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Abstract: Array-based optical sensing is an efficient technique for the determination 

and discrimination of small organic molecules. This study is aimed at the 

development of a simple and rapid strategy for obtaining an optical response from a 

wide range of low-molecular-weight organic compounds. We have suggested a 

colorimetric and fluorimetric sensing platform based on the combination of two 

response mechanisms using carbocyanine dyes: aggregation and oxidation. In the 

first one, the analyte forms ternary aggregates with an oppositely charged surfactant 

wherein the dye is solubilized in the hydrophobic domains of the surfactant 

accompanied with fluorescent enhancement. The second mechanism is based on the 

effect of the analyte on the catalytic reaction rate of dye oxidation with H2O2 in the 

presence of a metal ion (Cu2+, Pd2+), which entails fluorescence waning and color 

change. The reaction mixture in a 96-well plate is photographed in visible light 

(colorimetry) and near IR region under red light excitation (fluorimetry). In this 

proof-of-concept study we demonstrated the feasibility of discrimination of 9 

medicinal compounds using principle component analysis: 4 cephalosporins 

(ceftriaxone, cefazolin, ceftazidime, cefotaxime), 3 phenothiazines (promethazine, 

promazine, chlorpromazine), and 2 penicillins (benzylpenicillin, ampicillin) in an 

aqueous solution and in the presence of turkey meat extract. The suggested platform 

allows simple and rapid recognition of analytes of various nature without using 

spectral equipment, except for a photo camera.  

Keywords: colorimetric sensing; fluorimetric sensing; carbocyanine dyes; catalytic 
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1. Introduction 

Optical sensing and sensor arrays have been intensively developing 

during the recent years [1–10]. Simple and rapid detection and 

discrimination of inert organic compounds (colorless and not prone to 

forming colored complexes, featuring no intrinsic fluorescence and not 

interacting directly with fluorophores by energy or electron transfer 

mechanisms) comprises a challenge to researchers. Therefore, the interest is 

maintained to new sensing techniques covering the widest possible range of 

analytes. Most optical analytical methods are based on direct sensing, i.e. 

probe – analyte interaction such as in fluorophore (chromophore) – spacer – 

receptor, displacement assay-based sensors and similar approaches [11]. 

Indirect sensing is an alternative strategy that does not involve binding of 

the analyte with the fluorophore (chromophore) or its complexing moiety. 
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The value of indirect techniques lies in their ability to reach analytes of 

various nature. An example of indirect methodology is aggregation-based 

[1] and self-assembly sensing [2–5]. Most popular are the methods based on 

the aggregation of nanoparticles (primarily, silver and gold) [6–9]; these 

processes are extensively used in optical sensing. However, problems can 

arise with the stability of nanoparticles, effects of ionic strength, and 

multiplexity of detection [10]. Different types of aggregation events are also 

applicable for developing sensors: formation of surfactant micelles 

encapsulating a hydrophobic fluorophore [12–14]; or joint micelles of the 

fluorophore and analyte [15], aggregation-induced emission [16, 17] and 

other processes [18].  

We described a variant of aggregation-based sensing using 

hydrophobic carbocyanine dyes whose fluorescence is quenched in water 

[19]. If the analyte can form an aggregate (more specifically, a nanoparticle) 

with an oppositely charged ion containing hydrocarbon chains (a 

surfactant), the formed nanoparticle will have hydrophobic domains that 

are able to solubilize the dye. In the hydrocarbon environment of the 

domain, fluorescence of the dye is turned on, which serves as the analytical 

signal. A selective response is observed to large hydrophilic ions forming 

several ionic or hydrogen bonds. We observed fluorescence enhancement of 

carbocyanine dyes with aminoglycosides, cephalosporins, penicillins and 

other compounds in the presence of cetyltrimethylammonium bromide 

(CTAB) or sodium dodecyl sulfate (DDS) as surfactants [19].   

Carbocyanine dyes are near-IR (NIR) emitting fluorophores which are 

extensively used in bioimaging techniques and sensing [20–22]. The interest 

in the NIR dyes was aroused by the analysis of natural samples. 

Advantageously, the far red exciting light and NIR emitted light of these 

dyes is weakly absorbed by biological tissues. The emission bands of 

pentamethine and heptamethine carbocyanines are located near 700 and 800 

nm, respectively, and their fluorescence can be conveniently excited by the 

light-emitting diodes (LED) at 660 nm. Beside aggregational behavior 

mentioned above, the carbocyanines can be easily oxidized, which makes 

them indispensable reagents for indirect sensing. 

