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Nonequivalent Representations of Nuclear Algebras
of Canonical Commutation Relations:
Quantum Fields
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Non-Fock representations of the canonical commutation relations modeled over an
infinite-dimensional nuclear space are constructed in an explicit form. The example of

the nuclear space of smooth real functions of rapid decrease results in nonequivalent
guantizations of scalar fields.
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rotation.

1. INTRODUCTION

By virtue of the well-known Stone—von Neumann uniqueness theorem, all
irreducible representations of the canonical commutation relations (henceforth
the CCR) for finite degrees of freedom are equivalent. On the contrary, the CCR
for infinite degrees of freedom admit infinitely many nonequivalent irreducible
representations (see (Florig and Summers, 2000) for a survey).

One can find the comprehensive description of representations of the CCR
modeled over an infinite-dimensional nuclear sp&re Gelfand and Vilenkin
(1964). These representations are associated to translationally quasi-invariant mea-
sures on the (topological) du&’ of Q and, due to the well-known Bochner
theorem, are characterized by continuous positive-definite functio@s bnSec-
tions 4-5 of this work, operators of these representations are written in an explicit
form. For instance, the Fock representation is associated to a certain Gaussian
measure oiQ’. If Q is not a nuclear space, the Fock representation need not exist
(see Remark 2 below).

Nuclear (non-Banach) involutive algebras are widely studied in algebraic
quantum field theory since the well-known GNS constructiorCforalgebras can
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be generalized to these algebras too (Borchers, 1984; Horuzhy, 1990; Iguri and
Catagnino, 1999). A Banach space is not nuclear, unless it is finite-dimensional
(see Remark 1 below). A physically relevant example of an infinite-dimensional
nuclear space is the spaR&' of smooth real functions of rapid decreasénit is

the real subspace of the sp&®&*) of smooth complex functions of rapid decrease
onR* (see Remark 5 below). Its (topological) dual is the spBi(*) of tempered
distributions (generalized functions) (Bogoliukehal,, 1990). Of course, elements

of RS by no means are physical fields, but test functions. Continuous positive
forms f on the tensor Borchers algebra

Ars =R®RS @RS --- )

of RS are expressed as
f(1//n)=/Wn(x1, o X)) Wn(Xe, o Xn) A% dY%, ¥ € RS, (2)

into the tempered distributiond}, € S(R*") whose Fourier transform is regarded
as the vacuum expectations of the plane wave operators of quantum scalar fields.
Of course, quantum fields do not constitute any CCR algebra, but there is a
morphism ofR $' to the CCR algebra over the nuclear sp&#. It is treated as
the instantaneous CCR algebra of scalar fields. Its Fock representation provides
the familiar vacuum expectations of free quantum scalar fields on the Minkowski
spacék?, while the non-Fock ones lead to nonstandard quantizations of these fields
(see Section 6).
In order to characterize interacting quantum fields created at some instant and
annihilated at another one, one should turn to the causal féfroa the Borchers
algebraArg (1). They are given by the functionals

f°(¢n)=/vv;(xl,...,xn)wn(xl,...,xn) d*y---d*n,  Yne RS, (3)

WEXL, - Xa) = Y 0 (X0 = x2) -0 (X, = X2) Wa(Xa, ..., Xn), (4)
(i1.-in)

where W, € S(R*") are tempered distributions, is the step function, and the
sum runs through all permutationi (- -i,) of the tuple of numbers 1,.,n
(Bogoliubov and Shirkov, 1980). The problem is that the functiokéjg4) need
not be tempered distributions and, therefore, the causal féf{8) are neither
positive nor continuous forms on the Borchers algefsa: .

At the same time, the causal forms issue from the Wick rotation of Euclidean
states of the Borchers algebda s which describe particles in the interaction zone
(see Section 7). The key point is that, since the causal forms (4) are symmetric,
the Euclidean states of the Borchers algeBgax can be obtained as states of
the corresponding commutative tensor algeBgay (Sardanashvily, 1991, 1994;
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Sardanashvily and Zakharov, 1991). They characterize different representations of
the Abelian subgroup of the CCR group modeled over the nuclear §i&Geand
are associated to different positive measures on the space of generalized functions
S(R%. From the physical viewpoint, these states are Euclidean Green’s functions
whose Wick rotation gives complete Green’s functions of interacting quantum
scalar fields on the Minkowski space. Some nonperturbative phenomena, e.g., the
Higgs vacuum can be studied in this manner (Sardanashvily, 1991).

