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The idea of the use of a diffuse interface for the
description of interphase phenomena goes back to van
der Waals [1], Landau [2, 3], and Cahn, Hilliard, and
Allen [4–6]. The first models with a diffuse interface
for solidification processes were formulated and ana�
lyzed by Collins and Levine [7], Langer [8], and Cag�
inalp [9]. The phase field method [10], which is an
efficient method for the description of the evolution of
microstructures in phase transitions, is a modern
development of these models. However, nonisother�
mal phase�field models used at present have model
phenomenological origin [11], which can be analyzed
at thermodynamically consistent derivation of equa�
tions. The aim of this work is to derive a thermody�
namically consistent model of solidification of pure
substances based on locally nonequilibrium thermo�
dynamics [12] and equilibrium Gibbs potentials [13].
The resulting equations of the phase field model are
hyperbolic. For this reason, for their comparison with
the equations of the Stefan hyperbolic problem [14],
we used the sharp�interface limit [9, 15].

In order to describe states of a continuum medium
of a solidifying system, we introduce the parameter ϕ
(phase field), which is ϕ = 1 in a solid phase (S) and
ϕ = 0 in a liquid phase (L). The definiteness of a local
phase state is violated near the interface between
phases, which has a small but finite thickness. The
bulk properties of phases inside the diffuse interface
are interpolated by the functions

p(ϕ) = ϕ2(3 – 2ϕ), g(ϕ) = ϕ2(1 – ϕ)2, (1)

which were chosen owing to the requirement of the
stability of phases [16].

The potential determining the relaxation of the
nonequilibrium nonisothermal system is the entropy
thermodynamically conjugate with the temperature:

, (2)

where G = G(T, P) is the Gibbs potential density and
Tm is the phase equilibrium temperature. The energy
density

(3)

includes the contribution from nonequilibrium effects
[12]. In Eq. (3), J is the heat flux and β, γ, and σ are
the kinetic coefficients defined below. The dot over a
symbol means the time derivative.

We neglect change in the volume at solidification,
assuming that the phase transition occurs at a constant
pressure and is completely controlled by the tempera�
ture. We determine the total Gibbs energy density as
the interpolation in the Gibbs potential densities of
each of the phases G(α)(T):

G(T,ϕ) = G(S)(T)p(ϕ) + G(L)(T)[1 – p(ϕ)] + Wg(φ),(4)

where W is the height of the potential barrier between
the states S and L.

S ∂G
∂T
����� 1

Tm

�����ε+⎝ ⎠
⎛ ⎞ dV∫–=

ε 1
2
�� βJ2 γϕ· 2 σ ∇ϕ( )2+ +[ ]=
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The dynamic equations follow from the condition
of increasing entropy (2) during relaxation to equilib�
rium [17] and have the form

(5)

The specific heat at constant pressure is defined as
Cp = –T∂2G(T, ϕ)/∂T2; τϕ = Mϕγ and τT = MT(T)β/Tm

are the characteristic relaxation times of the phase
field and thermal flux, respectively; κ = MT(T)/T2 is
the thermal conductivity; and MT(T) > 0 and Mϕ(T) > 0
are the mobilities of the temperature and phase fields,
respectively. In the locally equilibrium limit (i.e., at
τT = 0 and τϕ = 0), Eqs. (5) are reduced to the para�
bolic model of the phase field and the heat conduction
equation with a source inside the diffuse interface (see
[9, 16]).

Denoting differentiation with respect to the argu�
ment of a function by a prime,

,

and denoting the differences of the Gibbs potentials
and internal energies (U = G – TG '(T)) as

ΔG(T) = G(S)(T) – G(L)(T),

ΔU(T) = U(S)(T) – U(L)(T),

we represent the right�hand sides of Eqs. (5) in the
explicit form

(6)

In the case of equilibrium between the phases (i.e., at

 = 0,  = 0, J = 0), from Eqs. (6) for the tempera�
ture, we obtain

κ∇T = 0  ⇒ T = Tm ≡ const (7)

throughout the entire space. Equation (6) for the
phase field is reduced to the expression

. (8)

Taking into account that the difference between
Gibbs potentials at T = Tm is ΔG(Tm) = const, we con�
sider Eq. (8) in the one�dimensional case, denoting