 Oxidation of dyes can serve as indicator reaction in fluorescent and 

colorimetric catalymetric sensing. Traditional non-enzymatic kinetic 

methods were developed for the determination of analytes of different 

nature, including small organic molecules [23, 24]. In kinetic methods, the 

analytes can change the indicator reaction rate by various mechanisms: via 

catalysis, binding the catalyst, or affecting the rate of radical chain indicator 

reaction. The exact mechanism is only rarely known. Most of kinetic 

methods are based on redox reactions, such as the oxidation of dyes with 

peroxides and peracids. [25]. Being rapid and simple, the kinetic methods 

are presently used in sensing. During the recent decade, catalytically active 

magnetic nanoparticles (MNPs) were used as catalase or oxidase mimics 

[26]. Methods were developed for sensing pesticides, phenols, strong 

reducing agents, and analytes complexing Fe(2+, 3+) ions on the surface of 

the MNPs. The indicator reactions used in these systems included the 

oxidation of 3,3’,5,5’-tetramethylbenzidine (TMB), 2,2'-azino-bis(3-

ethylbenzothiazoline-6-sulfonic acid) (ABTS) and other chromogenic 

compounds [26]. Metal-organic frameworks (MOF) can operate as catalysts 

in redox reactions for the detection of antibiotics [27]. Uncatalyzed 

oxidation of chromogenic substrates was also applied in colorimetric 

sensing [28]. Overall, various types of redox reactions, including catalytic 

ones, can be used in sensing of small molecules. 

A popular indicator reaction in kinetic methods of analysis is the 

oxidation of various reducing agents (e.g., hydroquinone) with hydrogen 
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peroxide. Copper(II) is a catalyst in this reaction, and amino compounds 

can affect its rate by influencing the catalytic activity [29, 30]. Earlier we 

explored the feasibility of oxidizing a carbocyanine dye by H2O2 using Cu2+ 

as a catalyst for the discrimination of sulphanilamides and detection of the 

signals of pharmaceuticals of various nature [31]. In the present study we 

have explored an array based on this indicator reaction using several dyes 

and catalysts. The potential of this array has been studied with respect to 

pharmaceutical compounds. 

A large number of methods for the determination of medicinal 

compounds by colorimetric and fluorimetric methods was developed [32, 

33]. More than 40 pharmaceuticals were authenticated in 96-well plates 

using a 7-sensor colorimetric array [34]. A penicillin antibiotic ampicillin 

was detected using colorimetric [35–37] and fluorimetric [38–40] techniques. 

Aggregational, enzymatic and immune methods with colorimetric detection 

were developed for another penicillin compound, benzylpenicillin [32, 41]. 

Cephalosporins were also successfully determined colorimetrically [42–44] 

and in some cases fluorimetrically [45]. Few methods of colorimetric [46] 

and fluorimetric determination of phenothiazines [47] have been reported. 

Phenothiazines were determined in urine using a chemiluminescent sensor 

array [48]. 

Discrimination and classification tasks are efficiently solved using 

sensor arrays. Operation of an array is based on the pattern recognition of 

the responses of several low-specific receptors; the combined data is 

subjected to chemometric analysis in order to construct a recognition model. 

Optical sensor arrays were extensively used to detect and discriminate 

small organic molecules, for example, 15 volatile organic solvents with a 

three-fluorophore array [49], 4 medicinal compounds and their mixtures 

with a blend of 4–5 fluorophores [50], and all essential aminoacids using a 

fluorescent quantum dot [51]. Aminoglycoside antibiotics were 

discriminated using two fluorophores in the presence of surfactant micelles 

[15]. Poly(p-phenylene-ethynylene) fluorescent polymers of various 

structure (sometimes with added transition metal ions or surfactants) were 

used to recognize different compounds: non-steroidal drugs [52], 

aminoacids [53], explosives [54], saccharides [55], and antibiotics: 

penicillins, cephalosporins, aminoglycosides, quinolons and others [56]. It 

can be seen that the recognition of small molecules, including 

pharmaceutical compounds, was performed using various optical arrays. 

The classification of pharmaceuticals thus can be used as a test for the 

recognition ability of the sensor array prior to its application to real-world 

samples. 

