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Abstract. The paper describes a grid method for solving an ill-posed problem
for the Fredholm equation of the first kind using the A.N. Tikhonov regularizer.
The convergence theorem for this method and proved. A procedure for thickening
grids with a simultaneous increase in digit capacity of calculations is proposed.
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1. Introduction

A large number of applied tasks are ill-posed. A number of methods
have been developed to solve them. Firstly, these are parametric methods
in which the solution is represented as a decomposition over some basis,
and the regularized equation is reduced to the problem of optimizing the
coefficients of the decomposition (see, for example [1–3]). The success of
this approach strongly depends on the successful choice of the basis. Such
methods are difficult to study; finding estimates of accuracy and conditionality
in calculations with finite digit numbers is particularly difficult. Most of the
proofs are carried out for exact calculations with infinite digit capacity, i.e.,
without round-off errors.
Secondly, iterative methods with simple or implicit iterations [4, 5] are

often used to obtain an approximate analytical solution. The number of
iterations is also a regularizing parameter [6]. This looks tempting, since
there is no need to introduce additional stabilizing terms and thereby increase
the discrepancy. On the other hand, in the general case, iterations have
to be implemented numerically. The finite-difference approximation of the
corresponding quadratures introduces some systematic error in the operator
and the right part. To reduce it, it is necessary to perform calculations on
thickening grids.
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The third approach is represented by various grid methods (finite-difference
or finite-element), in which the solution is calculated in a set of discrete grid
nodes, that is, essentially replaced by a piecewise constant function. In this
approach, the initial problem is reduced to a system of algebraic equations
that can be solved by any direct or iterative method [7, 8]. Yu. L. Gaponenko
showed that finite-difference approximation makes the problem correct, i.e.,
self-regulation takes place [9, 10]. The study of finite element approximations
(for specific applied problems) was carried out, for example, in [11, 12].
However, the proofs and convergence estimates are valid for calculations with
infinite digit capacity, since they do not take into account rounding errors.
The central point of all regularizing algorithms is the justification of con-

vergence and the evaluation of the actual accuracy, that is, the difference
between the exact solution and the approximate one found. A review of the
literature on this issue is given in [13]. Known a posteriori estimates are majo-
rant and often greatly overestimate the error (up to 10 times or more). Quite
often, they require specific information and solutions that are not easy to
obtain in complex application tasks [14].

Another important issue is the choice of the regularization parameter. This
problem is not trivial, since in most applied calculations the error level is
fixed and does not tend to zero [15]. The best known solution to this question
is the well-known generalized residual principle [16].

In the present paper, we describe a grid method for solving an ill-posed
problem for the Fredholm equation of the first kind using the Tikhonov
regularizer of the zeroth order. For this method, we formulate and prove con-
vergence theorem which takes into account finite digit capacity of calculations.
For its practical implementation, we propose procedure of simultaneous grid
thickening and increase of digit capacity.

2. Method

We consider the Fredholm equation of the first kind

𝐴𝑢 = 𝑓, 𝐴𝑢 = ∫
𝑏

𝑎
𝐾(𝑦, 𝑥)𝑢(𝑥)𝑑𝑥, 𝑦 ∈ [𝑐, 𝑑]. (1)

A well-known technique of regularization is to add the simplest Tikhonov
stabilizer to the residual [8]. This leads to the following optimization problem

‖𝐴𝑢 − 𝑓‖2
𝐿2 + 𝛼‖𝑢‖2

𝐿2 → min . (2)

Here, 𝛼 > 0 is a regularization parameter.