τϕϕ·· ϕ·+ Mϕ σ∇2ϕ
Tm

T
�����∂G

∂ϕ
�����–=

CpT· ∇ J⋅+ ∂G
∂ϕ
����� T ∂2G

∂T∂ϕ
�����������–⎝ ⎠

⎛ ⎞ ϕ·–=

τT
∂
∂t
����J J+ κ∇T.–=⎩

⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

p ' ϕ( ) d
dϕ
�����p ϕ( ), ΔG' T( ) d

dT
�����ΔG T( )≡≡

τϕϕ·· ϕ·+ Mϕ σ∇2ϕ
Tm

T
����� Wg ' ϕ( ) ΔGp' ϕ( )+[ ]–

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

CpT· ∇ J⋅+ Wg ' ϕ( ) ΔUp' ϕ( )+[ ]ϕ·–=

τT
∂
∂t
����J J+ κ∇T.–=

⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

ϕ· T·

σ∇2ϕ Wg ' ϕ( ) ΔG Tm( )p ' ϕ( )+[ ]– 0=

the coordinate along the solidification direction as z.
Multiplying Eq. (8) by ϕ'(z) and integrating over an
infinite interval taking into account the equality
ϕ'(±∞) = 0, we obtain the thermodynamic equilibrium
condition in the form

ΔG(Tm) = 0 ⇒ G(S)(Tm) = G(L)(Tm), (9)

which determines the temperature Tm.

Under the equilibrium conditions, Eq. (8) becomes

σϕ'' = Wg'(ϕ), (10)

which has a “kink” solution:

, (11)

where the parameter

(12)

specifies the characteristic width of the diffuse inter�
face.

The integration of the gradient contribution to
potential (2) for equilibrium solution (11) gives the
surface energy

, (13)

where χ is the surface tension coefficient of the inter�
face. The coefficients σ and W are defined in terms of
δ and χ as

. (14)

In the absence of equilibrium between the phases,
G(S)(T) ≠ G(L)(T), for the dynamics of the phase field in
Eqs. (6), a driving force of a phase transition
p'(ϕ)ΔG(T)Tm/T appears, which is nonzero only
inside the diffuse interface and determines the velocity
of the solidification front.

We show that the Stefan hyperbolic problem [14]
follows from the system of Eqs. (6) in the sharp�inter�
face limit [9, 15]. For simplicity, we consider the one�
dimensional problem of directional crystallization in
order to avoid the effect of the curvature of the inter�
face.

The sharp�interface limit is based on the assump�

tion of the existence of the small parameter  = δ/L,
where L is the characteristic size of the region where
the phase transition occurs. We use the dimensionless
coordinate  = z/L and time divided by the character�

istic time of the thermal process,  = tλi/L2, where
λi = κi/Ci, κi = κ(Ti), Ci = Cp(Ti), and Ti is the initial

ϕ x( ) 1
2
�� 1 z/δ( )tanh–[ ]=

δ 2σ
W
�����=

1
2
��σ ϕ ' z( )[ ]2

dz

∞–

∞

∫
σ
6δ
����� χ= =

σ 6χδ, W 12χ
δ

�������= =

δ

z

t
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temperature of the melt. Then, the equations of
model (6) can be represented in the form

(15)

The function F(ϕ, T) is defined as

. (16)

Dimensionless quantities in Eqs. (15) and (16) are
given by the expressions

Since the dimensionless coefficients do not change
under a change in the scale, we consider the limiting

transition  → 0 in solutions of Eqs. (15).

Region external with respect to the diffuse interface.

We multiply the phase field equation in Eqs. (15) by 

and pass to the limit  → 0. Then, the phase field
equation is reduced to the form

g'(ϕ) = 0.

This relation is automatically satisfied beyond the dif�
fuse interface because ϕ = 0 and ϕ = 1 in the volume
of a phase. Since ϕ is constant in the volumes of the
phases,  = 0. As a result, the remaining equations in
Eqs. (15) are written in the form

(17)

Equations (17) are equivalent to the nonstationary
heat conduction equation at  = 0 or to its singular

expansion at  ≠ 0 [12].