The sensing platform designed in this study combines the two 

mentioned response principles: the aggregation-based fluorescence 

enhancement [19] and the effect of analyte on the redox reaction rate [31], 

both processes involving carbocyanine dyes. The purpose of this feasibility 

study was to demonstrate the potential of the suggested methodology by 

discrimination of several model compounds of various nature, including 

structurally related ones. The selected model analytes included 4 

cephalosporins (ceftriaxone, cefazolin, cefotaxime, cefotaxime), 3 

phenothiazines (promethazine, promazine, chlorpromazine), and 2 

penicillins (benzylpenicillin, ampicillin). Our purpose was to evaluate the 

discrimination ability of the sensor array and assess the suitability of the 

designed strategy. 
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Scheme 1. Sensing principles. The effect of the analyte can have different sign 

(increase or decrease of the signal). 

2. Materials and Methods 

2.1. Reagents and materials 

Carbocyanine dyes 1–4 (Scheme 2) were synthesized by us. Dye 1 was 

obtained according to paper [19] and dye 4 following protocol [57]. Dyes 2 

and 3 were not reported previously; the routes of their syntheses are 

depicted in Scheme 3. The detailed protocols and characterization data are 

given in the Supplementary Information.  

Other reagents and analytes were purchased from Sigma−Aldrich and 

used as received. Acetate (pH 3−5), phosphate (pH 6−8), and borate (pH 

9−10) buffer solutions were used to maintain pH values. CuSO4·5H2O was 

dissolved in water and PdCl2 in 0.1M HCl at 0.1 M concentrations with 

subsequent dilution to 1 mM before use. Analytes (Scheme 2) were 

dissolved in water at 5 mM and stored at 4°C. 

   

      1                   2 
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Scheme 2. Structures of dyes 1 – 4 and nine model pharmaceutical compounds. 

2.2. Instrumentation  

Absorbance spectra were measured using an SF-102 spectrophotometer 

(Interphotophysica, Russia), fluorescence spectra were obtained using a 

“Fluorat-02 Panorama” spectrofluorimeter (Lumex, Russia) in 1-cm quartz 

cells. Fluorescence in the NIR region in 96-well polystyrene plates (Thermo 

Scientific Nunc F96 MicroWell, white, cat. no. 136101) was registered using 

a visualizer [19] (Fig. S1 in ESI) consisting of a light source (eleven 3-Wt red 

LEDs with an emission maximum of 660 nm, Minifermer, Moscow, Russia) 

and a NIR digital camera (modernized Nikon D80 with a filter transmitting 

light with wavelengths above 700 nm). Visible photographs were taken by a 

smartphone Google Pixel 2 camera. 



 6 

 

Scheme 3. Synthetic routes for dyes 2 and 3. 

2.3. Procedures  

Only the reactions for full spectrum measurements were conducted in 

the quartz 1-cm cells, other reactions were conducted in fluorimetric plates. 

For the redox reactions, the following solutions were pipetted into the well 

of the plate in the indicated order (using multichannel pipettes for a large 

number of samples): 1) buffer (in the final protocol it was phosphate buffer, 

pH 7.4, 0.067M), 30 µL; 2) water (up to the total volume of 300 µL); 3) 

cetyltrimethylammonium bromide (CTAB), 1 mM, or sodium dodecyl 

sulfate (SDS), 8 mM, 30 µL; 4) analyte 5 mM, 30 µL (or water for blank runs); 

5) dye, 0.1 g/L in water (in ethanol for dye 2), 30 µL; 6) CuSO4, 1 mM (for the 

oxidation of dye 4, 0.5 mM), 30 µL. For the oxidation of dye 1, PdCl2 

solution was used (0.1 mM), 60 µL; 7) H2O2 1M, 30 µL (0.5 M for the 

oxidation of dye 1). The moment of adding hydrogen peroxide was taken as 

the reaction start.  

For the aggregation-type reaction, the following solutions were mixed 

in the plate: 1) buffer pH 7.4, 30 µL; 2) water 180 µL (up to the volume of 300 

µL); 3) CTAB 1 mM, 30 µL; 4) analyte 5 mM, 30 µL; 5) dye 1, 0.025 g/L 

colloidal solution in water, 30 µL.  

