materials: fractionation of their molecular 
constituents might occur along the passage from outer solution into the xylem. This suggestion is in line with our 
previous data on the presence of [3H]HPs in the neutral lipid fraction of the plants treated with the HA which 
consisted mostly of alkanes and alkenes23. This finding corroborates well the data of the current study on the 

Figure 5.  The autoradiogram of the whole wheat plant (left panel) and nuclear emulsion MARs of the slides 
with the cross-sections of the eight-day old wheat seedling treated with [3H]HA (50 mg·L−1, ~0.7 mCi L−1, 
24 h) (right panel). Exposure time for the MAR was 97 d. (a) Transverse section of the shoot apex;  
(b–d) transverse section of the root hair zone; (e) transverse section of the root cap.
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elevated concentrations of tritium label in the cuticle and suberized tissues (Fig. 5) which might be indicative of 
the important role of HA in the lipid metabolism in plants.

The direct evidence of this statement is a significant increase in the content of some polar (MGDG, DGDG, 
SQDG, and PC) and neutral (FFA) lipids detected in the presence of HA (Fig. 7). Two of them (galactolipids 
MGDG and DGDG) are known as the predominant components of the photosynthetic membranes, particu-
larly in thylakoids, where they compose 50 and 20% of the polar lipids, respectively. MGDG is also found in the 
reaction centers of the photosystem I and II, which is indicative of its role both as a bulk constituent of thylakoid 
membrane and as an integral component of the photosystem complexes31. The third lipid (SQDG) can be found 
exclusively in the chloroplast membrane: both in the thylakoid membrane (but at lesser quantities compared 
to the galactolipids) and in the chloroplast envelope; it is crucial for functional and structural integrity of the 
photosystem II complex32. The phospholipid PC plays a key role both in membrane structuring and glycerolipid 
biosynthesis being a principle site of fatty acid desaturation and a precursor of chloroplastic lipids in leaves33. The 
enhanced synthesis of glycolipids and PC in the wheat seedlings in the presence of HA might be indicative of 

Figure 6.  The autoradiograms of the whole cucumber plants treated with 50 mg L−1 [3H]HA . Exposure 
time was 5 d.
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stimulating action of humic material on plant photosynthesis. The latter is in good agreement with the numerous 
findings on intensified photosynthetic processes under the influence of HS3. At that, low concentration of [3H]
HPs in the green parts of the plant points to the fact that HA induced biosynthesis of the above mentioned polar 
lipids. Unlike polar lipids, FFA are major components of suberin and cutin waxes34. Therefore, an increase in FFA 
in the presence of HA along with the observed elevated concentration of [3H]HPs in the cuticle and suberized 
tissues might be indicative of a possible role of HA in suberin and cutin biosynthesis.

Collectively, results of preferable accumulation of the labelled products of leonardite HA in the root endoder-
mis and increase in polar lipids of the photosynthetic membranes in the presence of leonardite HA are consistent 
with prior reported observations on HA physiological effects on plants such as enhanced growth and develop-
ment of lateral roots and improvement/repairs of the photosynthetic status of plants under stress conditions. 
Given that any other than humic acid fraction (e.g. fulvic acid, hymatomelanic acid) derived from any other than 
leonardite source (e.g. peat, sapropel, soil) can be labeled with tritium, the prospects of using labeled humic mate-
rials for investigating the mode of their action on plants appear promising. In the future, of particular interest 
might be investigations of [3H]HPs distributions in plant tissues targeted for transcriptomic studies. The gained 
knowledge could be implemented for developing advanced rhizosphere management practices aimed at improv-
ing plant growth via educated use of humics-based green agrochemicals.

Methods
Humic acid isolation and characterization.  Leonardite HA was isolated from potassium humate 
produced by Humintech Ltd. (Germany). A weight of potassium humate was dissolved in distilled water and 
centrifuged (30 min, 3000 g) to separate insoluble components. The supernatant was acidified to pH 2.0 with 
concentrated HCl and centrifuged (30 min, 3000 g). The HA precipitate was collected, washed with distilled water, 
desalted by dialysis (2 kDa cut-off membrane, Merck, Germany) against distilled water, evaporated at 60 °C, and 
stored in dissicator over P2O5.