For the sake of simplicity, our consideration here is restricted to scalar fields.
In order to describe nonscalar fieldsRhwith values in a vector spaadé, one can
consider the Borchers algebra of the tensor product Spages R (Sardanashvily,
1994). Difficulties arise if nonscalar fields are defined on a noncontractible mani-
fold X, i.e., they are sections of a vector bundlle> X. If this is a trivial bundle,
the spacerk (X) of its sections of compact support equipped with the Schwartz
topology is a nuclear space. In the general case; X is a Whitney summand
of a trivial bundle, and the vector spa¥g (X) of its sections of compact sup-
port is provided with the relative Schwartz topology, which makes it to a nuclear
Schwartz manifold. However, the extension of the Bocher theorem for this nuclear
manifold remains under question. Note that quantum gauge theory on compact
manifolds usually deals with Sobolev spaces of gauge potentials (Kondracki and
Sadowski, 1986; Mitter and Viallet, 1981). To dispose of the compactness assump-
tion, the technique of nuclear Schwartz manifolds also has been applied to gauge
theory (Abatiet al, 1986; Cirelli and Mara, 1985). However, it meets serious
inconsistencies because of the lack of the inverse function theorem.

2. THE NUCLEAR CCR

Let us recall the notion of a nuclear space (Gelfand and Vilenkin, 1964,
Pietsch, 1972). Leta complex vector sp&rleave a countable set of nondegenerate
Hermitian forms(. | .)x, =1, ..., such that

@l <---<@qlq=<---

for all g € Q. If Q is complete with respect to the (Hausdorff) topology defined
by the set of norms

L= (1005 k=1,..., (5)

it is called a countably Hilbert space. The dglof Q is provided with the weak
and strong topologies.

Let Qk denote the completion d with respect to the norni.|, (5). We
have the chain of injections

Q13Q2D"'Qk3"'
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together with the homeomorphis@ = Q Q. Let T, m < n, be a prolongation
of the map
QnD>Q>3dr~ge QcC Qn

to the continuous map d, onto the dense subset Q. A countably Hilbert
spaceQ is called a nuclear space if, for any, there exists1 such thatT," is a
nuclear map, i.e.,

To(@ =Y _%i(d | g, dns

where: (i){q/} and{q/,} are bases for the Hilbert spac®s and Qn, respectively,
(ii) A; = 0, and (iii) the seriex ); converges.

Remark 1. A nuclear space is perfect, i.e., every bounded closed set in a nuclear
space is compact. It follows that a Hilbert space is not nuclear, unless it is finite-
dimensional. Furthermore, a nuclear space is separable, and the weak and strong
topologies both on this space and its dual coincide.

Let a nuclear spac® be provided with still another nondegenerate Hermitian
form (. | .) which is separately continuous. It follows that there exist numbers
andm such that

@la) =Mlglm VaeQ. (6)
Let § denote the completion & with respect to this form. There are the injections
QcQcQ, 7
whereQ is dense irQ, and so i) in Q'. The triple (7) is called the rigged Hilbert
space.
Given areal nuclear spa€gtogether with a nondegenerate separately contin-
uous Hermitianform. | .), letus consider the group(Q) of triplesg = (41, gz, A)
of elements);, g, of Q and complex numbevsof unit modulus which are subject
to multiplications
(01, G2, A)(0, U, A') = (02 + G, G2 + G, €XPl (G2, G;)]AL). ®)

Itis a Lie group whose group space is a nuclear manifold modeled@w&Q &
R. Let us denote

T(@)=(a,0,0), P(a)=(0.q,0)
Then the multiplication law (8) takes the form

T(@T@)=T@+4qd), P(@P@)=P@+4d).
P(@)T(a) = expli(a | 9)]T ()P (). )
Written in this form,G(Q) is called the nuclear Weyl CCR group.
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The complexified Lie algebra of the nuclear Lie grdef®Q) is the Heisenberg
CCR algebr&/(Q). Itis generated by the elemeig)), 7(q), q € Q, andl which
obey the Heisenberg CCR commutation relations

[¢@@), 11 =1[x(@),11=0, [¢(), ¢(@)] =[x(a), 7(d)] =0,
[7(a), ¢(@)] = —i(q [ ). (10)
There is the exponential map

T(q) = expli¢(q)], P(q) = expliz(q)].