Digital photographs in visible light and under 660-nm LED light 

illumination were obtained for the 96-well plates every several minutes for 

the redox reactions of dyes 1–4 and only once for the aggregation-type 

reaction of dye 1. 

2.3.1. Operations with turkey meat extract 

Turkey meat was purchased locally, ground in a home meat grinder 

and frozen. To 5.07 g of thawed ground turkey, 10 mL of water was added 

and the suspension was heated at about boiling temperature for 15 min. The 

mixture was allowed to cool and centrifuged at 3000 rpm for 3 min to 

remove the denatured proteins. Three milliliters of the supernatant were 

transferred into another 15-mL test tube, and 2.5 mL of water and 9.5 mL of 
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95% ethanol were added to precipitate the remaining proteins. After 

stirring, 2 mL portions of the solution were placed in Eppendorf-type 

plastic tubes and centrifuged at 7000 rpm for 2 min. The concentration of 

solids in the resulting supernatant was approximately 10 mg/mL (by 

gravimetry) and the ethanol concentration was 60% (v/v). 

In the analytical cycle, turkey extract was added to the reaction mixture 

instead of the major part of water in the volume of 100 µL. Otherwise, the 

protocol was the same as for the reaction without turkey. 

2.4. Data treatment 

Absorbance and fluorescence intensities of the reaction mixtures were 

characterized by the photographic images of the 96-well plates. To split an 

RGB image into separate red (R), green (G), and blue (B) channels, ImageJ 

software (Fiji) was used. For some of the reactions, only the average RGB 

intensity (R + G + B) / 3 was obtained. The intensities were represented as 

numbers in the range of 0–255. 

 Four to six parallel runs were performed for each model analyte or 

blank. Out of the 6 parallels, 4 or 5 most consistent runs were selected for 

the subsequent PCA treatment. Covariance type PCA was performed in 

XLSTAT (Addinsoft, N.Y., U.S.A.) or Unscrambler X (Camo Software, 

Norway). Correlations between variables and factors were visualized in the 

form of circular factor diagrams. Scores plots for the components PC2 vs. 

PC1 and PC3 vs. PC1 were constructed. Confidence ellipses in the scores 

plots were built using a 95% confidence level. The quality of discrimination 

was evaluated as the number of intersections of the confidence ellipses 

according to a known approach [58] and by estimating accuracy as (N – n) / 

N × 100%, where N is the total number of points (40 for the basic data set 

without turkey extract and 50 with turkey extract) and n is the number of 

points belonging to multiple classes (unclassified). This value was estimated 

as the number of points inside the crossed portions of confidence ellipses 

both in PC1–PC2 and PC1–PC3 coordinates.  

3. Results and Discussion 

3.1. Selection of Indicator Systems and Reaction Conditions 

Two types of indicator systems are used in this study: based on 

aggregation phenomena and on redox reactions (Scheme 1). Overall, five 

reactions were used, four of which are the oxidation reactions of dyes 1–4 

with H2O2 and one reaction (with dye 1) is based on the aggregation 

principle of response.  

For the aggregation-based system, a hydrophobic dye 1 was used (for 

n-octanol–water, logP = 9.7 for dye 1; for dyes 2–4 logP values did not 

exceed 3.2). Dye 1 enhances its NIR emission in the presence of anionic 

analytes and CTAB as a cationic surfactant [19]. Under these conditions, dye 

1 was expected to yield responses to anionic cephalosporins and penicillins 

but not phenothiazines. The general reaction conditions were similar to 

paper [19]: submicellar CTAB (0.1 mM), pH 7.4, 0.025 g/L dye 1. The effect 

of an analyte on the fluorescence intensity and absorbance of dye 1 is 

exemplified by сcefazolin in Fig. 1. It can be seen that spectral differences 

are caused by сcefazolin and benzylpenicillin in 0.1–0.2 mM CTAB, which is 

typical for the aggregational mechanism of ‘turn-on’ fluorescence in these 

systems [19]. 
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Figure 1. Effects of aggregation: absorbance spectrum change (a) and near-IR 

fluorescence enhancement (b) of dye 1 in the presence of cefazolin and CTAB; c: 

images of the wells with varying concentration of CTAB for 3 analytes (0.5 mM 

analyte, 0.1 mM CTAB, 2.5 mg/L dye 1, pH 7.4).  