Region inside the diffuse interface. In the reference

frame of the interface  =  – y( ), moving with non�
dimensionality velocity v =  and acceleration a = ,
we take the coordinate origin corresponding to ϕ =

τϕϕ·· ϕ·+ α ∇
2ϕ

Tm

T
����� 2g ' ϕ( )δ

2–
ΔGp ' ϕ( )δ

1–
+[ ]–

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

CpT· ∇ j⋅+ F ϕ T,( )ϕ·–=

τT
∂
∂t
���� j j+ κ∇T.–=

⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

F ϕ T,( ) θg ' ϕ( ) ΔUp' ϕ( )+=

τϕ

τϕλi

L2
��������, α

Mϕ T( )σ
λi

�����������������, θ 12χ
Ciδ
�������, τT

τTλi

L2
��������,= = = =

ΔU ΔU T( )
Ci

��������������, ΔG LΔG T( )
6χ

�����������������,= =

κ κ ϕ T,( )
κi

���������������, Cp
Cp ϕ T,( )

Ci

�����������������, j JL2

κi

������� .= = =

δ

δ
2

δ

ϕ·

CpT· ∇ j⋅+ 0=

τT
∂
∂t
���� j j+ κ∇T.–=

⎩
⎪
⎨
⎪
⎧

τT

τT

x z t
y· y··

1/2. In this case, the system of equations (15) has the
form

(18)

where αe = α – ϕv
2, κe =  – v

2 , and the coor�

dinate  = ξ  is introduced for convenient asymptotic
analysis. Indeed, the width of the diffuse interface in

the limit  → 0 becomes infinite (–∞ < ξ < ∞) and

independent of . Furthermore, it is taken into

account in Eqs. (18) that the factor –1 appears in the
derivatives with respect to the spatial coordinates
under such a change. After a change of coordinates

and scaling of variables, the factor 2 appears in
Eqs. (18). Here and below, it is assumed that the coef�
ficients are positive, i.e., κe > 0 and αe > 0.

We seek the solution of system (18) for the func�
tions ϕ(ξ), T(ξ), and j(ξ) in the form of asymptotic
series,

f(ξ) = f0(ξ) + f1(ξ)  + …, (19)

in the powers of the small dimensionless parameter .

Order . We have the system of equations

(20)

where the coefficients are calculated on the solutions
ϕ0 and T0, in particular, α0e = α0 – ϕv

2, κ0e =  –

v
2 , α0 = α(T0),  = (ϕ0, T0),  = (ϕ0, T0),

and F0 = F(ϕ0, T0).

At ξ → ±∞, the limiting conditions for the phase
field and temperature in the zeroth order should be
consistent with the external functions:

, (21)

, (22)

, (23)

, (24)

αeϕ '' ξ( ) v τϕa+( )ϕ ' ξ( )δ+

= α
Tm

T
����� 2g ' ϕ( ) ΔGp' ϕ( )δ+[ ]

κeT ' ξ( ) j ξ( )δ+ τTv
2F ϕ T,( )ϕ ' ξ( )=

vτTj ' ξ( ) j ξ( )δ– κT ' ξ( ),=⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

τ κ τT Cp

x δ

δ

δ

δ

δ

δ

δ

δ0

α0eϕ0'' ξ( ) 2
α0Tm

T0 ξ( )
�����������g ' ϕ0( )=

κ0eT0' ξ( ) τTv
2F0ϕ0' ξ( )=

κ0ej0' ξ( ) vκ0F0ϕ0' ξ( ),=⎩
⎪
⎪
⎨
⎪
⎪
⎧

τ κ0

τT Cp
0

κ0 κ Cp
0

Cp

ϕ0 ξ t,( )
ξ ∞–→
lim 1=

ϕ0 ξ( )
ξ ∞→
lim ϕ0'

ξ ∞±→
lim ξ( ) 0= =

T0' ξ( )
ξ ∞±→
lim 0=

T0 ξ( )
ξ ∞±→
lim T x( ) 0 0±=
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where  are the temperatures in the external
regions to the right (+0) and left (–0) of the diffuse
interface (at  = 0).

In the case of locally nonequilibrium relaxation
(  > 0), the temperature has a jump at the interface.
The difference between the temperature on the right
and left sides of the diffuse interface is

.

Under the assumption of smallness v
2 � 1 and

weakly varying thermophysical properties, this tem�
perature jump can be estimated as

,

where the coefficients were calculated at the tempera�
ture T* at a certain internal point of the diffuse inter�
face. The flux jump is given by a similar expression

.

The phase field and temperature profiles inside the
diffuse interface in the locally nonequilibrium case at
a given velocity of the front v can be determined only
numerically.

In the limit  → 0, the continuity of the tempera�
ture (T0(ξ) ≡ const) at the interface follows from
Eqs. (20) and the expression for the flux jump becomes

.

Under asymptotic conditions (21) and (22), the phase
field profile is again given by Eq. (11) with the width of
the diffuse interface smaller by a factor of

.