Because of the relation (6), the normed topology on the pre-Hilbert £pdeéined

by the Hermitian form. | .) is coarser than the nuclear space topology. The latter

is metric, separable and, consequently, second-countable. Hence, the pre-Hilbert
spaceQ is also second-countable and, therefore, admits a countable orthonormal
basis. Given such a badig } for Q, the Heisenberg CCR (10) take the form

[#(q;), p(a)] = [ (@), 7 (@))] =0,  [7(q;), ¢(q)] = —idjkl.

3. REPRESENTATIONS OF THE NUCLEAR CCR GROUP

The CCR groupG(Q) contains two nuclear Abelian subgroup$Q) and
P(Q). Following the representation algorithm in Gelfand and Vilenkin (1964), we
first construct representations of the nuclear Abelian gio{p). These represen-
tations under certain conditions can be extended to representations of the whole
CCR groupG(Q).

One can think of the nuclear Abelian grotlipQ) as being the group of trans-
lations in the nuclear spa€@. Its cyclic strongly continuous unitary representation
s in a Hilbert spacek, (. | .)g) with a (normed) cyclic vecta# € E defines the
complex function

Z(q) = (z(T(a)010)e

on Q. This function is proved to be continuous and positive-definite () = 1
and

> Z(g —q;)Gic; = 0
i
for any finite setqy, ..., gm of elements ofQ and arbitrary complex numbers
Ci, ..., Cm-
In accordance with the well-known Bochner theorem for nuclear spaces, any

continuous positive-definite functiod(q) on a nuclear spac® is the Fourier
transform

Z(q) = f expl (g, )] 4(u) (11)
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of a positive measurg of total mass 1 on the du&)’ of Q (Gelfand and Vilenkin,
1964). Then the above mentioned representatiai T(Q) can be given by the
operators

Tz(a)p(u) = expli (g, u)] p(u) (12)

inthe Hilbert space%(Q’, w) of classes ofi-equivalent square integrable complex
functionsp(u) on Q’. The cyclic vectob of this representation is the-equivalence
classf ~, 1 of the constant functiop(u) = 1. Then we have

2(q) = (T2(@)618), = / expli (g, U)] . (13)

Conversely, every positive measyteof total mass 1 on the du&@)’ of Q
defines the cyclic strongly continuous unitary representation (12) of the group
T(Q). By virtue of the above mentioned Bochner theorem, it follows that every
continuous positive-definite functiori(q) on Q characterizes a cyclic strongly
continuous unitary representation (12) of the nuclear Abelian gro(®). We
agree to callz(q) a generating function of this representation.

It should be emphasized that the representation (12) need not be (topologi-
cally) irreducible. For instance, Ig{u) be a function orQ’ such that the set where
it vanishes is not a-null subset ofQ’. Then the closure of the s&;(Q)p is a
T(Q)-invariant closed subspace bf (Q’, w).

One can show that distinct generating functia(g)) and Z’(q) determine
equivalent representatiofis andTz (12) of T(Q) in the Hilbert spacek (Q’, w)
andL2(Q’, ) iff they are the Fourier transform of equivalent measure€Qn
(Gelfand and Vilenkin, 1964). Indeed, let

u = s, (14)

where a functiors(u) is strictly positive almost everywhere @, andu(s?) = 1.
Then the map

LE(Q, 1) 3 p(u) = s(u)p(u) € LE(Q', 1) (15)

provides an isomorphism between the representafignandTz.

The representatiom; (12) of the nuclear Abelian group(Q) in the Hilbert
spacelL2(Q’, u) determined by the generating functi@(l1) can be extended to
the CCR grous(Q) if the measurg: possesses the following property.

Letug, g € Q, be an element o’ given by the condition

(@ ug) =(q"1a), vq' e Q. (16)

These elements form the image of the monomorplsm Q' determined by the
Hermitian form(. | .) on Q. Let the measurg in (11) remains equivalent under
translations

Q>3u—~ut+ugeQ, Yue Qc Q,
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inQ,i.e.,
n(u + uq) = a%(q, u)u(u), Yuge Q C Q, (17)

where a functiora(q, u) is squareu-integrable and strictly positive almost every-
where onQ’. This function fulfils the relations

a0,u)=1, a(@+4q’,u)=a(g wa@’, u+u). (18)

Ameasure oiQQ)’ obeying the condition (17) is called translationally quasi-invariant,
but it does not remain equivalent under any translatio@inunlessQ is finite-
dimensional.

