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This paper describes the relationship of forest soil dryness and antecedent rainfall with suspended
sediment (SS) yield due to extreme rainfall events and how this relationship affects the survival of forest
plants. Several phenomena contribute to this relationship: increasing evaporation (amount of water
vapour discharged from soil) due to increasing air temperature, decreasing moisture content in the soil,
the collapse of aggregates of fine soil particles, and the resulting effects on forest plants. To clarify the
relationships among climate variation, the collapse of soil particle aggregates, and rainfallerunoff pro-
cesses, a numerical model was developed to reproduce such aggregate collapse in detail. The validity of
the numerical model was confirmed by its application to the granitic mountainous catchment of the
Nagara River basin in Japan and by comparison with observational data. The simulation suggests that
important problems, such as the collapse of forest plants in response to decreases in soil moisture
content and antecedent rainfall, will arise if air temperature continues to increase.

� 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Documented hydrological effects of a warmer climate include
soil dryness, decreased antecedent rainfall, melting of snow and ice
in polar regions, desertification in continental interiors, sea-level
rise, and locally intense rainfall (Mpelasoka et al., 2009; Sato
et al., 2007; Wetherald, 2009; Bobrovitskaya et al., 2003). Recent
studies have identified a tendency of global warming to affect
forested basins more than other basins (Allen et al., 2010;
Schiermeier, 2009; Shinoda et al., 2004). Enhanced warming in
granitic mountainous forested basins causes soil desiccation
because moisture evaporation from the soil increases. In surface
soil layers in forests (A or B layers), fine soil particles such as silt or
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colloidal soil components maintain the strength of soil clods, which
is influenced by the effects of subsurface moisture and other soil
properties; however, the strength of soil aggregates can be lost and
the soil can tend towards dispersion when climatological or hy-
drological conditions change. In previous studies, soil hydrological
properties including infiltration, runoff, and sediment concentra-
tion have been measured, and the percentage of water-stable
microaggregates in the soil has been calculated as an indicator of
soil degradation. These studies found that, in addition to climatic
variations, soil properties are highly affected by extensive land use
of the area, intensive grazing, such as by goats, and small wildfires
(e.g., Boix et al., 1995; Chesnokov et al., 1997; Dunne and Black,
1970; Govorun et al., 1994).

Forest soil includes components ranging from large particles
(approximately 1.0 cm in diameter) such as gravel to fine particles
such as silt and colloids. When soil clods are maintained, even
when the aggregated soil collapses, they do not immediately
collapse or get transported over the soil surface or into river
channels because of a shielding effect whereby the fine particles are
ts reserved.
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Table 1
General information on the Nagara River.

Item Description

Location Central Honshu, Japan
(N: 34�040e35�590 , E: 136�360e137�040)

Area and length
of main stream

1985 km2, 166 km

Origin and highest point Mt. Dainichi (1709 m)
Outlet Ise Bay, Pacific Ocean
Main geological features Granite, andesite, ryolite, gneiss
Major lakes None
Mean annual precipitation 1915.3 mm (1979e2000) at Gifu
Mean annual runoff 116.5 m3/s (1954e2001) at Chusetsu
Land use Mountainous area (73.3%),

Urban area (6.5%), Cultivated area (20.2%)
Population 915,100 (1995)
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protected by larger particles such as gravel. When forest soil is
adversely affected by climatological conditions, the clods can
collapse, and the soil structure can be easily damaged by water
from rainfall. The related fine soil from collapsed aggregated ma-
terial can move with water on forest slopes because the shielding
effect of large particles has been destroyed (An et al., 2010). Pre-
vious studies of runoff from sandy and gravelly soils have generally
focused on erosion by raindrops or erosion of bare land (Cai and
Barry, 1996). These studies of the erosion of earth surfaces gener-
ally assume an absence of vegetation, and thus applicable natural
study sites are limited. In contrast, most river basins in Japan, as
well as basins of major rivers of the world (e.g., Mississippi and
Yellow rivers), include some forests (Boix et al., 1995). The impor-
tance of flocculation of silty sediments to sediment transfer in a
stream channel was demonstrated by Wolanski and Gibbs (1995).