Minimizing (2) by 𝑢 leads to the Euler equation. In the case of a non-self-
adjoint operator 𝐴, it has the form

𝑏
∫
𝑎

𝑄(𝑧, 𝑥)𝑢(𝑥)𝑑𝑥 + 𝛼𝑢 = 𝐹(𝑧), 𝑧 ∈ [𝑎, 𝑏],

𝑄(𝑧, 𝑥) = 𝑄(𝑥, 𝑧) =
𝑑

∫
𝑐

𝐾(𝑦, 𝑥)𝐾(𝑦, 𝑧)𝑑𝑦, 𝐹(𝑧) =
𝑑

∫
𝑐

𝐾(𝑦, 𝑧)𝑓(𝑦)𝑑𝑦.
(3)
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To solve (2), let us use convenient to use mesh method [17]. We introduce
meshes on 𝑥 ∈ [𝑎, 𝑏] and 𝑦 ∈ [𝑐, 𝑑]. For simplicity, they are supposed to be
uniform and to have the same number of steps 𝑁. The grid steps of 𝑥 and 𝑦
are denoted by ℎ = (𝑏 − 𝑎)/𝑁 and 𝜏 = (𝑑 − 𝑐)/𝑁, respectively. Let us replace
all integrals in (1) by quadrature rules (for definiteness, using trapezoid rule).
This leads to the difference problem

𝑁
∑
𝑛=0

[(𝐴∗𝐴)𝑘,𝑛 + 𝛼𝐸𝑘,𝑛] 𝑢𝑛 = 𝐹𝑘, 0 ⩽ 𝑘 ⩽ 𝑁,

(𝐴∗𝐴)𝑘,𝑛 = 𝜏ℎ𝑔𝑛

𝑀
∑

𝑚=0
𝑔𝑚𝐾𝑚,𝑘𝐾𝑚,𝑛, 𝐹𝑘 = 𝜏

𝑀
∑

𝑚=0
𝑔𝑚𝐾𝑚,𝑘𝑓𝑚.

(4)

Here, 𝑔 is the weights of the trapezoid formula, 𝐸𝑘,𝑛 is the unit matrix.

The system of equations (4) is solved by some direct method.

3. Convergence

Let us formulate a few preliminary considerations.
1𝑜 When replacing integrals with grid approximations, we introduce some

error. It can be considered as systematic. This error can be estimated using
the Richardson method. This method is rigorously substantiated in [18].
Recall the essence of this approach.
In sequential twofold mesh thickening, even nodes of the current mesh

exactly coincide with the nodes of the previous one. In these nodes, one
can directly compute the difference of solutions on the sequential grids 𝛿 =
𝑢fine − 𝑢coarse. The error estimation takes the form

𝑟 = 𝛿
(2𝑝 − 1)

, (5)

where 𝑝 is the accuracy order of the scheme. We emphasize that this approach
does not require any information on the derivatives of the exact solution and
provides asymptotically precise (i.e. unimprovable) error value instead of
majorant one.

The described procedure can be controlled by graphs of lg ‖𝑟‖𝑙2 versus lg𝑁.
If 𝑁 is too small, the plot behavior is irregular. For “moderate” 𝑁, the plot is
a straight line with slope −𝑝. On this section of the plot, Richardson method
is applicable. For excessively large 𝑁, the plot sharply passes to a horizontal
line. This means that the calculation has reached round-off error background
caused by finite digit capacity. Here, Richardson method is inapplicable, and
one should terminate the calculations.
2𝑜 The matrix of a linear system (4) is ill-conditioned. Calculations with

finite digit capacity lead to a random error associated with round-off errors.
With a sufficiently small step, the calculation error becomes comparable with
round-off errors and ceases to decrease with further thickening of the grids. To
reduce the impact of rounding errors, one needs to increase the digit capacity
of calculations. Apparently, Richtmyer was the first to point this out in the
1950s [19]. He noted that any difference scheme is incorrect in the sense that
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when the grid step tends to zero, it is necessary to increase the digit capacity
of calculations.
At the same time, theorems on regularizing properties are usually proved for

exact calculations (i.e., with infinite digit capacity). However, real calculations
are carried out on finite round-off errors. It often turns out that in ill-
conditioned problems, computer round-off errors can become predominant.
3𝑜 The use of a regularizer improves the conditionality of the linear system

matrix. Therefore, increasing 𝛼 reduces the random error (for calculations
with fixed bit depth). However, the regularizer itself introduces a systematic
error in the problem, which increases with increasing 𝛼.
Based on these suggestive considerations, we formulate the convergence

theorem of the grid method (4). As far as we know, it is new.