The redox reaction-based systems rely on our results [31] stating that 

the oxidation of pentamethine indolenine carbocyanine dyes with hydrogen 

peroxide catalyzed by Cu2+ can be used for the detection of various small 

molecules (e.g., cephalosporins, penicillins, phenothiazines and 

sulfanilamides) by their effect on the reaction rate. Oxidative destruction of 

the dye resulted in discoloration and fluorescence waning. To obtain 

diverse responses of analytes in this work we chose the dyes of different 

structures (2–4). Also, to additionally diversify the effects of analytes, 

palladium(2+) was used instead of copper(2+) as a catalyst in the oxidation 

reaction of dye 4. 

Generally, the redox reaction conditions found in paper [31] could be 

used in the present study. The same pH value of 7.4 was used, as it 

provided an acceptable oxidation rate and diverse effect of the analytes 

(Figs. S2 and S3). The concentration conditions were to be selected so as to 

ensure the reaction rates convenient for the measurement. This goal was 

achieved by using the concentrations of the oxidizer (hydrogen peroxide) 

and metal ions on the order of 0.1 M and 0.1 mM for most dyes (see Fig. S4 

for the concentration–signal plots). 

Surfactants (СTAB and DDS) were added to the redox systems for the 

following reasons. The hydrophobic dyes 1–4 are readily soluble in alcohols 

and tend to form nanoparticles when introduced into an aqueous medium. 

As we hypothesized in [19] based on the light scattering data, the surfactant 

can bind with the nanoparticles of the free dye (for CTAB the possible bond 

type is n–π), which can stabilize the suspension of nanoparticles from 

sedimentation in the course of the redox reaction. In this regard, a 

submicellar concentration of CTAB or DDS (~0.1 CMC) was added to the 

reaction mixture. 

The UV-vis (absorbance) and emission spectra for the oxidation 

reactions (Fig. 2) show a decrease in intensity with time in the presence of 

the oxidizer. When an analyte is present, the rate of this decrease changes, 

which implies a feasibility of obtaining an analytical response (some 
examples of kinetic curves for dye 3 are given in Fig. 3). Oxidation of the 

dye results in waning of the absorption band around 700 nm and increasing 

the role of the spectral features of the red region, which determines the 

different colors of the products in the presence of different analytes, 

especially phenothiazines (Fig. 4). 
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Figure 2. Effects of analytes in the oxidation of dyes with H2O2/Cu2+ system: 

absorbance spectra of dye 1 and its oxidation products in the presence of 

benzylpenicillin (a, b); dye 2 oxidation in the presence of chlorpromazine as 

observed in NIR (c, d) and visible spectra (e, f). 

To avoid measuring full spectra and using full-scale spectral 

equipment, we obtained the photographic images of the 96-well plates 

using a NIR photo camera (for fluorescence) and a smartphone (for 

absorbance) with subsequent digitalization. Images of the plates with dye 2 

and 4 are shown in Figs. 4 and S5 as examples. From the viewpoint of 

discrimination tasks, it is important that the signals vary for different 

analytes. For example, the products of dye 2 oxidation are colored 

differently in the presence of different phenothiazines (Fig. 4). Theoretically, 

all data received could be subjected to PCA treatment, but such an 

operation would be excessively laborious. For this reason, we only used the 

selected time points at which the model analytes yielded the most diverse 

responses (Table 1). 
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Figure 3. Kinetic curves of NIR fluorescence intensity of the dye 3 (obtained from 

NIR images) as a function of time for three model analytes (chlorpromazine, 

cefazolin, benzylpenicillin) and a blank experiment. Visual images of the four wells 

containing the analytes at times 0, 1, and 5 min are also shown. Conditions: 

phosphate buffer (pH 7.4), 0.5 mM analyte, 0.1 mM CTAB, 0.01 g/L dye 3,  0.1 M 

H2O2, 0.1 mM Cu2+. 

 

Figure 4. Near-IR fluorescence (left) and visible (right) images of a portion of a 96-

well plate with the reacting system dye 2 – H2O2 – Cu(2+) at 2 min (NIR) and 5 min 

(vis) after the reaction start. Without analyte (1st column) and with analytes: 2 – 

promethazine, 3 – promazine, 4 – chlorpromazine, 5 – ceftriaxone, 6 – cefazolin, 7 – 

ceftazidime, 8 –  cefotaxime, 9 – benzylpenicillin, 10 – ampicillin. All experiments in 

the column are parallel runs. Conditions: 30 µL each of the following: 0.067M 

phosphate buffer (pH 7.4), 1 mM CTAB, 5 mM model analyte, 0.1 g/L dye 3, 1M 

H2O2, and 0.1 mM CuSO4; 120 µL of water. 

