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Facioscapulohumeral muscular dystrophy (FSHD) is the third 
most common myopathy found in adults, with an overall incidence 
of more than 1:20000 (source: Orphanet). It is classified among 
progressive muscular dystrophies, characterized by muscular 
fiber necrosis and degeneration giving rise to progressive 
muscular weakness and atrophy. Weakness usually progresses 
very slowly, allowing FSHD patients to adapt and compensate 
muscular deficiencies, at least at the functional level [1].

This is the only case in which the activation of the normally 
inactive gene leads to the development of pathology [2,3]. But 
molecular mechanisms of this pathology are still unclear. Here I 
try to summarize the literature data and reconstruct the molecular 
signaling pathway of FSHD.

Discussion
In most patients, FSHD is inherited as an autosomal dominant 

trait (FSHD1) and de novo cases are accounting for around 25% 
of patients. De novo cases are often in the mosaic form. Linkage 
studies on large families have mapped the disease locus to the 
subtelomeric region of chromosome 4, more specifically at 4q35-
qter. This chromosomal region lacks classical genes but contains 
a macrosatellite repeat comprised of an array of repeated 3.3 kb 
units, named D4Z4 [4]. Analysis carried out in the past of a large 
population of healthy subjects and FSHD patients established that 
the number of D4Z4 repeated units on chromosome 4 varies in the 
general population between 11 and 110, whereas FSHD patients 
carry a contracted allele from 1 to 10 repeated units [5].

A small proportion of patients (around 5-10%) with features 
of FSHD do not harbor a contraction of the 4q35 D4Z4 array and 
they often have a complex pattern of inheritance - the second 
form of FSHD, termed FSHD2. FSHD2 patients were shown to 
harbor heterozygous mutations in SMCHD1 gene on chromosome 
18p11.32. This gene is essential for the inactivation of the X 

chromosome (by interacting with DNA) and binds with cytosine-
5-methyltransferase DNMT3B [6]. Mutations apparently cause a 
loss of function of the protein and the pathogenesis of the disease 
is likely due to SMCHD1 haploin sufficiency. Therefore FSHD2 is a 
digenic disorder, which requires both a loss-of-function mutation 
in one copy of SMCHD1 and a permissive 4qA allele. The lack of 
activity of SMCHD1 cannot effectively set the de novo methylation 
of the D4Z4 locus [7].

To reconstruct the signaling pathways I used Pathway Studio 
9 ® software and abstract database ResNet12 ® by Elsevier. 
ResNet12 ® database contains information from literature 
sources freely available on the Internet, as of December, 2015. The 
signaling pathway of FSHD is presented on the figure. The data 
from experiments using biopsies, patients’ cell cultures model 
and mouse FSHD model was used (Figure 1). 

The muscle fiber necrosis and degeneration occurs due to 
activation of transcription of DUX4 gene [8]. Genes FRG1 and FRG2 
are adjacent to DUX4 [9,10]. FRG1 activation leads to increased 
activity of spliceosome. Also, with use of mouse model of FSHD, 
it was shown that FRG1 reduces the stability of mRNA of RBFOX1 
[11], which plays an important role in alternative splicing - binds 
to exon-intron recognition motifs. Thus, the splicing process is 
activated, but the accuracy is reduced. This apparently leads to 
accumulation of abnormal splicing products, which adversely 
affects the cell cycle. Also FRG1 positively affect the passage of the 
cells in G1 phase in mouse model of FSHD [12]. The role of the 
gene product FRG2 is not clear yet.

