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Abstract. Fundamental diagrams of vehicular traffic flow are generally multi-
valued in the congested flow regime. We show that such set-valued fundamental

diagrams can be constructed systematically from simple second order macro-
scopic traffic models, such as the classical Payne-Whitham model or the inho-
mogeneous Aw-Rascle-Zhang model. These second order models possess non-

linear traveling wave solutions, called jamitons, and the multi-valued parts in

the fundamental diagram correspond precisely to jamiton-dominated solutions.
This study shows that transitions from function-valued to set-valued parts in

a fundamental diagram arise naturally in well-known second order models. As
a particular consequence, these models intrinsically reproduce traffic phases.

1. Introduction. In this paper a connection between set-valued fundamental di-
agrams of traffic flow and traveling wave solutions in second order inviscid traffic
models is presented.

2010 Mathematics Subject Classification. Primary: 35B40, 35C07, 35L65, 35Q91; Secondary:

76L05, 91C99.
Key words and phrases. Second order, traffic model, Payne-Whitham, Aw-Rascle-Zhang, jami-

ton, traveling wave, fundamental diagram, sensor data, effective flow rate.

745

http://dx.doi.org/10.3934/nhm.2013.8.745


746 B. SEIBOLD, M. R. FLYNN, A. R. KASIMOV AND R. R. ROSALES

1.1. Types of traffic models. A wide variety of mathematical models for vehic-
ular traffic exist. Microscopic models (e.g., [48, 42]) describe the individual vehi-
cles and their interactions by ordinary differential equations. Mesoscopic models
(e.g., [22, 47, 29, 23]) employ a statistical mechanics perspective in which vehicle
interactions are modeled in analogy to kinetic theory. Macroscopic models (e.g.,
[37, 49, 53, 45, 46, 32, 27, 28, 2], as well as the discussion below) describe traffic
flow using suitable adaptations of the methods of continuum mechanics [59], which
yield equations mathematically similar to those from fluid dynamics. There also
exist other types of models that are not necessarily based on differential equations,
such as probabilistic models (e.g., [1]), and cellular models (e.g., [40]), which divide
the road into segments and prescribe laws for the propagation of vehicles between
cells. A detailed overview of the various types of models is given in [21].

All of these types of traffic models are related. For instance, mesoscopic models
can be derived from cellular models [40] with stochastic components [1]; macro-
scopic models can then be interpreted as limits of mesoscopic models [41, 29]; cel-
lular models can be interpreted as discretizations (“cell transmission models”) of
macroscopic models [8, 9] and thus relate to kinematic waves [11]; and microscopic
models are equivalent to discretizations of macroscopic models in Lagrangian vari-
ables. Through these relations, the macroscopic modeling results presented in this
work may have consequences for various other types of traffic models.

In this paper, we focus solely on inviscid (aggregated) single-lane macroscopic
models for traffic flow on unidirectional roads. These types of models were started
with the work of Lighthill & Whitham [37] and Richards [49]. The Lighthill-
Whitham-Richards (LWR) model describes the temporal evolution of the vehicular
density along the road by a scalar hyperbolic conservation law, and is therefore de-
noted a “first order model”. The first “second order model”, due to Payne [45] and
Whitham [59], introduces the vehicular velocity field as an independent variable.
As a reaction to certain worrisome mathematical properties of the PW model [10],
Aw & Rascle [2], and independently Zhang [60] devised a different second order
model, which has subsequently been extended and generalized [17, 3].

In all of these models, traffic is described by inviscid conservation or balance
laws. There also exist macroscopic models with higher spatial derivatives: KdV-
type models (e.g., [31, 30]) involve a dispersive term, and viscous models (e.g.,
[27, 28]) possess a viscosity term. These two classes of models explicitly describe
the dynamics of the traffic flow on multiple length scales and avoid discontinuous
solutions. In contrast, inviscid models replace thin transition zones (e.g., upstream
ends of traffic jams) by shocks, and the specific dynamics inside the transition zone
are replaced by appropriate Rankine-Hugoniot jump conditions [12].

1.2. Fundamental diagram. The fundamental diagram (FD) of traffic flow is the
plot of the flow rate (i.e., the number of vehicles passing a specific position on the
road per unit time) versus the vehicle density (i.e., the average number of vehicles
per unit length). The first FD measurements were done in the 1930s by Greenshields
[19]; they led him to propose a quadratic function Q(ρ) = ρ umax(1 − ρ/ρmax) de-
scribing the relation between flow rate and density. Here, umax is the velocity that
a driver would assume when alone on the road, and ρmax is a maximum density at
which the traffic flow stagnates (bumper-to-bumper plus a safety distance). This
form of the FD was later also used by Richards [49]. However, subsequent mea-
surements, such as those of Wardrop & Charlesworth [57] and H. Greenberg [16],
revealed that a quadratic form is not an accurate description of true FD data, since,
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Figure
1. Fundamental di-
agram, obtained from
sensor measurement
data, aggregated
over time intervals of
∆t = 30s. The horizon-
tal structures are due
to the integer nature of
the flow rate data.
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Figure
2. Fundamental phase
diagram, as frequently
depicted in the traf-
fic literature (e.g.,
[25, 21, 55]). Shown
here is the free flow
curve, and a synchro-
nized flow region.

for instance, the maximum flow rate generally occurs at densities significantly be-
low 1

2ρmax. In reaction, different types of FD functions were proposed, such as by
Lighthill & Whitham [37], Greenberg [16], Underwood [53], Newell [43], Daganzo
[8], and Wang & Papageorgiou [56].

However, a more elementary shortcoming of function-based FD models is that
true flow rate vs. density measurements tend to exhibit a clear systematic spread:
for sufficiently large densities, one value of ρ corresponds to multiple values of Q.
The described “spreading” effect can be seen in Fig. 1, which displays a plot of flow
rate vs. density, obtained from single loop sensor measurements at a fixed position
on a highway. The data is taken from the RTMC data set [44] of 2003, provided
by the Minnesota Department of Transportation (Mn/DOT), from a sensor on
the southbound direction of I-35W (Minneapolis, MN). Each point in the diagram
corresponds to a time interval of ∆t = 30s. The recorded flow rate equals the
number of vehicles that have passed over the sensor during the time interval (the
selection of discrete flow rate values is due to the integer nature of the number of
vehicles); and the density is obtained from the fraction of time that a vehicle has
blocked the sensor. For the plot in Fig. 1, we assume that the average vehicle length
is 5m, and that the possible maximum density is achieved at 1/7.5m, i.e., a safety
distance of half a vehicle length is the absolute minimum that drivers will accept.

Motivated by the spread of data in the FD, traffic flow is often classified into
regimes or phases. The two-phase traffic theory (see, e.g., [21, 55]) divides traffic
flow into free flow for low densities, and congested flow for large densities. Three-
phase traffic theory, originally developed by Kerner [25], distinguishes free flow for
low densities, synchronized flow for medium densities, and wide moving jams for
high densities. A possible depiction of traffic phases for the sensor data is shown
in Fig. 2. The free flow region can be characterized by a relatively well defined
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single valued curve (with the spread due to data noise), while for medium densities
(synchronized flow) a multi-valued flow region appears to be needed.

By design, first order traffic models assume a function-based FD, i.e., each density
value ρ corresponds to a unique flow rate value Q. Therefore, more general traffic
models are required to explain the observed spread in FDs. In recent years, a
variety of approaches has been presented that describe the spread in FDs by set-
valued traffic models. One class is given by phase transition models [6, 7, 4] that
explicitly prescribe one traffic model for low densities, and another traffic model for
larger densities, and construct mathematical transition conditions that guarantee
well-posed solutions. Other models are based on inserting an instability into a
second order model at densities that are known to lead to instability in reality [51].