Order . The velocity of the front can be found
from the conditions of solvability of the equations in

the first order in :

(25)

where

, (26)

, (27)

, (28)

T x( ) 0 0±

x

τT

T +0 T –0– τTv
2 1

κ0e

�����F0ϕ0' ξ( )dξ

∞–

∞

∫=

τT

T +0 T –0– τTv
2κ*e

1– ΔU*–≈

j +0 j –0– v

κ0

κ0e

�����F0ϕ0' ξ( )dξ vκ*κ*e
1– ΔU*–≈

∞–

∞

∫=

τT

j +0 j –0– vΔU T0( )–=

α0eT0/α0Tm

δ1

δ

L̂11ϕ1 ξ( ) L̂12T1 ξ( )+ Φϕ ϕ0 T0,( )=

L̂21ϕ1 ξ( ) L̂22T1 ξ( )+ ΦT ϕ0 T0,( ),=⎩
⎨
⎧

Φϕ ϕ0 T0,( )
α0Tm

α0eT0

�����������ΔG0p ' ϕ0( )
v τ̃ϕ+ a

α0e

���������������ϕ0' ξ( )–=

ΦT ϕ0 T0,( )
j0

κ0e

�����–=

L̂11ϕ1 ξ( ) ϕ1'' ξ( )
2α0Tm

α0eT0

�������������g'' ϕ0( )ϕ1 ξ( )–=

, (29)

(30)

(31)

. (32)

The asymptotic limiting conditions at ξ → ±∞ for
the phase field and temperature in the first order has
the form

, (33)

, (34)

, (35)

where  are the temperature gradients taken
from the external regions on the right (+0) and left
(⎯0) of the diffuse interface (at  = 0).

The system of equations (25) is linear with respect
to the variables ϕ1 and T1. The general solution of this
system is a sum of the general solution of the homoge�
neous system and a partial solution of the inhomoge�
neous system. The direct differentiation with respect
to the coordinate ξ of the system

which is equivalent to the system of equations (20),
indicates that the functions (ξ) and (ξ) are the
solutions of homogeneous system (25). The presence
of these functions on the right�hand side of Eqs. (25)
means the existence of resonance solutions of the
inhomogeneous system, which violates the monoto�

nicity and smoothness of the expansion in . In order
to eliminate resonances, we introduce the condition of
the orthogonality of the vector ( (ξ), (ξ)) to the

L̂12T1 ξ( ) T1– ξ( ) ∂
∂T0

�������
2α0Tm

α0eT0
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– τTv
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κ0

τTv
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∞–

∞
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x
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2
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vector (Φϕ, ΦT) on the right�hand side of system (25)
with respect to the scalar product

. (36)

This condition can be rewritten in the form

(37)

Expression (37), together with the systems of equa�
tions (20) and (17), specifies the relation of the kine�
matics of motion (velocity v and acceleration a) of the
flat solidification front of pure substances to the ther�
modynamic quantities of the Gibbs energies and inter�
nal energies of the phases. With the existing results of
molecular dynamics simulation [18] (or natural exper�
iments), Eq. (37) makes it possible to determine the
temperature dependence of the mobility of the phase
field of pure substances. In particular, at τϕ = 0 and
τT = 0, we find T0 = const and

,

which directly expresses the dimensionless mobility α0

in terms of the velocity of the front and the tempera�
ture on the flat solidification front.

To summarize, a thermodynamically consistent
phase�field model of the solidification of pure sub�
stances in the absence of local equilibrium has been
developed with the use of the Gibbs potentials of real
substances. The relation between the velocity of the

flat front and the temperature on the solidification
front has been obtained in the sharp interface limit.

This work was supported by the Russian Founda�
tion for Basic Research (project nos. 13�02�01149A
and 14�29�10282ofi_m).
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Translated by R. Tyapaev

ϕ0' Φϕ T0' ΦT+( )dξ

∞–

∞

∫ 0=

α0Tm

α0eT0

�����������ΔG0p ' ϕ0( )ϕ0' ξ( )dξ

∞–

∞

∫

– v τ̃ϕa+( )
ϕ0'

2
ξ( )

α0e

������������dξ

∞–

∞

∫

– τTv
3 κ0

κ0e
2

�����F0ϕ0' ξ( ) 1
κ0e

�����F0ϕ0' y( )dy

∞–

ξ

∫ dξ

∞–

∞

∫ 0.=

v 6α0
Tm

T0

�����ΔG0–=
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