Dye 1 did not demonstrate any noticeable color changes during 

oxidation in visible light, and we only registered its NIR emission. Dye 4 

did not show any visible spectrum change with time, for which reason only 

the general intensity was obtained from its visible images. The NIR photo 

camera has certain spectral sensitivity and produced NIR intensity of 

different wavelengths as different conditional colors (for example, yellow 

for 700–800 nm and gray for >800 nm, Fig. S2); for these reasons, RGB 

splitting of the NIR images was also performed. Thus, the RGB splitting of 

the images relating to dyes 2 and 3 gave us 6 columns of data for each dye. 

Overall, we obtained 16 columns of data (basic dataset, Table 1). Some 

additional data (17 columns) were obtained by treatment of other time 

points of the kinetic curves and later used in an additional experiment 

(paragraph 3.2). 
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Table 1. Indicator reactions used in the discrimination studies and the details of photographic registration of the 

signal 

Dye 1 1 2 3 4 

Indicator reaction type Aggregation Oxidation Oxidation Oxidation Oxidation 

Type of photography* NIR NIR NIR and 

vis 

NIR and 

vis 

NIR and 

vis 

RGB splitting of images No No Yes Yes No 

Total number of data 

columns** 

1 1 6 6 2 

Time of signal measurement 

after reaction start, min 

–*** 6 2 (NIR),  

5 (vis) 

2 (NIR),  

5 (vis) 

4 (NIR),  

 4 (vis) 

The same in the presence of 

turkey extract, min 

–*** 50 36 (NIR),  

19 (vis) 

11 (NIR),  

10 (vis) 

58 (NIR),  

 33 (vis) 

* NIR: fluorescence photographs of the plates in the near-IR region were obtained in the visualizer, vis: 

photographs were taken under visible light by a smartphone camera. 

** A column of data contains 4 or 5 parallel runs with each of the 9 analytes and a blank, 40–50 values in all. 

*** The signal does not depend on time and was measured immediately after mixing the reactants. 

 

3.2. Discrimination of 9 model analytes in water 

Our purpose was to demonstrate the potential of the designed sensing 

platform by an example of discrimination of 9 individual pharmaceutical 

compounds. The model analytes yielded different kinetic curves (Figs. 2, 3), 

which allowed a possibility of their recognition by using colorimetry and 

fluorimetry. As a single reaction was found insufficient for the recognition / 

discrimination of all analytes, we combined the data for all 5 indicator 

reactions (4 redox ones and an aggregation-based reaction) and subjected it 

to principal component analysis. All 9 analytes were completely 

discriminated in the space of 3 principal components. In Fig. 5 the results 

are shown in two sets of coordinates from which it can be noticed that 

compounds not discriminated in PC1–PC2 coordinates are all separated in 

PC1–PC3 coordinates, which implies a 100% accuracy of discrimination. 

The amount of data used for discrimination was quite large, and it was 

advisable to reduce it by omitting some data columns. Before addressing 

this issue, it was necessary to select a criterion for evaluation of 

discrimination efficiency. Accuracy estimated as the ratio of unclassified 

samples to the total number of samples was not very informative, as it was 

equal to 100% in many cases (Table 2). A simple appropriate criterion can be 

the number of intersections of confidence ellipses in the scores plot CrN 

[58]. If two confidence ellipses crossed, this event was counted as an 

intersection. For example, the graph in PC2–PC1 coordinates (Fig. 5) has 2 

crossings (two pairs of ellipses are overlapped), while PC3–PC1 plot shows 

1 crossing (one pair of ellipses is overlapped). If three neighboring ellipses 

intersected, it was considered as three intersections. Discrimination quality 

was considered higher for the scores plots with a lesser number of 

intersections. The discrimination efficiencies were characterized by “rating” 

values that were obtained by the summation of CrN values for PC1–PC2 

and PC1–PC3 plots (lower rating values implied better discrimination). All 

the results are summarized in Table 2. 