1.3. Contribution of this paper. In this paper, we demonstrate that the ob-
served structure of FDs, namely a unique Q vs. ρ relationship for small densities
and a set-valued relationship for larger densities (see Fig. 1), does already arise
within classical second order models, and thus does not necessarily require explic-
itly prescribed phase transitions. Specifically, we shall develop the theory for two
types of models: the classical Payne-Whitham model [45, 59], and the inhomoge-
neous Aw-Rascle-Zhang model [2, 60, 17]. The key observation is that second order
models with a relaxation term possess an intrinsic phase-transition-like behavior:
for certain densities, the solutions are very close to the solutions of a first order
model (as made precise in the introduction to Sect. 3), while for other densities,
the solutions develop jamitons [15], i.e., self-sustained, attracting, traveling wave
solutions with an embedded shock (described in more detail in Sect. 4). As we shall
show, these traffic waves result from instabilities and thus can be interpreted as
manifestations of phantom traffic jams; and the resulting jamitons can be regarded
as models for stop-and-go waves. Both of these phenomena are observed in real
traffic flow [20], and have been reproduced experimentally [52]. A key statement
of this paper is therefore that set-valued FDs, as well as different traffic phases,
are already built into existing second order models of traffic flow, such as the PW
model and the inhomogeneous ARZ model. That being said, we emphasize that
no statement is made about whether these models are better or worse than other
(possibly more complicated) models in describing real vehicular traffic flow.

Beyond the fundamental observation described above, the following theorems
are proved in this paper. Based on Whitham’s proof of the connection between
the linear stability of base state solutions and the sub-characteristic condition (see
Thm. 3.1), and on the Zel’dovich-von Neumann-Döring theory [14] of detonations,
we show that for both types of second order traffic models, jamitons exist if and
only if a corresponding base state solution (i.e., uniform traffic flow) is unstable, see
Thms. 4.1 and 4.2. Moreover, we prove that a jamiton-dominated traffic flow can
never possess a higher effective flow rate than a uniform flow of the same average
density; this statement is made precise in Thm. 5.2.

This paper is organized as follows. Sect. 2 consists of a brief presentation of the
two types of second order traffic models studied here, as well as their mathematical
properties that are relevant for the construction of jamitons. In Sect. 3, we outline
the aforementioned key theorem in the study of second order systems of hyperbolic
balance laws with a relaxation term: the equivalence of the instability of uniform
base states, and the sub-characteristic condition. Then, for common choices of
parameters in the considered second order traffic models, the implications of this
relationship are outlined. The explicit construction of jamiton solutions in the two
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types of second order traffic models is presented in Sect. 4. In particular, the equiv-
alence between the breakdown of the sub-characteristic condition and the existence
of jamitons is shown. In Sect. 5, we demonstrate how the preceding results about
jamitons and the stability of uniform traffic flow can be employed to systematically
construct set-valued fundamental diagrams that qualitatively reproduce the key
features of fundamental diagrams obtained from measurements. Finally, in Sect. 6,
conclusions are drawn and an outlook towards extensions of the presented work is
given.

2. Second order traffic models with relaxation terms. Macroscopic traffic
models describe the temporal evolution of the vehicle density ρ(x, t), where x is the
position along a road (multiple lanes are aggregated into a single variable), and t
is time. Letting u(x, t) denote the mean flow velocity of the moving vehicles, the
density function evolves according to the continuity equation

ρt + (ρu)x = 0 . (1)

First order traffic models, such as the Lighthill-Whitham-Richards (LWR) model
[37, 49], assume a functional relationship between ρ and u, i.e. u = U(ρ). We call
U the desired velocity function, and assume it to be decreasing with ρ. A simple
choice is

U(ρ) = umax(1− ρ/ρmax) , (2)

which is a linear interpolation between a maximum velocity umax of a single vehicle
on an otherwise empty road (i.e., ρ = 0) and a stagnated flow at some maximum
density, i.e., U(ρmax) = 0. Because (2) does not match very well with measurement
data (see Fig. 1), a variety of other desired velocity functions has been proposed
[16, 53, 43, 8, 56]. The choice of a desired velocity function U(ρ) leads to a scalar
hyperbolic conservation law model

ρt + (Q(ρ))x = 0 , (3)

where the flux function Q(ρ) = ρU(ρ) describes a unique Q vs. ρ relation in the
associated fundamental diagram of traffic flow. In contrast, second order models
augment (1) by an evolution equation for the velocity field u. Below, we outline
two classical types of second order models: the Payne-Whitham model and the
inhomogeneous Aw-Rascle-Zhang model.

Remark 1. These two different types of second order models are studied in order
to demonstrate that the results of this paper are not limited to only one specific
second order model, but instead hold at a wider level of generality. That being said,
it is known that the PW model (4) can develop solutions with unrealistic features,
such as negative velocities or shocks that overtake vehicles from behind [10]. It
is therefore an invalid model for velocities close to zero, or when used with initial
conditions that create spurious shocks. However, the analysis in Sect. 4.1 implies
that solutions with unrealistic shocks cannot arise dynamically as parts of traveling
wave solutions, see Rem. 5. Results of this nature are of interest in particular for
the understanding of simulators based on the PW model (c.f. [39]).

2.1. Payne-Whitham model. The Payne-Whitham (PW) model [45, 59], written
in the primitive variables ρ and u, reads as

ρt + (ρu)x = 0 ,

ut + uux + 1
ρp(ρ)x = 1

τ (U(ρ)− u) ,
(4)
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where the traffic pressure p(ρ) is a strictly increasing function and τ is a relaxation
time that dictates how rapidly drivers adjust to their desired velocity U(ρ). The PW
model (4) is a system of hyperbolic balance laws that possesses a relaxation term
in the velocity equation. In analogy to fluid dynamics, the PW model is generally
taken to possess the conservative quantities ρ and q = ρu, in which it reads as

ρt + qx = 0 ,

qt +
(
q2

ρ + p(ρ)
)
x

= 1
τ (ρU(ρ)− q) .

(5)

While (4) and (5) are equivalent for smooth solutions, the propagation of shocks is
determined by the Rankine-Hugoniot conditions [12] associated with the form (5).
The characteristic velocities of the PW model are

λ1 = q
ρ −

√
p′(ρ) and λ2 = q

ρ +
√
p′(ρ) , (6)

i.e., in the PW model, information travels with the velocities u± c(ρ), where c(ρ) =√
p′(ρ).
System (5) is the PW model written in Eulerian variables ρ(x, t) and q(x, t).

An alternative description, as for instance employed in [18], is to use Lagrangian
variables v(σ, t) and u(σ, t). Here σ is the vehicle number, defined so that

dσ = ρdx− ρu dt , (7)

and v = 1/ρ is the specific traffic volume, i.e., the road length per vehicle. In these
variables, the PW model reads as

vt − uσ = 0 ,

ut + (p̂(v))σ = 1
τ

(
Û(v)− u

)
,

(8)

where p̂(v) = p(1/v) and Û(v) = U(1/v). For notational economy, we shall hereafter
omit the hat in these two functions, except when required for clarity.

The Rankine-Hugoniot jump conditions associated with (8) are

m [v]− [u] = 0 ,

m [u] + [p(v)] = 0 .
(9)

Here [z] is the magnitude of the jump in the variable z across a shock, and −m is
the propagation speed of the shock (in the Lagrangian, i.e., vehicle-centered, frame
of reference).

2.2. Inhomogeneous Aw-Rascle-Zhang model. The inhomogeneous Aw-Rasc-
le-Zhang model [2, 60, 17] in primitive Eulerian variables reads as

ρt + (ρu)x = 0 ,

(u+ h(ρ))t + u(u+ h(ρ))x = 1
τ (U(ρ)− u) ,

(10)

where the hesitation function h(ρ) is a strictly increasing function. As in the PW
model, one assumes, in a loose analogy to fluid dynamics, the conservative quantities
to be ρ and q = ρ(u+ h(ρ)). In these variables, the model reads as

ρt + qx = 0 ,

qt +
(
q2

ρ − h(ρ)q
)
x

= 1
τ (ρ(U(ρ) + h(ρ))− q) .

(11)

The characteristic velocities of the ARZ model are

λ1 = q
ρ − h(ρ)− ρh′(ρ) = u− ρh′(ρ) and λ2 = q

ρ − h(ρ) = u , (12)
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where u = q
ρ − h(ρ). Thus, in the ARZ model, information propagates along one

family of characteristics with the vehicles, and along the second family of charac-
teristics against traffic (relative to the vehicles) with velocity ρh′(ρ).