Structural characterization of the isolated HA included elemental analysis, potentiometric titration, 
size-exclusion chromatography (SEC) and 13C NMR spectroscopy (Table 1). Elemental analysis (C, H, and N) 
was conducted using Vario El Microcube analyzer. Ash content was determined by manual combustion at 850 °C. 
Oxygen content was calculated as a difference between a mass of the sample and the found amount of ash and 
CHN. The contents of all elements were calculated on ash-free basis. The content of acidic groups was determined 
using potentiometric titrations as described by Balcke et al.35.

The SEC analysis was performed as described by Perminova et al.36. Toyopearl HW-50S gel was used for 
column packing. Sodium salts of polystyrenesulfonic acid of molecular mass of 2.29, 4.48, 14.0, 20.7, 45.1, and 
80.8 kDa (Polymer Standard Service, Germany) were used as markers for molecular mass calculations. HA solu-
tion was diluted to a concentration of 40 mg·L−1 with the SEC mobile phase (0.028 M phosphate buffer, pH 6.8)  
before analysis. Based on the data obtained, weight-averaged molecular weight (MW) was calculated using 
GelTreat software37.

Quantitative 13C solution-state NMR spectra were recorded on an Avance NMR spectrometer (Bruker, 
Germany) operating at 100 MHz carbon-13 frequency. A 50 mg HA sample was dissolved in 0.6 mL 0.3 N NaOD 
and transferred into a 5 mm NMR tube. 13C NMR spectra were acquired with a 5-mm broadband probe, using 
CPMG pulse sequence with nuclear Overhauser effect suppression by the INVGATE procedure; the acquisition 
time and relaxation delay were 0.2 s and 7.8 s, respectively. These conditions allowed quantitative determination 
of carbon distribution among the main structural fragments of HA38. The assignments were as follows (in ppm): 
5–108, aliphatic non-substituted, O- and N-substituted C atoms (∑​CAlk); 108–165, aromatic non-substituted,  
O- and N-substituted C-atoms (∑​CAr); 165–187, C atoms of carboxylic and ester groups (CCOO); 187–220,  
C atoms of quinonic and keto- groups (CC=O).

Preparation and characterization of tritium-labeled humic acids.  Tritium-labeled humic materials 
([3H]HA) were prepared as described by Badun et al.27. Briefly, 1 mL of 0.3 g L−1 HA solution in 0.005 M NaOH 
was uniformly distributed on the wall of the reaction vessel, and then frozen with liquid nitrogen and lyophilized. 
The reaction vessel was placed under vacuum, filled with tritium gas (0.5 Pa) and the tungsten filament in the 
central part of reactor vessel was heated to 1950 K. The HA was treated with tritium atoms for 10 s. The residual 
gas was evacuated and a new portion of tritium gas was introduced for further labeling if necessary. The obtained 
[3H]HA samples were dissolved in 0.005 M NaOH and purified by dialysis (2 kDa cut-off membrane, Merck, 
Germany) against phosphate buffer (0.028 M, pH 6.8) at 4 °C for 1 month. This procedure eliminated exchangea-
ble tritium from the OH, COOH, and NHn groups of HA. The radioactivity of solutions of labeled substances was 
measured using a liquid scintillation spectrometer (RackBeta 1215, Finland).

To monitor possible alteration of HA due to partial decomposition or polymerization during the labeling 
procedure as well as to monitor tritium-tracer distribution among HA fractions of different molecular weights, 
comparative analysis of parent HA and [3H]HA was performed using SEC analysis according to the procedure 
described above. Both, UV and radioactivity detection were applied. To register radioactivity profiles of [3H]HA, 
2 mL fractions were collected during the SEC experiment and analyzed for radioactivity. UV-detected chromato-
grams of both parent HA and [3H]HA exhibited single coincident peaks. Thus, one can conclude that no signifi-
cant changes in HA molecules occurred during the reaction with atomic tritium. On the other hand, UV-profile 
of [3H]HA coincided with radioactivity profile. The latter was evident for regular distribution of tritium among 
HA fractions differing in molecular weight27.