Soil structure is defined as the arrangement of particles and
associated pores in soil across the size range from nanometres to
centimetres. Biological influences can be demonstrated in the for-
mation and stabilisation of aggregates, but it is also necessary to
distinguish clearly between those forces or agencies that create
aggregations of particles and those that stabilise or degrade such
aggregations. When a calcareous clay soil was dispersed ultrason-
ically, organic carbon was concentrated in the finer fractions in
mildly leached soil, whereas in calcareous clay, organic carbon was
concentrated in the silt fraction (Ahmed and Oades, 1984; Oades,
1993; Fattet et al., 2011; Randall et al., 1974). The speed of this re-
covery determines the effectiveness of erosive rainfall events. Fine
soil structure is determined by how individual soil granules bind
together and aggregate, which determines the arrangement of soil
pores between them. Fine soil structure has a major influence on
the movement of water and air, biological activity, root growth, and
the emergence of seedlings. A wide range of soil-management
practices is used to preserve and improve soil structure. These
include increasing soil content by placing agricultural land in crop
rotation, reducing or eliminating tillage and cultivation in cropping
and pasture activities during periods of excessive dryness or
wetness when soils may tend to shatter or smear, and ensuring
sufficient ground cover to protect soil from raindrop impacts
(Imeson et al., 1995).

Models focussing on granitic mountainous catchments have
been developed to estimate soil loss and its associated on- and off-
site effects. Slope-scale soil erosion was first described by Ellison
(1947) and numerically modelled by Wischmeier and Smith
(1959). Recent erosion models have emphasised physical pro-
cesses (Jetten et al., 2003; Rompaey et al., 2005; Moffet et al., 2007)
and spatially realistic conditions. Empirically based models are
simple to use but do not realistically portray natural processes;
process-based (physically based) models are better able to incor-
porate natural processes, but they require substantial computing
time (Renschler and Flanagan, 2002; Vente and Poesen, 2005;
Croke and Nethery, 2006). The equations and laws of hydrology
have been developed from research in small experimental flumes
or plots. When these equations are applied to larger watersheds,
however, they commonly introduce discrepancies in the results due
to unknown factors that did not exist in the plots (Brezonik et al.,
2001; Einstein, 1950; Kalinske, 1947; Beven, 1979). Another
important issue is that the scale of data and the selection of amodel
from numerous available models strongly influences the results
(Renschler et al., 2000). The heterogeneity of the real world is easily
overlooked or eliminated in a large-scale model (Turner, 1989).
Determining the modelling scale, data, and size of sub-watersheds
or hydrologic units in models has a considerable effect on model
results. The possible loss of information should be thoroughly un-
derstood and themodel selected based on the purpose of the study.
Fine soil particles in forest soils are important to agricultural water
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reserves. If large amounts of fine particles in a forest soil disperse
and run off, the effective porosity of the remaining soil increases,
and the moisture content of the forest soil can decrease, potentially
leading to challenges to the survival of forest plants. Under such
circumstances, it is necessary to construct a dynamic model of
moisture, sand, and gravel that is applicable to forested basins.

This study modelled the collapse of aggregates of fine soil par-
ticles in the A or B layer of forest soils using interparticle stress and
the true adhesive force generated by the effect of soil-particle
sedimentation. The model was then combined with a dynamic
model of moisture and sediment on a catchment scale, fromwhich
was constructed an integrated dynamic model of moisture, sand,
and gravel that is applicable to forested basins (Mouri et al.,
2011a,b, 2012a, 2013a,b,c). This model clarifies the long-term re-
lationships among warmer climate, forest-soil dryness, antecedent
rainfall, the collapse of fine soil particle aggregates, and their effects
on forest plants.

2. Description of study site and initial calculation

The Nagara River basin (1985 km2) is located on the western
border of the Nobi Plain in Holocene sediments of Honshu Island,
Japan. The Nagara River is joined by the Yoshida, Itadori, Mugi, and
Itonuki rivers and then flows west into the Ise Inland Sea. The
highest altitude in the basin is 1709m and average annual rainfall is
approximately 1915 mm. Approximately 85% of the population
(1,777,000 people) is served by the sewer system. Table 1 provides
general information on the Nagara River, which has a main
watercourse length of 166 km. The river consists of three segments,
determined by the channel gradient: the gradient in the down-
stream part is 1/400, themidstream part is 1/300, and the upstream
part is 1/100. The river’s abundant waters are used to irrigate an
area of 80 km2, mainly from small tributaries and waterways. A
land-use map was generated from Landsat Thematic Mapper im-
ages (21 October 1997; 30 March 1998) using a clustering method
(ISODATA). Mountainous, urban, and cultivated areas account for
73.3%, 6.5%, and 20.2% of the land area, respectively (Fig. 1). The
dominant surface geological features is weathered granite, silt and
clay covered by forest (approximately 75%), and the depth of the
soil layer on the mountain slope is w1.0 m. The river bed is ven-
eered by coarse sediment particles (Fig. 2).