In Lagrangian variables, the ARZ model becomes

vt − uσ = 0 ,

(u+ ĥ(v))t = 1
τ

(
Û(v)− u

)
,

(13)

where ĥ(v) = h(1/v) and Û(v) = U(1/v). Again, we shall generally omit these hats
from now on. The associated Rankine-Hugoniot conditions are

m [v]− [u] = 0 ,

[u] + [h(v)] = 0 .
(14)

2.3. Assumptions on the desired velocity, pressure, and hesitation. In
addition to requiring that U(ρ), p(ρ), and h(ρ) be twice continuously differentiable,
we impose the following assumptions:

(a) dU
dv > 0 and d2U

dv2 < 0. This is equivalent to U(ρ) being decreasing, and the flux
function Q(ρ) = ρU(ρ) in the corresponding LWR model (3) being concave.
The concavity of Q(ρ) is a frequent assumption in traffic flow (see for instance
the discussions in [37] and [59]). In particular, it guarantees a nice shock theory
for the LWR model, where the shocks satisfy the Lax entropy condition [33]
strictly.

(b) dp
dv < 0 and d2p

dv2 > 0. These conditions lead to well-posed equations for the PW
model (8), even in the presence of shocks [33]. These conditions are equivalent
to: as functions of ρ, the pressure p(ρ) is increasing and the function ρ p(ρ) is
convex.

(c) dh
dv < 0 and d2h

dv2 > 0, for the same reasons as for p.

Note that all the example functions U , p, and h used in this paper satisfy these
assumptions.

3. Instability of uniform flow and sub-characteristic condition. A partic-
ular feature of balance laws of the form (4) and (10) is the relaxation term in the
(generalized) momentum equation, which is expected to drive the actual velocity
u towards the desired velocity U(ρ) when τ � 1. If this is indeed the case, the
continuity equation (1) shows that the solution will be very close to the one of the
LWR model (3) with the flux function Q(ρ) = ρU(ρ).

Note that (3) has a single characteristic velocity

µ = Q′(ρ) = U(ρ) + ρU ′(ρ) , (15)

while the second order models (4) or (10) possess two characteristic velocities λ1 <
λ2, which depend in particular on the traffic pressure p(ρ), or the hesitation function
h(ρ), respectively.

Moreover, one can observe that all three models (4), (10), and (3) share a set
of solutions, namely the base state solutions, in which ρ(x, t) = ρ̄ = const. and
u = U(ρ̄) = const. These solutions represent uniform traffic flow with equi-spaced
vehicles (whose midpoints are a distance 1/ρ̄ apart). Let now ρ = ρ̄, u = ū = U(ρ̄)
be any given base state solution of a second order model and consider the following
two conditions that can apply:
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LS (linear stability)
The base state (ρ̄, ū) is linearly stable, i.e., any infinitesimal perturbations to
it decay in time.

SCC (sub-characteristic condition)
The characteristic velocity µ = µ(ρ̄), given by (15), of the reduced LWR model
(3) falls in between the two characteristic velocities λj = λj(ρ̄, ū) of the second
order model, i.e.

λ1 < µ < λ2 . (16)

These two conditions are related by the following

Theorem 3.1 (Whitham). The two conditions LS and SCC are equivalent.

The proof, given by Whitham in 1959 [58], and thoroughly reviewed in his 1974
book [59, Chap. 10], is constructive: for a general 2 × 2 hyperbolic conservation
law with a relaxation term in one equation, the standard linear stability analysis
(calculating the growth factor for basic wave perturbations of the form eikx) is
performed, and subsequently related to the sub-characteristic condition.

Besides the theoretical insight that Thm. 3.1 yields (see the discussion in [59]),
it allows one to substitute the task of performing a linear stability analysis by, for
instance, normal modes (e.g., as done for (4) in [15, App. B] and for (10) in [18])
by checking the sub-characteristic condition, which is often times simpler to verify.

In the context of traffic flow, an important question is: when can one use a first
order model and (essentially) get the same answer as that given by a second order
model? This question, which turns out to be intimately related to the result in
Thm. 3.1, has been investigated by several authors, e.g., Liu [38], Chen, Levermore
& Liu [5], and Li & Liu [35] (note that these papers consider situations that are
more general than the ones arising for traffic flow). Thus, for example, it is known
that:

1. Solutions of a second order traffic model with uniform base state initial con-
ditions, plus a sufficiently small perturbation, converge towards this base state
(i.e., the perturbation decays) as t→∞, if the base state satisfies the SCC. In
other words, the equivalence in Thm. 3.1 can be extended from relating SCC
and LS, to relating SCC and stability.

2. The solutions to second order models that satisfy the SCC everywhere, converge
towards solutions of the reduced LWR model in the limit τ → 0. More generally,
if τ is not small, then the solutions converge towards the solutions of a reduced
LWR model with a nonlinear “viscosity”, which is of magnitude O(τ).

An important question that the work cited above does not address is:

3. If constant base state (plus small perturbation) initial conditions (strictly) vio-
late the SCC, how do the solutions to a second order model evolve in time?

To the authors’ knowledge, no rigorous results are known in this case, except for
the fact that the solutions to the second order models need not look like solutions
to the reduced LWR model (3), even if τ � 1. However:

4. Numerical studies (for the PW model in [15], and for the ARZ model in [18])
indicate that the solutions of second order traffic flow models tend towards a
jamiton-dominated regime, characterized by the presence of self-sustained finite
amplitude traveling waves.
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The construction of these traveling waves is addressed in Sect. 4. However, before
doing so, we calculate the sub-characteristic condition for the PW and the ARZ
model below.

Remark 2. The analysis of the degenerate case of the SCC condition, i.e., λ1 =
µ < λ2 or λ1 < µ = λ2, in (16), is more involved (c.f. [34, 36]) and we do not
consider it in this paper.

3.1. Payne-Whitham model. Using the characteristic velocities of the PW mod-
el, (6), and of the LWR model, (15), the sub-characteristic condition (16) reduces
to

−
√
p′(ρ) < ρU ′(ρ) <

√
p′(ρ) .

Because U(ρ) is decreasing and p(ρ) is increasing, the second inequality is always
satisfied, rendering the SCC, and thus the stability of uniform flow of density ρ,
equivalent to

p′(ρ)

ρ2
> (U ′(ρ))2 . (17)

Regarding reasonable choices for U(ρ) and p(ρ), the desired velocity function has
a clear physical interpretation. In this paper, we consider two forms of U(ρ): the
simple linear relationship (2), and a more complicated shape, given via (33). In
contrast, which choices are reasonable for the traffic pressure is more difficult to
motivate. For the linear velocity U(ρ) = umax(1 − ρ/ρmax), we briefly study two
classes of traffic pressures in terms of their behavior with respect to the (in)stability
of base states. We argue that reasonable traffic models for phantom traffic jams
must have the property that low density base states are stable (free flow), instabil-
ity occurs above a certain critical threshold density (congested flow or synchronized
flow), and possibly stability re-occurs for densities close to the maximum density
ρmax (wide moving jams), where the terminology is in line with [25, 55]. We distin-
guish two types of pressures:

(A) regular pressure: Drawing an analogy to gas dynamics, a simple choice is

p(ρ) = βργ , where γ > 0. In this case, the SCC becomes ργ−3 > (umax)2

βγ(ρmax)2 .

One can see that for γ > 3, low densities violate the SCC, and for γ = 3, no
transitions between stability or instability occur. Hence, reasonable behavior
occurs only for γ < 3, for which instability occurs above the critical density

ρcrit = (βγ(ρmax)2/(umax)2)
1

3−γ . Some possible choices are γ = 1, as in [26],
or γ = 2, which renders the PW model (4) equivalent to the shallow water
equations with a relaxation term.

(B) singular pressure: Stability for densities close to ρmax can be achieved by
selecting a pressure p(ρ) with a pole at ρmax. For example, as in [15], we can
take

p(ρ) = −β(ρ/ρmax + log(1− ρ/ρmax)) , (18)

for which the SCC becomes β/ρmax

ρ(ρmax−ρ) > (umax)2

(ρmax)2 , or equivalently ρ
ρmax

(1 −
ρ

ρmax
) < β

ρmax(umax)2 . Thus, there is a range of unstable base states that is

centered around 1
2ρmax, and is of width (( 1

2ρmax)2 − βρmax

(umax)2 )
1
2 . Hence, for

low densities, and high densities (i.e, close to ρmax), uniform traffic flow is
stable. Thus, singular pressures can generate traffic regimes qualitatively close
to those presented by Kerner [25]. We shall use this pressure (18) for some of
the examples presented in Sect. 5.
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3.2. Inhomogeneous Aw-Rascle-Zhang model. Using the characteristic veloc-
ities of the ARZ model, (12), and of the LWR model, (15), the sub-characteristic
condition (16) reduces to

−ρh′(ρ) < ρU ′(ρ) < 0 .