Let a generating functiod of a cyclic strongly continuous unitary represen-
tation of the nuclear group(Q) be the Fourier transform (11) of a translationally
quasi-invariant measuye on Q'. Then one can extend the representation (12) of
this group to the representation of the CCR group in the Hilbert spA¢€’, )
by operators

Pz(a)p(u) = a(g, u)p(u + ug). (19)
Indeed, it is easily justified that the Weyl CCR (9) hold, while the equalities

loll, = / o)P(u) = / (U + Ug)Pa(u + Ug)

- / 22(0, U)|p(U + Ug) P(U) = | P2(Q)o 2. (20)

show that the operators (19) are unitary.
Let 1/(14) be ap-equivalent positive measure of total mass 1@nh The
equality

(U + ug) = s~2(u)a?(q, u)s*(u 4 ug)u'(u)

shows that it is also translationally quasi-invariant. Then the isomorphism (15)
between representatiofis and Tz of the nuclear Abelian group(Q) is extended
to the isomorphism

Pz/(q) = s7'Pz(q)s : p(u) > s~ (u)a(q, u)s(u + ug)p(u + ug)

of the corresponding representations of the CCR g®().

4. REPRESENTATIONS OF THE CCR ALGEBRA

Similarly to the case of a finite-dimensional Lie group, any strongly con-
tinuous unitary representatidny (12), Pz (19) of the nuclear CCR grou@(Q)
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implies a representation of its Lie algelféQ) by (unbounded) operators in the
same Hilbert spackZ(Q’, w). This representation reads

=1, ¢(@e)=(q,up(), m(@)p(u)=—i( + n(d, u)e(),
Sqp(u) = (!liinoa_l[p(u +aug) — p(U)], «€R, (21)

n(q, u) = Iimoafl[a(aq, u) —1]. (22)
One at once derives from the relations (18) that

3q8q = 8qdq,  Sq(n(d’, u)) = ¢ (n(a, u)),
8g=—8-q, S((d,w)=1(a"|a),
n(0,u) =0, VueQ, 8¢ =0, VgeQ.

With the aid of these relations, it is easily justified that the operators (21) fulfil the
Heisenberg CCR (10). The unitarity condition (20) implies the conjugation rule

(@ u*=(q,u), & =—8—2n(q,u).

Hence, the operators (21) are Hermitian.
Let us further restrict our consideration to representations with generating
functionsZ(q) such that

R>t— Z(tq) (23)

is an analytic function ofR att = O for all g € Q. Then one can show that the
function{(qg | u) on Q' is squareu-integrable for alj € Q and that, consequently,
the operatorg(q) (21) are bounded everywhere in the Hilbert spag€Q’, i).
Moreover, the mean values of operatgfg) can be computed by the formula

| 9 :
() - - - p(ah)) = I‘”@ e ﬁz(alq)bizo = /(QL u) - -« (Ch, um(U()2-4)

The operatorg (q) (21) act in the subspade,, of all smooth complex func-
tions in L2(Q’, 1) whose derivatives of any order also belongsLf(Q’, w).
However,E,, need not be dense in the Hilbert spa¢gQ’, 1), unlessQ is finite-
dimensional. The spacE is also the carrier space of a representation of the
enveloping algebrg(Q) of the CCR algebr&(Q). The representations 6 Q)
andG(Q) in E« need not be irreducible. Therefore, let us consider the subspace
Es = G(Q)0 of E,, whered is a cyclic vector for the representation of the CCR
group in L%(Q/, ). Obviously, the representation of the CCR alge(&) in
Ey is (algebraically) irreducible. I§’ is another cyclic vector ih2(Q’, w), the
representations @ (Q) in Ey andE, are equivalent.
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One also introduces creation and annihilation operators

1 . 1
a*(q) = EW(Q) Fin(a)] = ﬁ[ﬂq Fn(Q,u)+(q.u]. (29

They obey the conjugation rula¥(qg))* = aT(q) and the commutation relations

[a~(@).a" @) =(@lad)1l, [a"(a).a"(@)] =[a (a).a (@)] =0.
The particle number operatbtin the carrier spacgy is defined by the conditions

[N, a*(a)] = +a™(q)

up to a summandl. With respect to a countable orthonormal bgsjg, this
operatorN is given by the sum

N =) a(@a (o, (26)
k

but need not be defined everywheregp, unlessQ is finite dimensional.