3. Methods

3.1. Distributed hydrological sub-model

A rainfallerunoff sub-model based on the kinematic wave
model (Chow et al., 1959; Sunada and Hasekawa, 1994; Mouri and
Oki, 2010; Mouri et al., 2010, 2011c, 2012b; Shiiba et al., 1999;
f aggregated fine soil structure in amountainous forested catchment,
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Fig. 1. Location of the Nagara River basin and distribution of land uses in the region. The distribution of land uses was estimated from LANDSAT/TM data using ISODATA clustering.
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Takasao and Shiiba, 1995; Takahashi et al., 1987; Mulungu et al.,
2005; Mouri et al., 2011b) was applied to each slope element in
the digital elevation model (DEM) of the Nagara River basin. Using
the kinematic wavemodel, the downstreamdistribution of water in
the surface layer can be used to calculate shallow groundwater
levels when predicting fusion conditions for fine soil particles.

The governing equation of the one-dimensional hydrodynamic
model can be written in simplified form as

vq
vx

þ vh
vt

¼ r: (1)

Equation (1) is a continuity equation with no lateral inflow or
outflow, where q is the flow volume per unit width on a slope, h is
the cross-sectional area of a stream, r is rainfall intensity, x is a
spatial coordinate, and t is a temporal coordinate.
Fig. 2. Map showing the spatial distribution of geology throughout the Nagara River
basin. Data are from the Gifu Prefectural Government, the Ministry of Land, Infra-
structure and Transport (MLIT), and Digital National Information (DNI).
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The equation of motion is

q ¼
�
ah; h � d;
aðh� dÞm þ ah; h > d;

(2)

where m is Manning’s coefficient, and a is calculated as

a ¼ k sin q=g; (3)

where k, q, and g represent the effective porosity. The depth d of the
A layer in the downstream direction is given as

d ¼ gD; (4)

where D is the depth of the surface soil layer.

3.2. Sub-model for collapse of soil particle aggregates

The collapse of fine soil particle aggregates is expressed using
the relationship between moisture in the soil and the intermolec-
ular bonding force, along with the true adhesive force as a function
of overburden pressure. An interparticle bonding force exists be-
tween fine soil particles as a result of surface tension. The surface
tension Ts acting on a fine soil particle is expressed in terms of air
pressure as

2Ts ¼ 2ua

��
r þ L

2

�
$cos q� r

�
: (5)

Here, ua denotes air pressure, r is rain density (r ¼ d), q is the angle
determined by the meniscus at the contact part of the soil particle
(q ¼ 30�), and L is the diameter of the soil particle. The force at the
contact point F is expressed in terms of water pressure uw as

F ¼ 2uw

��
r þ L

2

�
$cos q� r

�
: (6)

The interparticle bonding force s0, with consideration given to a
true adhesive force (analogous to a covalent bond) generated by the
effect of sedimentation, is expressed as

s0 ¼ cþ 2ðua � uwÞfðr þ L=2Þ$cos q� rg þ 2Ts: (7)
f aggregated fine soil structure in amountainous forested catchment,
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Fig. 3. Map showing the spatial distribution of suspended sediment in 2000. Data are
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Therefore, the fusion condition for fine soil particles is defined
using the relationship of the bonding force between particles with
the shear force as

Ft ¼ s0

s
� 1: (8)

The migration of fine particles from the forest slope Ft is
described by the relationship between the interparticle bonding
force s0 and the shear force of a soil particle s as

Ft ¼ st=s ¼ a½cþ 2ðua � uwÞfðr þ L=2Þ$cos q� rg þ 2Ts�
½fgsat$h0 þ gtðD� h0Þgsin q$cos q�

¼ 2
ffiffiffi
2

p
$Ts=d

fgsat$h0 þ gtðD� h0Þgsin q$cos q
; (9)

where gt denotes thewet unit weight of the soil, h0 is the subsurface
groundwater level in the soil layer, and d is the apparent depth of
the soil (¼gD, where g is the effective porosity and D is the depth of
the soil). Major factors and parameters with explanations and units
are summarised in Table 2. If the groundwater level rises above the
surface of the soil particles, the interparticle bonding force and the
surface tension acting on the particles decrease, the shear force
exceeds the bonding force, and the fine soil particles are mobilised
in suspension. When the water level becomes lower than the sur-
face of the soil particles, dispersion of the small soil particles stops.
When the soil is saturated with water, the soil’s porosity and hy-
draulic conductivity k, which is dependent on soil moisture and
normally becomes constant and maximum at saturation, change as
certain particles are removed. The amount of change in the hy-
draulic conductivity can be obtained using the relationship be-
tween the effective porosity and the hydraulic conductivity of the
initial setting.
from the Ministry of Land, Infrastructure and Transport (MLIT).
4. Model application and results

Fig. 3 shows the spatial distribution of suspended fine soil
particles for the Nagara River basin. Dispersion amounts are large
in the southeastern and eastern parts of the cultivated area. This
means that the conditions for dispersion of fine soil particles are
Table 2
Descriptions of the typical parameters used for calibration.

Symbol Name Numerical range Units

h Cross-sectional area of a stream 0.01e10,000.00 m2

h0 Groundwater level in
the surface-layer sediment

0.01e5.00 m

q Flow volume per unit width
on a slope

0.01e1000.00 m3/s

k Coefficient of water permeability 10�9 to 1.00 cm/s
m Manning rule coefficient 1.67 e

t Temporal coordinate 0.00e31,356,000.00 s
x Spatial coordinate 0.00e15,000.00 m
r Rainfall density 0.00e1000.00 mm/h
q Slope gradient 0.01e1.00 e

g Effective lacuna percentage 0.40e0.60 e

gsat Saturated unit weight of
the sediment

1.50e2.00 t/m3

gt Wet unit weight of the sediment 1.50e2.00 t/m3

gw Unit weight of water 1.00 t/m3

D Thickness of layer A 0.01e1.00 m
d Depth of the A layer in

the downstream direction
0.01e1.00 m

c Viscosity force of a particle 0.01e10.00 kgf/m2

st Perpendicular stress 0.01e10.00 kgf/m2

s0 Effective perpendicular stress 0.01e10.00 kgf/m2

s Shear force 0.01e10.00 kgf/m2
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not uniquely tied to ground surface destruction. Fig. 4 illustrates a
reasonable agreement between simulated and observed river
discharge. Fig. 5 shows the relationship between the SS yield from
surface and subsurface layers and river discharge obtained by
continuous calculation over the year 2000, which included the
Tokai disaster. On 7 September 2000, a stagnant rain front
occurred near Japan’s main island of Honshu. Warm conditions
associated with the east side of Typhoon 14 migrated towards this
front for 11e12 days, during which the front’s activity increased,
resulting in record rainfall in Aichi, Mie, and Gifu Prefectures of
the Tokai district. Starting on the evening of 11 September, rainfall
increased over 2 days, amounting to as much as 600 mm in Tokai.
In the city of Nagoya, 428 mm of rain fell on 11 September, twice
the average precipitation for September, and the total precipita-
tion for the 2 days was 567 mm. In the city of Tokai, Aichi Pre-
fecture, between 114 and 492 mm of rain was recorded in the 1-
h period beginning at 7:00 P.M. on 11 September. Widespread
flooding and attendant damage occurred in Nagoya. The majority
of mass-flow-related damage, including the collapse of aggregated
soil, in 2000 resulted from the Tokai heavy rainfall disaster.
Destruction of the surface layer was limited to times of extreme
events (discharge � 100 m3/s). However, discharge of fine soil
particles also occurred during times of light rainfall during the
base-flow period (discharge < 100 m3/s). Comparison of the
calculated total annual amount of fine soil particles (approxi-
mately 26,000 � 103 m3) with observational data for the Nagara
River (approximately 25,000 � 103 m3 measured SS) yielded a 4%
error in volume. Fig. 6 shows the relationship between the amount
of dispersion of fine soil particles and the amount of SS yield
f aggregated fine soil structure in amountainous forested catchment,
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Fig. 4. River discharge simulation results throughout the Nagara River basin including the Tokai event of 7e11 September 2000. The red line shows the calculated river discharge.
The blue dots show observed river discharge. The bars show precipitation. Data are from the Ministry of Land, Infrastructure and Transport (MLIT) and the Automated Meteo-
rological Data Acquisition System (AMeDAS) of the Japan Meteorological Agency.
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classified according to level. Fig. 7 shows the simulated temporal
variation in SS concentration in four selected rivers from 1978 to
2002 and demonstrates that the model captures most of the var-
iations in SS concentration.