Because U(ρ) is decreasing, the second inequality is always satisfied, rendering the
SCC, and thus the stability of uniform flow of density ρ, equivalent to

h′(ρ) > −U ′(ρ) . (19)

As in the PW model, we study two types of hesitation functions, in conjunction
with the desired velocity function U(ρ) = umax(1− ρ/ρmax):

(A) regular hesitation: For the choice h(ρ) = βργ with γ > 0, the SCC be-
comes ργ−1 > umax

βγρmax
. Similarly as with the PW model, realistic behavior of

(in)stability regimes only occurs if γ < 1.
(B) singular hesitation: As with the PW model, stability can be recovered close

to ρmax by letting h(ρ) become singular there. A possible choice, suggested in
[3], is

h(ρ) = β
(

ρ/ρmax

1−ρ/ρmax

)γ
. (20)

Since for ρ � 1, the function h(ρ) behaves as in the regular case, one can
again only achieve realistic (in)stability regimes if γ < 1. In this case, h(ρ)
possesses an inflection point and thus can generate the traffic regimes presented
by Kerner [25]. In Sect. 5, we shall employ (20) with γ = 1

2 .

4. Construction of jamiton solutions. Jamitons are self-sustained traveling
waves in second order traffic flow models with a relaxation term. They possess the
same mathematical structure as detonation waves in the Zel’dovich-von Neumann-
Döring (ZND) theory [14]. A ZND detonation wave consists of a compressive shock
with a smooth reaction zone attached to it, which is traveling at the same velocity
as the shock. The ideas presented in this section are an adaptation of this theory to
the PW and the ARZ traffic models. A theory valid for generic second order traffic
flow models is presented in a companion paper [24].

In order to obtain expressions for jamitons, a traveling wave ansatz is performed.
This approach has been presented in [15] in Eulerian variables, wherein one considers
solutions of the form ρ(x, t) = ρ̂(η) and u(x, t) = û(η), where η = x−st

τ is the
self-similar variable. Here, we use the Lagrangian variables defined in Sect. 2,
which have in particular been employed in Greenberg’s study of the ARZ model
[18]. Note that, while the analyses in Lagrangian and in Eulerian variables are
mathematically equivalent, it is the former choice of variables that affords the clear
geometric interpretations and constructions conducted below.

4.1. Payne-Whitham model. We consider system (8) and seek solutions of the
form v(x, t) = v̂(χ) and u(x, t) = û(χ), where χ = mt+σ

τ is the self-similar variable.
For simplicity of notation, we shall omit the hats in the following. Substituting this
self-similar form into (8) yields the relations

m
τ v′(χ)− 1

τ u
′(χ) = 0 , (21)

m
τ u
′(χ) + p′(v(χ)) 1

τ v′(χ) = 1
τ (U(v(χ))− u(χ)) . (22)

Relation (21) implies that
mv − u = −s , (23)

where s is a constant of integration.
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Remark 3. In Lagrangian variables, −m is the propagation velocity of jamitons,
i.e., jamitons travel backward at speed m with respect to the moving vehicles.
The constant s has the interpretation of a “Lagrangian mass flux”. In Eulerian
variables, the meaning of these two constants is exactly reversed: jamitons move
at velocity s with respect to a fixed observer, and m is the “mass” flux of vehicles
past a stationary observer. Note that due to the entropy condition described in
Sect. 4.1.1, solutions of the type above can exist only for m > 0. On the other
hand, there is no sign restriction on s.

Using relation (23) to substitute u by v in (22), we obtain a first order ODE for
v(χ), which reads as

v′(χ) =
w(v(χ))

r′(v(χ))
, (24)

where the two functions w and r are defined as

w(v) = U(v)− (mv + s) and r(v) = p(v) +m2v , (25)

and depicted in Fig. 4 and Fig. 3, respectively. At first glance, it appears that the
constants m and s can be chosen independently. However, this is not the case. To
see this, we use the assumptions p′(v) < 0 and p′′(v) > 0 (see Sect. 2.3). Then, the
denominator in (24), r′(v), may have at most one root, vS, such that p′(vS) = −m2.
The ODE (24) can only be integrated through vS, if the numerator in (24), w(v),
has a (simple) root at vS as well, i.e.

mvS + s = U(vS) . (26)

In ZND detonation theory, relation (26) is known as the Chapman-Jouguet condition
[14], and the point at which r′(v) vanishes is called sonic point. We can therefore
parameterize the smooth traveling wave solutions of the jamiton ODE (24) by the
sonic value vS. Given vS, the two constants are

m =
√
−p′(vS) and s = U(vS)−mvS . (27)

Hence, we obtain a one-parameter family of smooth traveling wave solutions, pa-
rameterized by vS, each of which is a solution of (24).

Whether, in the vicinity of vS, the function v(χ) is increasing or decreasing, is
determined by the sign of the right hand side in (24), which, by L’Hôpital’s rule,
equals

w′(vS)

r′′(vS)
=
U ′(vS)−m
p′′(vS)

.

Because p′′(v) > 0, we note that v(χ) is increasing if U ′(vS) > m, and decreasing if
U ′(vS) < m; the degenerate case U ′(vS) = m yields only constant solutions.

Using that U ′′(v) < 0 (see Sect. 2.3), we know about the numerator in (24),
w(v), that: if U ′(vS) > m, a second root, vM, can exist for v > vS, but no further
roots can exist for v < vS (see Fig. 4). If, on the other hand, U ′(vS) < m, a second
root, vM, can exist for v < vS, but no further roots can exist for v > vS. As a
consequence, the solution of (24) can extend to infinity in the direction χ → +∞
(for which v → vM). In turn, in the direction χ → −∞ the solution approaches a
vacuum state (v→∞), the jamming density (v→ (ρmax)−1), or an infinite density
(v → 0), depending on the type of pressure used (see Sect. 3.1). In this paper we
consider none of these (rather extreme) situations, and instead focus on solutions
that possess shocks, see below.
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U ′(vS) > m.

Remark 4. A complete classification of traveling wave solutions (with or without
shocks) is provided in a companion paper [50].

4.1.1. Shocks. Because we wish to consider only traveling waves that do not ap-
proach an extremal state for χ → −∞, a shock must exist that connects a state
(v−, u−) to the left of the jump to a state (v+, u+) to the right of the jump. A
shock can be part of the traveling wave solution, if it travels with the same velocity
m. The Rankine-Hugoniot jump conditions (9) now impose two restrictions on the
states connected by the shock, as follows. The first condition in (9) implies that
mv− − u− = mv+ − u+, i.e., the quantity mv − u is conserved across the shock.
This is in line with condition (23) for the smooth part of a traveling wave. A second
requirement is obtained by combining the two jump conditions in (9) to yield

m2 [v] + [p(v)] = 0 ,

which is equivalent to the statement that r(v−) = r(v+), where r is precisely the
function defined in (25). Therefore, any jamiton shock connects two states v− and
v+ by a horizontal line in the r–v diagram, as shown in Fig. 5.

In addition to the Rankine-Hugoniot conditions, a stable shock must also satisfy
the Lax entropy conditions (see e.g. [59, 33]). For a shock that is part of a traveling
wave (see [15] for a visualization), this requires that the specific volume decreases
across a shock, i.e., v− > v+. Hence, in a smooth part of a traveling wave, v
must be increasing with χ, and therefore a necessary condition for the existence of
jamitons is that U ′(vS) > m (see Fig. 4). As a consequence, a jamiton solution v(χ)
corresponds to a smooth movement along the function r(v) in the p–v plane into
the positive v direction, followed by a jump back from the right branch to the left
branch along a horizontal line (see Fig. 5).