5. NON-FOCK REPRESENTATIONS OF THE NUCLEAR CCR

Gaussian measures exemplifies the physically relevant class of translation-
ally quasi-invariant measures on the d@ilof a nuclear spac€. The Fourier
transform of a Gaussian measure reads

1
20) = exp| - 5800 @)
whereB(q) is a seminorm orQ)’ called the covariance form.

Remark 2. If Q is a Banach space provided with the nojfirjj, there exists a
Gaussian quasi-measure on its dQalvith the covariance fornj.||, butitis not a
measure unles® is finite-dimensional. LeT be a continuous operator @. The
Gaussian quasi-measure Qnwith the covariance forrg — || Tyl is proved to be
ameasure iff is a Hilbert—Schmidt operator. L& = R" be a finite-dimensional
vector space an@ a norm onQ. Let its dualQ’ be coordinated byx). The
Gaussian measure @i with the covariance fornB is equivalent to the Lebesgue
measura"x on Q'. It reads

_ det[B]*?

mB = 7(271)”/2

exp[—%(B‘l)ij X x,} d"x.

Let ux denote a Gaussian measure @Qhwhose Fourier transform is the
generating function

2 = exp| -3 (0)| 28)
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with the covariance form

Bk (a) = (K 'q | K™'q), (29)

whereK is a bounded invertible operator in the Hilbert complet@mf Q with
respect to the Hermitian forr | .). The Gaussian measupg is translationally
quasi-invariant, i.e.,

jux (U + Ug) = ag (g, u)uk ().
Using the formula (24), one can show that

2 (Q, U) = exp[—%BK(Sa) - 2(sa u>} , (30)

whereS = K K* is a bounded Hermitian operator @

Let us construct the representation of the CCR algéljfd) determined by
the generating functioZ (28). Substituting the function (30) into the formula
(22), we find

1
7, U) = ~5(S, u).
Hence, the operatogs(q) andx(q) (21) take the form

0@ =@, @ =i (5 5(80). @)

Accordingly, the creation and annihilation operators (25) read
1 1
at(q) = —= | F8q £ =(Sq u) + (g, u) | . 32
@ =5 | #ha+ 5ia0 + @.u)] @)

They act on the subspaé®, 6 ~,, 1, of the Hilbert spac&2(Q’, k), and are
Hermitian with respect to the Hermitian form| .),,,, on L(Z:(Q’, UK)-

Remark 3. If arepresentation of the CCR is characterized by the Gaussian gener-
ating function (28), it is convenient for a computation to express all operator into
the operatorsg, ande(q), which obey the commutation relation

[8q, 9(@)] = (d" | O).
For instance, we have
(@) = ~i8 — 5¢(Sa.

The mean value$p(ai) - - - ¢(dn)dq) vanishes, while the meanvalués(as) - - -
¢(qn)), defined by the formula (24), obey the Wick theorem relations

(@) -~ p(@n)) = D _(b(@1,)e(a,)) - - (B(Ch,_)b(dh,), (33)
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where the sum runs through all partitions of the set.1,n in ordered pairs
(i1<iy),...(in1 < ip), and where

@@¢@)) = (K'g | K1q').

In particular, putk = +/2- 1. Then the generating function (28) takes the
form

Zr(q) = exp[—%m | q>] : (34)

and determines the Fock representation of the CCR algg{a. It is given by
the operators

#(@) =(q,u), 7(q)=—i(8 —(q,u)),
) — L (@)= L
a (q)—ﬁ[ Sq+2(q,u)], a (Q)—ﬁf?q

Its carrier space is the subspaEg, 6 ~,, 1, of the Hilbert spacé.2(Q’, 1),
where ug denotes the Gaussian measure whose Fourier transform is (34). We
agree to call it the Fock measure.