The transcription factor SP1 is also a target of DUX4 [13]. Its 
activation is required for transcription initiation of CDKN1A, 
which, in turn, blocks the cell cycle at the G1 phase. Also DUX4 
regulates the transcriptional activity of PITX1 gene [14]. Protein 
PITX1 itself is a transcription factor for TP53. The increase of the 
TP53 expression leads to blocking of muscle cell differentiation 
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Abstract

Facioscapulohumeral muscular dystrophy (FSHD) is the third most common 
myopathy found in adults. It is a unique genetic disease because the activation of 
the normally inactive gene leads to the development of pathology. The molecular 
mechanisms and the signaling pathways remain poorly studied so far. Here the 
literature data is summarized and the molecular signaling pathway of FSHD is 
reconstructed.

Keywords: Facioscapulohumeral muscular dystrophy; FSHD; DUX4; Signaling 
pathways

Abbreviations: FSHD: Facioscapulohumeral Muscular 
Dystrophy

Introduction



Citation: Klimov E (2017) Facioscapulohumeral Muscular Dystrophy: The Molecular Signaling Pathway. J Neurol Stroke 6(5): 00216. DOI: 
10.15406/jnsk.2017.06.00216

Facioscapulohumeral Muscular Dystrophy: The Molecular Signaling Pathway 2/3
Copyright:

©2017 Klimov

and apoptosis. Also TP53 binds the promoter of TP53I3 gene, 
regulating its expression. TP53I3 itself binds to the promoter 
of plasma glutathione peroxidase 3 (GPX3), adjusting its 

transcriptional activity. GPX3 reduces oxidative stress by the 
degradation of H2O2.

Figure 1: The molecular signaling pathway of facioscapulohumeral muscular dystrophy (FSHD). DUX4 with red highlights have increased 
expression. Mutated DUX4 and SMCHD1 are shown in white-out style. Retinoic acid with blue highlights has reduced concentration. A 
detailed description is provided in the text. Legend is on figure. Designed in the Pathway Studio 9 ® (Elsevier). This signaling pathway is 
built manually using published studies.

TRIM63 and FBXO32 are other expression targets of DUX4. 
TRIM63 protein is an E3 ubiquitin ligase that localizes in the 
Z-line and M-line lattices of myofibrils. This protein plays an 
important role in the atrophy of skeletal muscle and is required 
for the degradation of myosin heavy chain proteins, myosin light 
chain, myosin binding protein, and for muscle-type creatine 
kinase (CKM). FBXO32 contains an F-box domain and belongs to 
the Fbxs class, which plays role in phosphorylation-dependent 

ubiquitination. This protein is highly expressed during muscle 
atrophy. TRIM63 enhances specifically the proteolysis of 
myofibrillar protein and FBXO32 contributes to reduce muscle 
protein synthesis. TRIM63 and FBXO32 both negatively regulate 
the expression of MYOD1 protein, activate its ubiquitination and 
turnover. This leads to blockage of muscle cell differentiation 
[15,16].

http://dx.doi.org/10.15406/jnsk.2017.06.00216
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Protein UPF1 subjected to proteolytic degradation with 
the participation of DUX4 [17]. UPF1 protein itself is involved 
in oxidative stress response; also, UPF1 is a trigger of mRNA 
degradation and participates in cell differentiation. The mu-
crystallin protein (CRYM) is activated in the presence of DUX4 
protein [14]. Mechanisms of CRYM activation are unknown. 
However, its direct regulators are androgen receptor (AR) and 
thyroid-hormone. CRYM protein influences on differentiation and 
oxidative stress responses. Also FSHD is characterized by a lack 
of retinoic acid [18], which regulates MYOD1 [19] and TP53 [20].

Conclusion
Facioscapulohumeral muscular dystrophy is the unique 

genetic disease. The molecular mechanisms and the signaling 
pathways remain poorly studied so far. With help of the mouse 
model of FSHD and cultured cells from patients we can better 
understand the molecular mechanisms of this disease, as well as 
the mechanisms of pathogenesis of other myodystrophies and 
the functioning of skeletal muscles. Meanwhile, it is now clear 
that the repression of DUX4 gene will block the negative signaling 
pathways. This repression can be carried out with the use of gene-
silencing approach for example.
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