Remark 5. The PW model has been criticized [10, 2] for the fact that its solutions
may involve shocks that travel faster than the vehicles. However, the arguments
above point to the following interesting fact: while such unrealistic shocks can



CONSTRUCTING SET-VALUED FUNDAMENTAL DIAGRAMS FROM JAMITONS 757

v
S

v
M

  v
R

v

r(
v
)

 

 

  v
−

v
+
 

r(v)=p(v)+m
2
v

sonic volume

maximal jamiton

actual jamiton

Figure 5. A jamiton
in the r–v diagram in
the p–v plane. Be-
low the maximal jami-
ton (blue line) lies an
actual jamiton (brown
line) that connects the
states v+ and v−.

 v
S

 v
M

 v
R

v
−

v
+

η

v
(η

)

 

 

maximal jamiton

sonic point
actual jamiton

periodic chain

Figure 6. Jamiton
function v(η). An
actual jamiton (brown
curve) between v+ and
v− lies on the maximal
jamiton curve (blue),
which connects vR and
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η →∞.

certainly be triggered by particular choices of initial conditions, they cannot occur
as parts of traveling wave solutions (see also [15]).

4.1.2. Jamiton construction. Based on the theoretical presentation above, next we
present a systematic process for the construction of jamiton solutions, with an
intuitive graphical interpretation. The construction is as follows:

1. Select a sonic specific volume vS.
2. Evaluate m =

√
−p′(vS) and s = U(vS)−mvS.

3. Draw the function w(v) = U(v)− (mv + s) in the u–v plane (see Fig. 4).
4. If w′(vS) ≤ 0, then no jamitons exist with this sonic value vS. Otherwise, find

the unique root vM > vS such that w(vM) = 0.
5. Draw the function r(v) = p(v) +m2v in the p–v plane (see Fig. 3), and define
rmin = r(vS) and rmax = r(vM).

6. Find the unique value vR < vS that satisfies r(vR) = rmax.

Since the jamiton ODE (24) cannot be integrated beyond vM, there is a maximal
jamiton (for this vS) that connects the specific volumes vM and vR, as depicted
by the blue curve in Fig. 6. Note that this maximal jamiton is only of theoretical
relevance because it is infinitely long. However, the above construction gives rise to a
one-parameter family (for the specific vS at hand) of jamitons of finite length, whose
smooth parts are comprised of the smooth part of the maximal jamiton, but which
differ in the states that are connected by a shock. Specifically, the construction
continues as follows:

7. Select a value r̊ ∈ (rmin, rmax).
8. Determine v+ < vS and v− > vS, such that r(v−) = r̊ = r(v+) (see Fig. 5).
9. Calculate desired properties of the jamiton, such as:

• Solve the jamiton ODE (24) from v+ to v− to plot the jamiton in the χ
variable.
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• Transform the jamiton into the Eulerian self-similar variable η, by using
the relation

dη = 1
τ ( dx− sdt)

(23)
= 1

τ ( dx− udt+mv dt)
(7)
= 1

τ (v dσ +mv dt) = v dχ .

Figure 6 shows the shape of a jamiton as a function v(η), and Fig. 8 shows
the corresponding jamiton profiles ρ(η) and u(η).

• Compute its length in the η variable

L = η(v−)− η(v+) =

∫ v−

v+

η′(v) dv =

∫ v−

v+

v
r′(v)

w(v)
dv (28)

and the number of vehicles in the jamiton (in the η variable)

N =

∫ η−

η+

ρ(η) dη =

∫ v−

v+

η′(v)

v
dv =

∫ v−

v+

r′(v)

w(v)
dv (29)

by evaluating a definite integral. Of course, in line with having a complete
continuum description, N is not restricted to integer values. Moreover, in
the physical road coordinate x, the jamiton length is τL, and the number
of vehicles is τN .

As depicted through the dashed function in Fig. 6, a single jamiton can be continued
into an infinite periodic chain of jamitons, all of which are connected through shocks.
In the r–v diagram shown in Fig. 5, this means that one moves continuously along
the function r(v) from v+ to v−, and then jumps back to v+ via a shock.

In ZND detonation theory, the constant line whose intersection with the graph
of r(v) determines the two states v+ and v−, is called Rayleigh line. As one can
see in Fig. 3, the function r(v) is convex, and the sonic value vS is the unique point
where its slope matches the slope of the Rayleigh line. The construction presented
here leads us to the following

Theorem 4.1. For the PW model, the existence of jamitons with a sonic value vS

is equivalent (with the exception of the degenerate case, see Rem. 2) to the instability
of the base state solution v(x, t) = vS, u(x, t) = U(vS).

Proof. As argued in Sect. 4.1.1, a necessary condition for the existence of jamitons
is that U ′(vS) > m, where m =

√
−p′(vS). This condition is the complement of

the stability condition (17). Moreover, the construction in Sect. 4.1.2 shows that
for every linearly unstable value vS, one can in fact construct jamitons that have
this sonic value vS.

4.2. Inhomogeneous Aw-Rascle-Zhang model. The construction of jamitons
for the ARZ model is very similar to the construction for the PW model. Again,
we seek solutions in the self-similar variable χ = mt+σ

τ . In Lagrangian variables,
the ARZ model (13) differs from the PW model (8) only in the fact that (p(v))σ
is replaced by (h(v))t. Therefore, equation (21) carries over, and thus relation (23)
holds as well. Equation (22) is replaced by

m
τ u
′(χ) + h′(v(χ))mτ v′(χ) = 1

τ (U(v(χ))− u(χ)) , (30)

and hence the jamiton ODE (24) carries over, with the only modification that the
function r(v) now reads as

r(v) = mh(v) +m2v . (31)
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Thus, the condition for the vanishing of the denominator in (24) is now h′(vS) =
−m, and therefore for a given sonic value vS, we obtain

m = −h′(vS) and s = U(vS)−mvS . (32)

For shocks in the ARZ model, the Rankine-Hugoniot conditions (14) yield

m [v] + [h(v)] = 0 .

Thus, with r(v) defined as in (31), the same condition r(v−) = r(v+) as in the PW
model applies. The arguments involving the Lax entropy condition transfer exactly
from the PW model, as do the considerations regarding roots of w(v), as well as
the jamiton construction principle. We can therefore formulate

Theorem 4.2. For the ARZ model, the existence of jamitons with a sonic value vS

is equivalent (with the exception of the degenerate case, see Rem. 2) to the instability
of the base state solution v(x, t) = vS, u(x, t) = U(vS).

Proof. The condition for the existence of jamitons is that U ′(vS) > m, where m =
−h′(vS). This condition is the complement of the stability condition (19). The
remaining arguments are the same as in the proof of Thm. 4.1.

Note that for the ARZ model, the connection between the existence of traveling
wave solutions and the instability of base states was observed by Greenberg [18],
albeit without drawing connections to ZND theory, using the SCC, or exploiting
the geometric interpretations thereof.

5. Jamitons in the fundamental diagram. We now use the explicit construc-
tions of jamiton solutions of the PW model and the ARZ model, presented in Sect. 4,
to generate set-valued fundamental diagrams of traffic flow. To do so, we consider
the solutions of (4) or (10), when initializing the model with constant base state
initial conditions (ρ, U(ρ)) plus a small perturbation. For each value of ρ, for which
condition (17) or (19), respectively, is satisfied, the solution evolves towards the
constant state with density ρ. In contrast, for each value of ρ, for which the SCC is
violated, the second order model (4) or (10), respectively, converges to a jamiton-
dominated state. As explained in Sect. 3, the former statement follows from known
rigorous results for second order traffic flow models with relaxation terms, while the
latter statement is based on numerical experiments.

In order to construct a fundamental diagram, we start with a plot of the equi-
librium curve of traffic flow

Qeq(ρ) = ρU(ρ)

in the flow rate vs. density plane. For every value of ρ that satisfies the SCC, we
can record a point (ρ,Qeq(ρ)) on this equilibrium curve, representing the stable
base state solution. In turn, for every value of ρ that violates the SCC, we sketch
a jamiton line segment, which is defined as follows.