The Fock representation up to an equivalence is characterized by the existence
of a cyclic vectom such that

a (g =0, vgeQ. (35)

For the representation in question, thigisz,. 1. An equivalent condition is that
the particle number operatdl (26) exists and its spectrum is lower bounded. The
corresponding eigenvector of in Eg is 6 itself so thatN6d = 0. Therefore, one
often interprets this eigenvector as a vacuum state.

A glance at the expression (32) shows that the condition (35) does not hold,
unlessZg is Z¢ (34). For instance, the particle number operator in the represen-
tation (32) reads

N = Za+(q])a7(qj) = Z|: 5q|3q1 + S< Ok, U aQJ
]

J

+ <5km——3<5m> Ok, U) (G, U) — (5n —%S,Jﬂ

where{qx} is the orthonormal basis for the pre-Hilbert sp&xeOne can show that
this operator is defined everywheregnand is lower bounded only if the operator
Sis a sum of the scalar operatod2and a nuclear operator @, in particular, if

1
Tr<1—55> < o0
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This condition is also sufficient for the measuggs and g (and, consequently,
the corresponding representations) to be equivalent (Gelfand and Vilenkin, 1964).
For instance, the generating function

2 1
Z.(q) = exp[—%m | q)] , CP# >

determines a non-Fock representation of the nuclear CCR.

Remark 4. The non-Fock representation (31) of the CCR algebra (10) in the
Hilbert spaceL2(Q’, k) is the Fock representation

¢k (@) = ¢(a) = (g, u),
mk(d) = 7(S'q) = —i (85 — %(q, U>), 8¢ = 8s1q,
of the CCR algebr&pk (q), 7k (q), 1}, where
[px (@), 7k (@] = (K ~tq | K~*q")1.

This fact motivates somebody to regard representations of the CCR group (9) as
representation of two mutually commutative Abelian groti®) and P(Q) up
to phase multipliers (Yamashita and Ozawa, 2000).

Since the Fock measurg: on Q' remains equivalent only under translations
by vectorsug € Q C Q’, the measure

MU_MF(U_U)i O—6(2/\(31

on Q' determines a non-Fock representation of the nuclear CCR. Indeed, this
measure is translationally quasi-invariant:

1o (U + Ug) = a2(q, Uus(U),  a-(d, u) = ae(g, u— o),
and its Fourier transform

Z,(q) = expli(p, 0)] Z¢(q)
is a positive-definite continuous function @ Then the corresponding represen-
tation of the CCR algebra is given by operators

1 1
V2 V2

In comparison with all the above representations, these operators possess nonva-
nishing vacuum mean values

af(q) = —=(—8q+2(q,u) —(@,0)), a(@=-—=0+(90). (36)

@*(@)0 | 0), = F(0, 0).
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If o € Q C Q, the representation (36) becomes equivalent to the Fock represen-
tation (32) due to the morphism

p(u) = exp[—(d’, u)] p(u + uq).

6. FREE QUANTUM FIELDS

In this section, representations of the nuclear CCR are utilized in order to
describe free quantum fields. In the framework of algebraic quantum field theory,
guantum fields are characterized by a unital involutive topological alg&fanad
a (continuous positive) stateof A. The key point is that a quantum field algebra
is never normed.

With reference to the field-particle dualism, realistic quantum field models
are described by tensor algebras, as a rule@Q.be a real (locally convex) topo-
logical vector space, endowed with an involution operatior g*, q € Q. Let
us consider the tensor algebra

Ao=R®Qad @& -, Q=8Q (37)
of Q. Itis ax-algebra with respect to the involution
@ ---q" =@ ---(@h"
The direct sum topology make'g to a topological involutive algebra. A state
of this algebra is given by a tupld,} of continuous forms on the tensor products
Q". Its valuef (gt - - - ") are interpreted as the vacuum expectation of the system

of fieldsq?, ..., g". Further, we choose b the real subspac®@R of the nuclear
space of smooth complex functions of rapid decreasi®n

Remark 5. By functions of rapid decrease on an Euclidean sfiitare called
complex smooth functiong (x) such that the quantities

1/ lhem = Max SURL + x| DY (x)| (38)
al< X
are finite for allk, m € N. Here, we follow the standard notation
" glal
D" = Jaxigey I =oatodan
forann-tuple of natural numbers = (a1, . . ., @n). The functions of rapid decrease

constitute the nuclear spa8gR") with respect to the topology determined by the
seminorms (38). Its dual is the spa®€R") of tempered distributions (Bogoliubov

et al, 1990; Gelfand and Vilenkin, 1964; Pietsch, 1972). The corresponding con-
traction form is written as

(Y, hy = / Y(x)h(x)d"x, ¥ € SR"), he SER").
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The spaceS(R") is provided with the nondegenerate separately continuous
Hermitian form

W v = / S OP0D dx.