Theorem 1. For any precision 𝜀 > 0, there exist 𝛼0 > 0, step ℎ0 and digit
capacity 𝐾0 such that for ℎ < ℎ0, 𝐾 > 𝐾0 and 𝛼 = 𝛼0 the error is less than 𝜀.

Proof. The proof consists of 3 stages. We write down the regularized
Fredholm equation. For it, according to Tikhonov’s fundamental theorem,
there is a required value of 𝛼0.
By virtue of the Ryabenky–Fillipov theorems, there is such a ℎ0 that

provides a systematic approximation error that does not exceed the required
one for calculations with infinite digit capacity.
Since, for the selected grid step ℎ, the conditionality of the linear system is

known, then there is such a digit capacity that provides the required smallness
of the random error. The theorem is proved. �

4. Calculation procedure

For the practical implementation of this theorem, the following algorithm
is proposed. Let us set some 𝐾 and 𝛼 and perform the calculation with grid
thickening. On each grid, we calculate the error estimate using the Richardson
method. We thicken the grids until this estimate stops decreasing. Denote
the last solution obtained as the limiting one.
Let us perform such calculations for a wide range of 𝛼 values. The depen-

dence of the true error of the limiting solution (i.e., the difference between
numerical and exact solutions) on 𝛼 has the following qualitative form. For
𝛼 = 0, the error is very large due to poor conditionality of the matrix 𝐴∗𝐴.
For small 𝛼, the random error is predominant, and the systematic error is neg-
ligible. As 𝛼 increases, the random error decreases, and the systematic error,
on the contrary, increases due to the term ∼ 𝛼‖𝑢‖2 in the regularizer. With
some 𝛼, the random and systematic errors become equal. This 𝛼 corresponds
to the best achievable accuracy at the selected bit depth.
The value of the random error is estimated as the product of the unit

rounding error 𝛿0 by the condition number 𝜅 of a linear system (4). For

calculations with 64-bit numbers, we have 𝛿0 = 10−16.2. To estimate 𝜅, it is
advisable to use the angular conditionality number [20]. As noted above, the
systematic error consists of the grid approximation error (which is calculated
using the Richardson method) and the regularizer contribution. In the zeroth
approximation, these contributions can be considered independent. Therefore,
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according to the rules of statistics, the total value of the systematic error can

be estimated as √‖𝑟‖2 + 𝛼2‖𝑢‖2.
As the final one, we choose such a 𝛼, in which the estimates of random and

systematic error are equal. If the obtained accuracy is unsatisfactory, one
should increase the digit capacity and repeat the described calculations.
As far as we know, such calculation procedures with simultaneous thickening

of grids and increasing digit capacity have not been proposed before.

5. Conclusion

Let us discuss possible generalizations of the proposed approaches. Firstly,
the convergence theorem admits generalization to the case when the difference
scheme is compiled not for a regularized problem, but for an initial ill-posed
one. The absence of a regularizer reduces the systematic error. However,
obviously, a significantly larger number of digits is be required, which increases
the complexity of the calculation.
Secondly, it is also advisable to use the procedure of thickening grids with

a simultaneous increase in digit capacity for the numerical solution of formally
correct, but ill-conditioned problems. Examples are stiff Cauchy problems
with contrast structures. It is easy to construct a problem in which, when
calculating 64-bit numbers, there is not a single correct sign in the answer [17].
Note that ill-conditionality and round-off errors are one of the important
factors limiting the applicability of grid methods. Therefore, the relaxation
of this restriction is of great practical interest.
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Сходимость сеточного метода для уравнения
Фредгольма первого рода с регуляризацией

по Тихонову

А. А. Белов1, 2

1Московский государственный университет им. М.В. Ломоносова,
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Аннотация. В статье описан сеточный метод решения некорректной задачи для
уравнения Фредгольма первого рода с использованием регуляризатора А.Н. Ти-
хонова. Сформулирована и доказана теорема о сходимости этого метода. Для её
практической реализации предложена процедура сгущения сеток с одновремен-
ным увеличением разрядности вычислений.

Ключевые слова: некорректные задачи, сеточный метод, регуляризация