As derived in Sect. 4, a jamiton solution is non-constant in ρ and u, and therefore
it does not represent a single point in the flow rate vs. density plane. Instead, due
to relation (23), which implies that u = m

ρ + s, each jamiton is given by a segment

of the line
Q = m+ sρ

in the flow rate vs. density plane. An example of such a jamiton line is depicted in
Fig. 7, with the corresponding jamiton profiles in Eulerian variables (ρ(η) and u(η))
depicted in Fig. 8. Due to the Chapman-Jouguet condition (26), every jamiton goes
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through the equilibrium curve Qeq(ρ) at the sonic density ρS. For each choice of
sonic density ρS (that violates the SCC), the corresponding maximal jamiton is
represented by a line segment between (ρM,m + sρM) and (ρR,m + sρR), where
m, s, ρM = 1/vM, and ρR = 1/vR are constructed in the first 6 steps presented
in Sect. 4.1.2. Since w(vM) = 0, where w(v) is defined by (25), it follows that
ρMU(ρM) = m + sρM, i.e., the point (ρM,m + sρM) lies on the equilibrium curve
Qeq(ρ) as well. Because Qeq(ρ) is assumed concave, the maximal jamiton line
therefore lies below the equilibrium curve for densities ρM < ρ < ρS, and above the
equilibrium curve for densities ρS < ρ ≤ ρR.

Moreover, the slope of each jamiton line, s, equals the propagation speed of the
jamiton in a stationary frame of reference. In particular, if s > 0, the jamiton
is moving forward, and if s < 0, the jamiton is moving backward, relative to a
stationary observer. Here, the former case is associated with light traffic and the
latter case with heavy traffic, as formalized by the following theorem, which provides
information about the structural properties of a jamiton FD.

Theorem 5.1. For both the PW and the ARZ model, the following two properties
hold:

(i) The jamiton velocity s decreases with the sonic density ρS.
(ii) At the transition points between stability and jamiton solutions, the jamiton

lines are parallel to the equilibrium curve.

Proof. For (i), we show equivalently that s increases with the sonic specific volume
vS. Due to Thm. 4.1 and Thm. 4.2, jamitons exist when U ′(vS)−m(vS) > 0. Due
to (27) and (32), we have that s(vS) = U(vS)−m(vS)vS. Hence

s′(vS) = U ′(vS)−m(vS)−m′(vS)vS > −m′(vS)vS .

Moreover, since we assume that p′′(v) > 0 for the PW model, and h′′(v) > 0 for
the ARZ model, we find that m′(vS) < 0 and therefore s′(vS) > 0.
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To show (ii), we note that due to Thm. 4.1 and Thm. 4.2, the boundary between
stability and jamitons occurs, in Eulerian variables, when −U ′(ρS)ρ2

S = m(ρS).
Hence

s(ρS) = U(ρS)− m(ρS)
ρS

= U(ρS) + U ′(ρS)ρS = Q′(ρS) ,

which proves the claim.

Remark 6. It should be emphasized that jamitons can travel forward (s > 0) or
backward (s < 0) on the road, or be stationary (s = 0). As Thm. 5.1 states, the
larger the traffic density, the smaller s. An extreme case is the one of true stop-
and-go waves, in which vehicles come to a complete stop. These waves, visible for
instance in [20], always travel backwards on the road. However, waves with s > 0
can also be observed, albeit less pronounced than true stop-and-go waves. Instances
of such forward traveling jamitons can be seen in the NGSIM trajectory data [54]
of the I-80 during the interval 4:00pm–4:15pm.

5.1. List of examples. Before presenting the construction of jamiton FDs (and
extensions thereof, see below) in detail, we first collect the parameters of the exam-
ples that we shall use as test cases. In all examples, we consider ρmax = 1/7.5m and
umax = 20m/s, except when explicitly noted otherwise. Specifically, we consider
the following four scenarios:

PW1 The PW model with a quadratic equilibrium curve, i.e., a linear desired
velocity function (2), and a singular pressure of the form (18), with β =
4.8m/s2. This model is used in Figs. 9–12.

PW2 The PW model with a non-quadratic concave equilibrium curve of the form

Q(ρ) = c (g(0) + (g(1)− g(0))ρ/ρmax − g(ρ/ρmax)) , (33)

where the choice of the function g(y) =
√

1 + (y−bλ )2 has the effect that (33)

can be interpreted as a smooth version of the piecewise-linear Newell-Daganzo
flux [43, 8]. The parameters are chosen such that a reasonable fit with the
measurement data, shown in Fig. 1, is achieved: c = 0.078ρmaxumax, b = 1

3 ,

and λ = 1
10 . Again, the logarithmic pressure (18) is chosen, this time with

β = 8m/s2. This model is used in Figs. 13–16.
ARZ1 The ARZ model with the same equilibrium curve (33), and with the singular

hesitation function (20), which was suggested in [3], with γ = 1
2 and β =

8m/s2. This model is used in Figs. 17–20.
ARZ2 The ARZ model with the equilibrium curve (33), and with the singular

hesitation function

h(ρ) = β
(ρ/ρmax)

γ1

(1− ρ/ρmax)
γ2
.

where γ1 = 1
5 , γ2 = 1

10 , and β = 12m/s2. This generalization of (20) yields
a better qualitative fit of the unstable regime with measurement data (see
Sect. 5.5). This model is used in Fig. 22.

Note that some of the model parameters (ρmax, umax) are chosen to be within ranges
of values that are realistic for real traffic, some (c, b, λ) to match specific data, and
some (β, γi) to yield reasonably sized jamiton regions.
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5.2. Maximal Jamiton Envelopes. The relations described in the beginning
of this section give rise to the following construction of a set-valued fundamental
diagram for the PW or the ARZ model, defined by a desired velocity function U(ρ)
and the traffic pressure p(ρ) or the hesitation function h(ρ), respectively.

Loop over all densities 0 ≤ ρ ≤ ρmax. For each density ρ:

1. Check whether the SCC is satisfied. If it is, draw the equilibrium point
(ρ,Qeq(ρ)).

2. If it is not, compute m, s, ρM, and ρR (see Sect. 4.1.2), and plot a straight
line between the points (ρM,m+ sρM) and (ρR,m+ sρR).

An example of such a jamiton fundamental diagram is shown in Fig. 9. It consists
of segments of the equilibrium curve (wherever ρ satisfies the SCC; shown in black),
and a set-valued region in the flow rate vs. density plane, in which the equilibrium
curve lies (for all ρ that violate the SCC). We call this set-valued region the jamiton
region, which is formed by a continuum of jamiton line segments, shown in blue in all
figures that present a jamiton FD. The boundaries of the jamiton region are formed
by an upper envelope curve above the equilibrium curve and a lower envelope curve
below the equilibrium curve, both of which are depicted in magenta.

Theorem 5.1, together with the concavity of Q(ρ), implies that different jamiton
lines cannot intersect above the equilibrium curve. Hence, the upper envelope of
the jamiton region is a curve that is formed by the points (ρR,m+ sρR), where m,
s, and ρR are parameterized by ρS. In contrast, different jamiton lines do intersect
below the equilibrium curve. Therefore, the lower envelope of the jamiton region
is formed by intersection points of jamiton lines. In Eulerian variables, this curve,
wherever it is below the equilibrium curve, is given by (ρ∗, Q∗), where

ρ∗(ρS) = −m
′(ρS)

s′(ρS)
and Q∗(ρS) = m(ρS) + s(ρS)ρ∗(ρS)

represent the parametrization by ρS.
This construction of a maximal jamiton FD is applied to the test cases PW1,

PW2, and AR1, described in Sect. 5.1. The results are shown in Figs. 9, 13, and 17.
One can clearly observe the structural properties described above. In comparison
with the FD obtained from measurement data (see Fig. 1), one particular disagree-
ment is apparent: in the jamiton FD, the upper envelope curve extends much further
than it is observed in the data FD. This disagreement can both be explained and
remedied, as done below.

5.3. Emulating sensor measurements. The jamiton FDs shown in Figs. 9, 13,
and 17 appear to not resemble the sensor data (shown in Fig. 1) well in that they can
exhibit a large region above the equilibrium curve. The reason for this discrepancy
is that the jamiton FD represents point-wise values of ρ and Q along the jamiton
profile, whereas the data FD is composed of aggregated information (see below).