The completion ofS(R") with respect to this form is the spaté (R") of square
integrable complex functions dR". We have the rigged Hilbert space
S(R") c LA(R") ¢ S(R").

Let R, denote the dual dR" coordinated by 6,). The Fourier transform

VE(p) = / P P dx,  px= px, (39)

¥(x) = / UF(P) &P dup,  dap = (27) "d"p, (40)

defines an isomorphism between the sp&&@s') and S(R,,). The Fourier trans-
form of tempered distributions is defined by the condition

/ h(x)¥(x) d"x = f hF(p)Y/F(— ) ch,

and is written in the form (39)—(40). It provides an isomorphism between the spaces
of tempered distributionS' (R") and S (R,,).

The tensor algebr@R S of the nuclear spacR®S' is called the Borchers
algebra (Borchers, 1984; Horuzhy, 1990). Since the suﬁsﬁ(ﬂRk) is dense in
S(RM), we henceforth identify it with the algebra (1). Then any sthtef this
algebra is represented by a collection of tempered distribufidfise S(R*")}
by the formula (2). Let us focus on the states of the Borchers alggbgawhich
describe free real scalar fields of mass

Let us provide the nuclear spaBes' with the positive complex bilinear form

W 19)=2 [ WeoD-(x— yw ' dix cy
= [ Vo -puTo.n 2,

D™(x) = i(277)_3/ exp[-ipx]0(po)3(p?* — m?) d*p, (41)

whereD~ (x) is the negative frequency part of the Pauli-Jordan funcpdiis the
Minkowski square, and

o = (P + M)
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Since the functiony (x) is real, its Fourier transform satisfies the equalify(p) =
vF(=p).
The bilinear form (41) is degenerate because the Pauli—Jordan fuictioq)
obeys the mass shell equation
(0+m?)D~(x) =0.

It takes nonzero values only at elemeifse RS which are not zero on the mass
shell p?> = m?. Therefore, let us consider the quotient spaceRS' — RS/ J,
wherel = {y € RS': (v | ¥) = O}isthe kernel of the square form (41). The map
y assigns to each elemepite RS with the Fourier transformyF(po, p) € RS
the couple of functionsy"(w, P), v (—w, P)). Let us equip the factor space
RS'/J with the real bilinear form

(019 =Rety 1 9) = 5 [ 1070~ B, P

S 5 O3
U, BN (o, B “2)
Then it is decomposed into the direct si®®'/7 = L+ @& L~ of the subspaces
1 - "
L= = {05, B = 5050, B+ T, ).

which are mutually orthogonal with respect to the bilinear form (42).
There exist continuous isometric morphisms

Ve 1 ¥E(o, P) > q7(P) = o 2y F (0, P),
y- ¥ (w, P) = d7(P) = -0 Yy (o, P)

of spaced_* andL ™ to the nuclear spacR S endowed with the nondegenerate
separately continuous Hermitian form

@lq) = / o (— H)I(P) dap. (43)

It should be emphasized that the imagegL™) and y_(L™) in RS are not
orthogonal with respect to the scalar form (43). Combiningndy.., we obtain
the continuous morphisms RS' — RS given by the expressions

) = 00 = 5y [0 B+ (o P expli B3] cip,
C) = -0 = 5z [, D) — 9o, P expl-i BX] dep.