5. Discussion

Fine particles in surface soils of forests consist of so-called soil
aggregates, in which soil particles form clusters. In addition to the
effect of the aggregate structure, the strength of the surface soil is
increased by pressure and gravity as it accumulates (Gregory, 1997;
Gladman et al., 2010). However, when the soil dries due to
increased temperature, the pore pressure (moisture) is lost and the
structure of the soil aggregate is easily destroyed by water supplied
as rainfall. Forest soil consists of particles of various diameters, and
fine soil particles do not run off easily if the aggregate structure is
maintained (Rimal and Lal, 2009). Once the soil aggregate has
collapsed, the shielding effect is lost, and the fine soil particles can
be mobilised (Bagarello et al., 2006). Fine soil structure and the
Fig. 5. Simulation results of the relationship between suspended sediment yield and
river discharge throughout the Nagara River basin including the Tokai event of 7e11
September 2000. Data are from the Ministry of Land, Infrastructure and Transport
(MLIT) and the Automated Meteorological Data Acquisition System (AMeDAS) of the
Japan Meteorological Agency, following Mouri et al. (2011a,b, 2013a).
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arrangement of soil pores are determined by how individual soil
granules clump or bind together and aggregate. Fine soil structure
has a major influence on the movement of water and air, biological
activity, root growth, and seedling emergence. A wide range of
practices is used to preserve and improve soil structure. These
include increasing soil content by placing agricultural land in crop
rotation, reducing or eliminating tillage and cultivation in cropping
and pasture activities during periods of excessive dryness or
wetness when soils may tend to shatter or smear, and ensuring
sufficient ground cover to protect the soil from raindrop impacts.

Phenomena related to surface erosion on slopes include shallow
landslides (surface failure), bank failures, landslides, large-scale
failures, and bare-land erosion. The most commonly documented
of these are shallow landslides that occur due to intense rainfall,
other landslides, and large-scale erosion. Researchers have con-
structed a dynamic model of moisture, sand, and gravel by inte-
grating mass movement and surface erosion and have confirmed
the reproducibility of the data in terms of the amounts of sand and
gravel supplied to rivers and the temporal duration of the supply
(Beguería, 2006; Chang and Slaymaker, 2002; Hovius et al., 2000).
Such studies have provided results that are useful in the context of
disaster prevention.

To understand the environmental impacts of sand and gravel
mobility, the soil particle size of focus must be reassessed. Most
environmental problems relating to sand and gravel are, in fact,
caused by fine soil particles (Dearing and Jones, 2003; Dise et al.,
1998; Fenn et al., 2003; Galloway et al., 2003; Goodale et al.,
2000; Gundersen et al., 1998; Hotta et al., 2007; Pistocchi, 2008).
The volume of fine soil particles contained in river water per unit
time is generally proportional to the square of the flow rate, which
has been documented for numerous sites (JSCE, 1999). The supply
of fine soil particles has been assessed in terms of surface erosion
systems such as sidewall erosion and boulder flow (Bouchnak et al.,
2009; Oh and Jung, 2005; Orwin and Smart, 2005; Whitford et al.,
2010). This would suggest that fine particles are supplied mainly
during large-scale floods. It is axiomatic, however, that river water
contains fine soil particles even during fine weather and during
medium- and small-scale floods during base flow periods.
Furthermore, surface flow generally does not occur on forest slopes
during times of no rain or times of medium- or small-scale floods
(Dun et al., 2009; Neary et al., 2009). Therefore, forest soils are
assumed to be a major source of fine soil particles during extreme
floods and base flow.