Removing even a single column from the basic dataset impacts the 

discrimination efficiency (Table 2, line 2: removal of dye 1 oxidation data 
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decreases rating from 3 to 6). Arbitrary removal of 2–6 columns related to 

one or two dyes (lines 3, 4, 6), or complete removal of a dye (line 5), reduce 

the discrimination quality considerably. Using only the visible data for two 

dyes provides poor discrimination (line 12, rating 11). 

 

 

Figure 5. The scores plots obtained with the basic dataset in the coordinates of 1st 

and 2nd (top) and 1st and 3rd (bottom) principal components. 

An attempt to reduce the number of columns by half (8 of 16) was 

undertaken by performing a visual inspection of the visible and NIR images 

and selecting the systems with greater visual differences between analytes. 

This selection of data columns shown in line 7 of Table 2 gave a fair rating 

of 4 (which is more favorable than for the lines 2–6 with larger numbers of 

columns, and which is close to the rating value of 3 of the basic dataset). To 

justify the intuitive data selection, we calculated the standard deviations of 

intensities for each of the columns of the standard dataset and selected 8 

columns with the highest values of standard deviations (Fig. 6). A higher 

variability within the intensities along a data column (i.e., for one indicator 

reaction) only evidenced that some analytes can be discriminated, and did 

not bring about any information about the others. However, the standard 

deviations approach worked: the new selection of 8 data columns (line 8 in 

Table 2) ensured the same discrimination quality (rating 4) as the intuitively 

selected set of 8 columns (line 7). The similar procedure but with relative 

standard deviations of intensities gave a slightly worse discrimination (line 
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9, rating 5). Notably, an attempt to arbitrarily replace only one of the 

columns in this selection (line 10) aggravates the discrimination (rating 7).  

Further reduction of the dataset to 6 columns backed by the standard 

deviation approach gave a fair rating of 6 (line 11). With this 6-column 

dataset, all model analytes were discriminated in the space of PC1–PC3 

components, except one pair of analytes (chlorpromazine – promethazine). 

 

 

Figure 6. (a): Intensities of parallel runs with 9 analytes for the selected indicator 

reactions of dyes 1–4 (shown in the legend). Only 4 analytes are made visible in the x 

axis title to save space; (b): standard deviations of intensities for each column of the 

basic data set. The columns with higher ST DEV values selected for PCA treatment 

are framed.  

Attempts to involve the data for additional reaction times not used in 

the basic data set were unsuccessful. For example, adding 17 columns to the 

basic data set pertaining to the same reactions at different times resulted in 

a poorer result compared to the basic set (line 13, rating 7).  

Factor diagrams representing the correlations between variables and 

factors for the complete data set were also constructed (Fig. S6) along with 

the loadings plots. However, no relation was observed between the position 

of the indicator reaction in the factor diagram and its role in discrimination 

(Table 2). 

Overall, the basic dataset provides optimum discrimination, though a 

proper data selection of indicator reactions allows reducing the set of 

columns at least twofold with a minimum loss in discrimination efficiency. 
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Table 2. Discrimination efficiency of 9 analytes represented as the number of intersections of confidence ellipses CrN and total rating for various data sets treated by PCA 

Data columns used for PCA treatment 

Dye 1 
Dye 2, 

NIR*  
Dye 2, vis* 

Dye 3, 

NIR  
Dye 3, vis Dye 4 

Crossing 

number of 

ellipses CrN 

for the plot 
No Description of the data set 

Total 

number 

of data 

columns 
redox aggr. R G B visR visG visB R G B visR visG visB NIR vis 

РС1-

РС2 

РС1-

РС3 

Rating 

Accu-

racy, & 

% 

1 Basic set 16 + + + + + + + + + + + + + + + + 2 1 3 100 

2 Oxidation of dye 1 removed 15 - + + + + + + + + + + + + + + + 2 4 6 95 

3 Dyes 1 and 4 oxidation removed 13 - + + + + + + + + + + + + + - - 2 4 6 100 

4 Dye 3 (NIR), dye 4 (vis) removed 12 + + + + + + + + - - - + + + + - 2 3 5 100 

5 Dye 3 completely removed   10 + + + + + + + + - - - - - - + + 4 4 8 97.5 

6 Dyes 2 and 3 (part of channels) removed 10 + + - + - - + - + + - + + - + + 3 2 5 100 

7 8 col. selected based on visual inspection 8 - + + - - + + + - - - + - + + - 1 3 4 95 