In fact, the mere size of the jamiton region above the equilibrium curve is some-
what misleading: for each jamiton line in the FD, the segment below the equilibrium
curve corresponds to the (possibly infinitely) long low density piece of a jamiton,
while the segment above the equilibrium curve corresponds to a comparatively short
piece of the jamiton, at which the density is high (see Figs. 6 and 8). In addition, as
one can see in the example jamiton shown in Fig. 8, the high density part frequently
comes also with a large negative density gradient along the jamiton curve. As a
consequence, when considering aggregated data, the region above the equilibrium
curve contributes much less to an average than the region below it.
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Figure 9. Maximal
jamiton FD (i.e., no
temporal aggregation)
for the example PW1
(see Sect. 5.1).
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Figure 10. Jamiton
FD with short aggre-
gation time ∆t = τ for
the example PW1 (see
Sect. 5.1).
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Figure 11. Jamiton
FD with long aggrega-
tion time ∆t = 8τ for
the example PW1 (see
Sect. 5.1).
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Figure 12. Jamiton
FD with effective flow
rate (i.e., aggregation
over complete jami-
tons) for the example
PW1 (see Sect. 5.1).

Measurement data used to generate fundamental diagrams are typically obtained
by stationary sensors on the road that measure the average density and average
flow rate during a time interval ∆t. In other words, each point in a data FD
corresponds to an aggregation of the traffic situation over a non-zero time interval.
In practice, in order to obtain reliable estimates for the flow rate (which is obtained
by counting vehicles), the aggregation time ∆t must not be too small. A typical
value is ∆t = 30s, as is used for instance in the Mn/DOT RTMC data set [44],
see the description in Sect. 1.2. Hence, in order to obtain a better agreement with
sensor measurements, we must represent the jamiton FD in a way that is more
faithful to the actual measurement process. We therefore perform an averaging
over jamiton solutions, as follows.

For a given sonic density ρS, we consider a one-parameter family of traveling wave
solutions, each being an infinite chain of identical jamitons, where the parameter is
the length of each individual jamiton, measured from shock to shock. For each such
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Figure 13. Maximal
jamiton FD (i.e., no
temporal aggregation)
for the example PW2
(see Sect. 5.1).
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Figure 14. Jamiton
FD with short aggre-
gation time ∆t = τ for
the example PW2 (see
Sect. 5.1).
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Figure 15. Jamiton
FD with long aggrega-
tion time ∆t = 10τ for
the example PW2 (see
Sect. 5.1).
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Figure 16. Jamiton
FD with effective flow
rate (i.e., aggregation
over complete jami-
tons) for the example
PW2 (see Sect. 5.1).

periodic traveling wave solution, we consider temporal averages of duration ∆t at a
fixed position x̄ on the road. Because the chain of jamitons moves with velocity s,
these temporal averages can be translated into averages over the Eulerian similarity
variable η = x−st

τ . Specifically, the average density is

ρ̄ = 1
∆t

∫ ∆t

0

ρ(x̄, t) dt = 1
∆t

∫ ∆t

0

ρ(− x̄−stτ ) dt

= τ
s∆t

∫ x̄
τ

x̄−s∆t
τ

ρ(η) dη = 1
∆η

∫ η̄

η̄−∆η

ρ(η) dη ,

(34)

where ∆η = s∆t
τ is the averaging “length” (in the η variable), and η̄ = x̄

τ param-
eterizes the “position” (in the η variable) of the averaging interval. Similarly, the
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Figure 17. Maximal
jamiton FD (i.e., no
temporal aggregation)
for the example ARZ1
(see Sect. 5.1).
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Figure 18. Jamiton
FD with short aggre-
gation time ∆t = τ for
the example ARZ1 (see
Sect. 5.1).
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Figure 19. Jamiton
FD with long aggrega-
tion time ∆t = 10τ for
the example ARZ1 (see
Sect. 5.1).
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Figure 20. Jamiton
FD with effective flow
rate (i.e., aggregation
over complete jami-
tons) for the example
ARZ1 (see Sect. 5.1).

average flow rate equals

Q̄ = 1
∆η

∫ η̄

η̄−∆η

Q(η) dη = 1
∆η

∫ η̄

η̄−∆η

m+ sρ(η) dη = m+ sρ̄ , (35)

which implies that any average pair (ρ̄, Q̄) lies on the corresponding jamiton line
Q = m+ sρ. Note that these averages depend only on the dimensionless quantity

α =
∆t

τ
,

rather than ∆t or τ alone, which measures the temporal averaging duration in units
of the drivers’ relaxation time τ .

For sufficiently large ∆t and for sufficiently short jamitons, the averages (34) and
(35) may involve one or more shocks. In this case, it is helpful to split the integrals
into multiple segments, each of which corresponds to a smooth jamiton curve. For
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each of these segments, it follows from (29) that

ρ̄ = 1
∆η

∫ η̄

η̄−∆η

ρ(η) dη = 1
∆η

∫ v(η̄)

v(η̄−∆η)

r′(v)

w(v)
dv ,

which can be computed efficiently using composite Gaussian quadrature rules.
Using these averaging procedures, we can now, for each choice of α = ∆t

τ , pro-
duce an aggregated jamiton fundamental diagram, by plotting on each jamiton line
segment all possible pairs (ρ̄, Q̄) that can arise as averages. When doing so, the
jamiton line segment above the equilibrium curve is shortened, because the peak
density ρR is averaged with lower density values. This can be observed in Fig. 8:
even for the maximal jamiton, the segment where ρ > ρS is of finite length, and
thus the maximum possible average ρ̄ decreases with increasing averaging length
∆η. In turn, the line segment below the equilibrium curve is not shortened: due
to the infinite length of the maximal jamiton towards ρM (see Fig. 8), averages can
always become as low as ρM itself, no matter how large ∆η is chosen.

Aggregated jamiton FDs are shown for the example PW1 in Figs. 10 and 11, for
the example PW2 in Figs. 14 and 15, and for the example AR1 in Figs. 18 and 19.
In all three examples, the first figure corresponds to a short aggregation duration of
∆t = τ , and the second figure corresponds to a long aggregation duration of ∆t = 8τ
or ∆t = 10τ , respectively. The maximal jamiton FD, constructed in Sect. 5.2, is
recovered in the limit α→ 0, for which the averaging length goes to zero, and thus
averages turn into point evaluations, i.e.

lim
∆η→0

1
∆η

∫ η̄

η̄−∆η

ρ(η) dη = ρ(η̄) .

A comparison of the aggregated jamiton FDs with the data FD (shown in Fig. 1)
shows a better qualitative agreement than in the case without the aggregation.
In particular, the very high values of Q, corresponding to high density parts of
jamitons, are significantly reduced. An interesting feature that can be seen in
Figs. 11, 15, and 19 is the cusp at the ρR point of the jamiton line that is parallel to
the ρ axis. The reason for this is that for s = 0, the jamiton is stationary relative to
the road, and thus aggregated values are identical to un-averaged point evaluations.

5.4. Effective flow rate. In all jamiton FDs shown in Figs. 9–11, Figs. 13–15, and
Figs. 17–19, the jamiton region lies partially above the equilibrium curve. This is
due to the fact that on their upstream side, jamitons possess densities that exceed
the sonic density (see Fig. 8). If averages involve more of this high-density part than
of low-density parts, then the aggregated density and flow rate pair (ρ̄, Q̄) may lie
above the equilibrium curve.

To obtain the true effective flow rate that a chain of jamitons yields, one needs
to perform the aggregation over infinitely long time intervals (we are neglecting
the singularity at s = 0 here), or equivalently, over full jamitons, i.e., from shock
to shock. This allows one to investigate the important questions: 1) Do jamitons
always lead to a reduction in the effective flow rate, compared to uniform traffic
flow with the same average density? or 2) Can one construct physically realistic
examples in which jamitons actually increase the effective flow rate?

To answer these questions, we first apply the full-jamiton averaging to the three
test cases presented in Sect. 5.1. The resulting effective flow rate jamiton funda-
mental diagrams are shown in Figs. 12, 16, and 20. One can observe that in all
three examples the jamiton region below the equilibrium curve remains unchanged,
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while it has fully vanished from above the equilibrium curve. The former observa-
tion is a consequence of the fact that on the one hand, very short jamitons possess
average densities very close to their sonic density, and that on the other hand, very
long jamitons possess average densities close to their minimum density. In contrast,
the latter conclusion, which means that in the considered examples jamitons al-
ways reduce the effective flow rate, does not follow immediately from the shape of
the jamitons. However, the theoretical answer to this question is provided by the
following

Theorem 5.2. The effective flow rate of a periodic chain of identical jamitons
is always lower than the flow rate of a uniform base state solution with the same
average density.