Among the components of aggregate structures of forest soil,
fine soil particles such as silt and colloids are important elements of
the water-cultivation function of forests. When aggregate struc-
tures of forest soil disintegrate, and large volumes of fine soil
f aggregated fine soil structure in amountainous forested catchment,
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Fig. 6. Simulation results of time series of suspended sediment and layer destruction classified into the surface layer and subsurface layer throughout the Nagara River basin and
including the Tokai event of 7e11 September 2000. The green line shows the calculated suspended sediment yield from the surface layer. The blue line shows the calculated
suspended sediment yield from the subsurface layer. The red line shows the total amount. Data are from the Ministry of Land, Infrastructure and Transport (MLIT) and the
Automated Meteorological Data Acquisition System (AMeDAS) of the Japan Meteorological Agency.

Fig. 7. Annual validation of SS concentration (SScon) based on soil aggregate collapse
at four selected sites along the granitic mountainous slope (1978e2002; R2 ¼ 0.76).
Data are partially from the Chubu Regional Bureau of the Ministry of Land, Infra-
structure and Transport (MLIT) and the Japan Meteorological Agency, Japan.
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particles run off, the water-cultivation function of the forest de-
teriorates, which may affect the survival of plants (Buytaert et al.,
2007; Zheng et al., 2008). Furthermore, because the influence of
the interparticle bonding force due to moisture is large for fine soil
particles, the strength of such an aggregate decreases as moisture is
removed (An et al., 2010; James and Roulet, 2009). The aforemen-
tioned studies show that increased evaporation caused by elevated
temperatures associated with warmer climate causes moisture loss
from soil, which leads to a decrease in the strength of soil aggre-
gates and easier collapse into fine soil particles. As a result, the
effective porosity of the soil increases, and the moisture content of
the soil decreases, forming a vicious cycle.

The collapse of fine particle aggregates and increased suspended
sediment runoff volumes are directly related to global environ-
mental problems, such as deterioration of forest conditions and
reduced survivability of forest plants. These phenomena are also
important for the prevention of sediment-related natural disasters
(Mouri et al., 2013b,c; Schiermeier, 2009).

The correlation between the suspended sediment yield and
discharge or precipitation was very high, R2 ¼ 0.97, and the corre-
lation function increased exponentially (Fig. 5). The increasing or
decreasing ratio of SS yield was larger than that for discharge by
approximately 3e23%. Surface landslides occurred mostly during
heavy rainfall events. On the other hand, the results indicate that
collapse of soil aggregation occurred mainly during heavy rainfall
events and during times of low precipitation (Fig. 6). Additionally,
the simulated suspended sediment was modelled with an accuracy
of approximately 4% annually (Fig. 7). The relationship between soil
moisture and erosion could depend on climate variation among
different events. Over a period of months or a year, erosion will be
related to the actual number of rainfall events that occur along the
transects and to the state of aggregation or erodibility status of the
soil. Over a period of 15e30 years, erosion will depend on the
stability and resilience of the soil and vegetation.

6. Conclusions

This study modelled the drying of forest soils such as by de-
creases in antecedent rainfall under a warmer climate condition
and the resulting runoff of fine soil particles in sandy, gravelly
sediment. By expressing the dispersion (runoff) of fine particles due
to destruction of soil aggregates, including an interparticle bonding
force and an adhesive force generated by the effects of sedimen-
tation, the conditions for aggregate collapse were identified, and a
model was formulated based on the relationship between the
collapse of fine soil particle aggregates and increased porosity. It
f aggregated fine soil structure in amountainous forested catchment,
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can be shown that increased evaporation related to elevated tem-
peratures causes moisture loss from soil, which leads to a decrease
in the strength of aggregates in the soil and the collapse of fine soil
particle aggregates. As a result, the effective porosity of the soil
increases, and the moisture content of the soil decreases, forming a
vicious cycle. The dispersion of fine particles and increased sedi-
ment runoff volumes that could result from a warmer climate are
directly related to global environmental problems, such as deteri-
oration of forest conditions and reduced survivability of forest
plants. These phenomena are also important for the prevention of
sediment-related natural disasters.

Discrepancies between simulated SS concentrations and obser-
vational data for selected locations can be explained by un-
certainties in the distribution of precipitation, the river flow rate,
geographical features, and the geology. However, this study of the
spatial and temporal distribution of suspended sediment may
contribute to the development of policies, research targets, tech-
nologies, and education necessary to explain the trend of increasing
SS delivered to river estuaries. The model developed here in-
corporates climate and land-use data and may be used to study
how these factors affect hydrology for catchment management.
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