Plant cultivation.  Seedlings of wheat Triticum aestivum L. (cv. Inna) were used for the experiments. Wheat 
seeds were germinated in the dark at 24 °C during 72 h. Then, the germinated seedlings were transferred into 
0.5 L polyethylene tanks containing Knop nutrition solution (KH2PO4 0.14 g·L−1, KCl 0.1 g·L−1, KNO3 0.14 g·L−1, 



www.nature.com/scientificreports/

9Scientific Reports | 6:28869 | DOI: 10.1038/srep28869

MgSO4 ×​ 7H2O 1.42 g·L−1, Ca(NO3)2 ×​ 12H2O 4.88 g·L−1, FeCl3 ×​ 6H2O 0.05 g·L−1, pH 5.5) and placed into the 
growth chamber (12/12 hr photoperiod, illumination 200 μ​mol m−2 s−1; 24 °C) for 72 h.

For uptake experiments, six-days old plants were transferred into the HA-containing vials with specific radi-
oactivity of ~​0.07 mCi L−1 (vials volume was 15 mL, HA concentrations varied from 5 to 60 mg·L−1). Five plants 
were used per one vial and exposed for 24 h. Then, the plants were taken out of the HA-containing solutions, 
whose residues were drained from the roots. To estimate label uptake by plants, radioactivity was measured 
before and after plant growth within 24 h using liquid scintillation method. The data were plotted into sorption 
isotherms. All experiments were performed in five replicates.

For autoradiography measurements, the six days old plants were cultivated as described above at one concen-
tration of HA of 50 mg·L−1.

Microautoradiography protocol.  For the MAR studies, eight-days old plants were transferred into vials 
(three plants per each vial) which were filled with 15 mL of HA at a concentration of 50 mg·L−1 with specific radi-
oactivity of ~​0.7 mCi L−1. Twenty four hours later the plants were sectioned using standard paraffin embedding 
and serial sectioning at 15 μ​m thickness as described by Ruzin39. Then sections were put on microscope slides 
(Roth, Karlsruhe, Germany) and treated with chloroform to remove paraffin. Obtained slides were then subjected 
to MAR analysis using the tritium-sensitive X-ray film Kodak Biomax (Kodak, USA) or dipped in undiluted 
NBT-3 film emulsion (Kodak, Rochester, NY) and stored at 4 °C in the dark for 105 days before developing. Time 
of exposition was determined in preliminary experiments (data not shown). Film or emulsion development, 
fixing, and washing were performed according to procedure recommended by the manufacturer. Slides with 
plant sections were imaged with a Zeiss Axioplan 2 imaging microscope (Zeiss, Germany) equipped with a Zeiss 
AxioCam MRc color video camera, and Zeiss Axiovision 3.1 software.

Lipid extraction and quantitative lipid analysis.  After harvesting the shoots of plants, lipid extracts 
were obtained with hot isopropanol according to the Nichols method40. Concentrated lipid preparations were 
fractionated with thin-layer chromatography (TLC) on silicagel 60 10 ×​ 10 cm plates (Merck, Germany). Polar 
lipids were fractionated by two-dimensional TLC in a solvent system chloroform–methanol–water (65:25:4, v/v) 
in the first direction and chloroform–acetone–methanol–acetic acid–water (50:20:10:10:5, v/v) in the second 
direction41. Neutral lipids were fractionated by one-dimensional high performance TLC (HPTLC) with double 
development. Toluene–hexane–formic acid (140:60:1, v/v) and hexane–diethyl ether–formic acid (60:40:1, v/v) 
mixtures were used as the mobile phases42. Phosphatidylcholine, monogalactosyldiacylglycerol, ergosterol, and 
triacylglycerol (Sigma, UK) were used as markers used for TLC. The amounts of glycero- and sphingolipids were 
determined densitometrically using a Denscan device (Lenchrom, Russia) after visualization by heating with a 
5% H2SO4 solution in methanol. The Mann-Whitney U test was used to compare amounts of lipids in the blank 
and HA-treated plants using on-line Mann-Whitney U Test Calculator at http://www.socscistatistics.com/tests/
mannwhitney/Default2.aspx. Significance level α​ was 0.05.
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