Proof. The average flow rate Q̄ being less than the flow rate of the uniform flow
with the same average density, Q(ρ̄), means that the averaged pair (ρ̄, Q̄) lies below
the equilibrium curve (see Fig. 7). Thus, we need to show that averages over full
jamitons satisfy ρ̄ < ρS, where ρ̄ = N/L, and N and L are given by (28) and (29).

Due to the Rankine-Hugoniot shock conditions, given in Sect. 4.1.1, a jamiton lies
between two states that possess the same value of r(v) (see Fig. 5). The function
r(v), given by (25) or (31), respectively, can be inverted on two branches: let
v+(r) denote its inverse function on [vM, vS], and v−(r) its inverse on [vS, vR]. We
can therefore parameterize the family of jamitons by r̊ ∈ [r(vS), r(vR)]. For each
jamiton, we obtain

ρ̄(̊r) = N (̊r)/L(̊r) , where N (̊r) =

∫ v− (̊r)

v+ (̊r)

r′(v)
w(v) dv

and L(̊r) =

∫ v− (̊r)

v+ (̊r)

v r
′(v)
w(v) dv ,

where the jamiton lies between the specific volumes v+(̊r) and v−(̊r).
We need to show that N (̊r)/L(̊r) ≤ ρS, or L(̊r)/N (̊r) ≥ vS, which is equivalent

to the condition ∫ v− (̊r)

v+ (̊r)

(v − vS)
r′(v)

w(v)
dv ≥ 0 .

After changing the variable of integration to r̃ = r(v), this becomes∫ r̃

r(vS)

v−(r̃)− vS

w(v−(r̃))
− v+(r̃)− vS

w(v+(r̃))
dr̃ ≥ 0 , (36)

where the two quotients arise from the two branches of the inverse of r(v). We now
show that the integrand in (36) is positive, which proves the claim.

As depicted in Fig. 21, consider two secants of the function w(v): the first goes
through the points (v+, w(v+)) and (vS, 0), and the second goes through the points
(vS, 0) and (v−, w(v−)) (omitting the argument r̃ for notational economy). By as-
sumption (see Sect. 2.3), U ′(v) > 0, thus both secant slopes are positive. Moreover,
U ′′(v) < 0, thus w(v) is concave, and therefore, the slope of the first secant is larger
than the slope of the second, i.e.

w(v+)

v+ − vS
>

w(v−)

v− − vS
.

Observing that the reciprocals of these slopes are the same as the two terms in the
integrand of (36) concludes the argument.
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sensor data.

5.5. Mimicking real sensor measurement data. The preceding investigations
demonstrate that jamitons can serve as an explanation for multi-valued parts of a
fundamental diagram. However, in reality a variety of additional effects are likely
to contribute to the spread observed in FD data (see Fig. 1), such as: variations
in vehicle types and drivers, irreproducible behavior, lane switching, etc. In this
section we investigate how well the spread in FD data can be reproduced by jamitons
alone, while neglecting any other effects. To that end, we attempt to invert the
jamiton FD construction: we consider the ARZ model (10) with parameters selected
so as to illustrate that a qualitative agreement between the aggregated jamiton FD
and the measurement data in Fig. 1 is possible.

The illustrative, rather than systematic, choice of parameters is due to the follow-
ing fact. As the constructions in Sects. 5.2 and 5.3 indicate, the set-valued region in
aggregated jamiton FDs (such as the ones shown in Figs. 18 and 19) depends on both
model functions: U(ρ) and h(ρ). Consequently, when observing a set-valued region
in sensor measurements, one sees a combined result of both functions, and there is
no canonical procedure to obtain them in succession (such as: first determine U(ρ),
and after that find h(ρ)).

We consider the example ARZ2, as described in Sect. 5.1, with the only modifica-
tion that umax = 19.2m/s. In addition, we choose α = 6, i.e., for a data aggregation
time of ∆t = 30s, this corresponds to the drivers’ relaxation time of τ = 5s. While
these model parameters are selected with the goal of achieving a qualitative agree-
ment with data, none of them are visibly unreasonable or unrealistic. The results of
this model can be seen in Fig. 22, which shows the aggregated jamiton FD, together
with the measurement data. While the agreement is not perfect, many of the most
significant features of the data are in fact reproduced by the jamiton FD.



CONSTRUCTING SET-VALUED FUNDAMENTAL DIAGRAMS FROM JAMITONS 769

6. Conclusions and outlook. We have demonstrated that both the classical
Payne-Whitham model and the inhomogeneous Aw-Rascle-Zhang model of traf-
fic flow possess an intrinsic phase transition behavior between stable and jamiton-
dominated regimes. This structure gives rise to set-valued fundamental diagrams,
and we have provided an almost fully explicit way to construct such set-valued fun-
damental diagrams from the parameters governing the second order traffic model.
The set-valued part of the fundamental diagram represents families of traveling wave
solutions, so-called jamitons. Various ways to perform averaging on these solutions
(thus emulating sensor measurements) lead to different types of envelopes for the
set-valued region. Appropriate choices for the model parameter functions and for
the type of averaging lead to fundamental diagrams that, at least qualitatively,
agree with fundamental diagrams obtained from sensor measurements.

The phase transitions between stable and jamiton-dominated traffic flow are re-
lated to the sub-characteristic condition, that was introduced by Whitham in 1959,
and the construction of jamiton solutions is based on the Zel’dovich-von Neumann-
Döring (ZND) theory of detonations. Through both relations, interesting connec-
tions between traffic models and many other physical phenomena can be drawn (see
[15] for examples).

It is worthwhile to stress the essential difference of the relaxation models consid-
ered here with phase transition models (e.g., [6, 7, 4]). While the latter insert the
observed transition from function-valued to set-valued regions in the fundamental
diagram explicitly into their models (i.e., different models are used for the different
regions), the former consist of a single set of equations that generates the transition
from function-valued to set-valued regions in a natural, intrinsic, fashion.

Having a systematic approach for the construction of the envelopes of a set-valued
fundamental diagram from a given traffic model could also help in the inverse prob-
lem of determining desired velocity functions and traffic pressures from observations
and data, as follows. While (at least for congested traffic) these parameter functions
cannot easily be measured directly, envelopes of data points (modulo outliers) can
certainly be obtained directly from measurements. Thus, the relationship between
the fundamental diagram and jamiton solutions established in this paper could
serve as means to re-construct parameter functions so that the model reproduces
the observed envelopes.

The methodology presented here allows the complete construction of fundamental
diagrams from second order traffic models. Yet, certain aspects require a deeper
investigation. Most prominently, the dynamic stability of the jamiton solutions is
not considered. While numerical studies (e.g., [18, 15]) suggest that many jamiton
solutions are in fact stable attractors, this observation may not generalize to all
jamiton solutions. The constructions conducted in Sect. 4.1.2 can, in principle,
generate jamitons of arbitrarily short, and of arbitrarily long, wavelengths. Both
are most likely dynamically unstable: a chain of very short jamitons is essentially
a uniform density state plus some small sawtooth perturbation; and a very long
jamiton possesses a very long “tail” of almost constant density. In both cases, if
the corresponding density is itself unstable, small perturbations will amplify and
thus destroy the structure. While it remains a topic of future research to analyze
the structural stability of jamiton solutions, it can certainly be concluded that the
removal of long wavelengths might result in interesting modifications of the resulting
fundamental diagrams.
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Numerical simulations can be employed to study the dynamic stability of jamiton
solutions. In this fashion, fundamental diagrams can be systematically generated
through numerical simulations (as conducted for instance in [51]). Therefore, nu-
merical studies could provide a missing link between fundamental diagrams obtained
from sensor measurements and those constructed via jamiton solutions.

One limitation of this study is the restriction to the Payne-Whitham model
and the Aw-Rascle-Zhang model only. Many more general types of second order
traffic models do not fall into either of these two categories, in particular models
that are partially based on measurement data (e.g., generalized Aw-Rascle-Zhang
models [13]). In a companion paper [24], the results on the existence of jamitons are
extended to a more general class of second order traffic models that contain both
the PW pressure and the ARZ hesitation function at the same time.
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