8 8 columns selected by ST DEV** (Fig. 6) 8 + + - - - - + - - + + - + + + - 1 3 4 100 

9 8 columns selected by RSD** 8 + + - - + - - - - + + - - + + + 3 2 5 97.5 

10 Same as line 7, one column changed 8 - + + - - + + + - - - - + + + - 2 5 7 97.5 

11 6 columns selected by ST DEV** 6 + + - - - - + + - - - - + + - - 3 3 6 95 

12 Only dyes 2 and 3, visible photographs 6 - - - - - + + + - - - + + + - - 4 7 11 85 

13 

Basic set + additional points in kinetic 

curves 
33 + + + + + + + + + + + + + + + + 3 4 7 100 

 Notes.  A plus (+) denotes the column used for treatment. 

 * Denotes oxidation of dye 2 with H2O2, NIR: photographs of the plate for near-IR emission, vis: photographs in visible light; RGB splitting; columns contain R, G, or B channel data, 9 

analytes + blank × 4 parallel runs = 40 values in column.  

** For each column of the basic data set, the standard deviation (lines 8, 11) or relative standard deviation (line 9) was calculated. The 8 (or 6) columns with maximum standard deviations 

between the values were selected for PCA treatment.  
& For 97.5% accuracy, one data point was non-classified (belonged to more than one confidence ellipse) in the space of PC1–PC2 and PC1–PC3. For 95%, 2 points were non-classified and for 

85% - 6 points. 

 



 
 

 
 

3.3. Discrimination of 9 model analytes in turkey meat extract 

Detecting pharmaceuticals in complex real-world matrices such as turkey meat 

extract is a challenging task. Individual analytes were introduced into the indicator 

reactions similarly to the operations with aqueous solutions but with turkey meat extract 

added. The extract retarded the oxidation of the carbocyanines 3–10-fold, which could 

be a consequence of ethanol and biomolecules presence in the extract. However, for 

comparison, the reaction conditions were kept the same as in aqueous solution. The 

response times selected for data treatment were notably longer than in the work with the 

aqueous solution (Table 1). 

Predictably, the discrimination quality was lower than in water: with the basic 

dataset (5 indicator reactions, 16 data columns) the rating value was equal to 13 with 4 

and 10 intersections of ellipses in PC1–PC2 and PC1–PC3 graphs, respectively (Fig. 7). 

Notwithstanding a great number of intersections in the planar graphs, only one pair of 

model analytes was not discriminated in the space of three principal components 

(promazine and chlorpromazine), and the accuracy was found to be 92%. 

 

 

Figure 7. The scores plots in PC1–PC2 and PC1–PC3 coordinates obtained with the basic dataset 

for the indicator reactions conducted in the presence of turkey meat extract. 



 
 

 

4. Conclusions 

In this study, two principles were applied for the first time to develop an optical 

sensor array: a specific type of aggregation-based fluorescence amplification and 

catalytic oxidation of carbocyanine dyes. In combination with chemometrics it was 

possible to discriminate 9 medicinal compounds with 100% accuracy in water and 92% 

in the presence of turkey meat extract, including closely related species belonging to one 

and the same class (cephalosporins, phenothiazines or penicillins). These results confirm 

that the developed platform can be used as a powerful tool for the recognition of 

analytes of various nature. The designed sensing platform uses a simple protocol, does 

not involve biomolecules or complicated instrumentation. Photographic registration of 

the responses is more rapid than the spectral measurements using a fluorimeter and a 

spectrophotometer. The sensing systems are not specific to the particular compounds 

involved, which allows further broadening the range of analytes by adjusting the nature 

of the dye, oxidizer and metal ion catalyst. 

Supplementary Materials: The following materials are available online at www.mdpi.com/xxx/s1: 

Protocols for the syntheses of dyes 2–4 and spectral data; Scheme of the NIR visualizer; Effect of 

pH on the NIR fluorescence and visible images in the presence of carbocyanine dyes 2 and 3 and 

three model analytes; Kinetic curves for the redox system dye 4 – H2O2 – Cu(2+) with three 

selected analytes for pH 3.6–10.4; Effect of the concentration of hydrogen peroxide and CuSO4 on 

the NIR fluorescence intensity of the reaction products; Images used for the data treatment 

obtained with 9 analytes after oxidation of dye 4; Loadings plot for the basic data set and circular 

factor diagrams.  
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