Now let us consider the CCR algebra
G(RS) = {(¢(a), 7(a), 1),q € RS} (44)
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modeled over the nuclear spaRes, which is equipped with the Hermitian form
(43). Using the morphisms,, let us define the map

RS' > ¥ > ¢(t:(¥)) — 7(r-(¥)) € G(RS). (45)

With this map, one can think of (44) as being the algebra of the instantaneous
CCR of scalar fields on the Minkowski spaB&. Owing to the map (45), any
representation of the nuclear CCR alge®(& S°) determined by a translationally
guasi-invariant measuye on S(R") induces a state

fyt v = @) + 7@ W] - [D(re (¥M) + 7 (- (™)) (46)

on the Borchers algebrag ¢ of scalar fields. Furthermore, one can justify that the
corresponding distributiona/, fulfil the mass shell equation and that the following
commutation relation holds:

WZ(X1 y) - WZ(y1 X) =i D(X - y)’

where
D(x) =i(2r)° / exp[—ipx]1(6(po) — 0(—Po))8(p* — M) d*p,

is the Pauli-Jordan commutation function. Thus, the states (46) describe real scalar
fields of massn.

For instance, let us take the Fock representation (31) of the CCR algebra
G(RS). Using the formulae in Remark 3 where the foton| ') is given by the
expression (43), one observes that the stdte16) satisfy the Wick theorem
relations

fe(ut-yM) = Y fa(yry?) - By, (47)
(i1in)
while the statef; is given by the Wightman function

Walx, y) = 7D (x ~ ). (49)

Thus, the statdr describes standard quantum free scalar fields of mass
Similarly, one can obtain states of the Borchers algefhga generated by

non-Fock representations of the instantaneous CCR algé¢B&), e.g., ifkK ~1 =

cl # 27121, These states fail to be given by Wightman functions. In particular,

they are not covariant under time translations.

7. EUCLIDEAN SCALAR FIELDS

As was mentioned above, the causal forms (3) on the Borchers algglra
are neither positive nor continuous. At the same time, they issue from the Wick
rotation of Euclidean states of the commutative tensor algBhea These states
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play the role of Green'’s functions in Euclidean quantum field theory. It should be
emphasized that they do not coincide with the Schwinger functions in axiomatic
guantum field theory whose Minkowski partners are the Wightman functions, but
not causal forms.

Let Q be a real nuclear space as above &rgdits tensor algebra (37). We
abbreviate wittBg the complexified quotient okg with respect to the ideal gener-
ated by theelements® 4’ — 9’ ® qforallqg, g’ € Q. Itis the commutative tensor
algebra ofQ. Provided with the direct sum topologBo becomes a topological
involutive algebra. It coincides with the enveloping algebra of the Lie algebra of
the additive Lie grouprl (Q) of translations inQ. Therefore, we can obtain the
states of the algebiBg by constructing cyclic strongly continuous unitary repre-
sentations of the nuclear Abelian grolipQ). As was stated in Section 3, such a
representation is characterized by a positive-definite continuous generating func-
tion Z on Q which is the Fourier transform (11) of a bounded positive megsafe
total mass 1 on the (topological) du@! of Q. The corresponding cyclic strongly
continuous unitary representation of the nuclear Abelian gfio(@) is given by
the operators (12) in the Hilbert spabé(Q’, ) of squareu-integrable complex
functionsp(u) on Q. If the function (23) is analytic &t= 0 for all ¢ € ®, a state
F(qi---an) of Bg is given by the expression (24).

A glance at this expression shows that, in applications to quantum field theory
whereQ = RS, the generating functiof plays the role of a generating functional
represented by the functional integral (11), while the values (24) of thefstate
vacuum expectations of Euclidean fields.

For instance, le be a Gaussian measure @\ whose Fourier transform
reads

2(6) = exp| - 5M(0)|.

where the covariance forvl (¢4, ¢,) is a nondegenerate separately continuous
Hermitian form onR S'. This generating function defines a Gaussian Sratef
the algebraBgr« such that

Fi(¢) =0, Fa(¢1¢2) = M(¢1, ¢2),

while F,- obey the Wick relations (33). Furthermore, a covariance ftdron
RS is uniquely determined as

wmm=/wmwmmmmm%w& (49)

by a tempered distribution, € S(R®).
In particular, let a tempered distributidvi (¢, ¢’) in the expression (49) be
Green'’s function of some positive elliptic differential operafor.e.,

Ey,Wa(y1, ¥2) = 8(y1 — ¥2),
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wheres is Dirac’ss-function. Then the distributiokV, reads

Wa(y1, ¥2) = W(y1 — ¥2), (50)
and we obtain the form

Fa(rbe) = M(dn, 2) = / W(ys — Y2)br(yn)daly) d*ya d%y,
- / WY)e(y)da(ys — y) dy diy; — / w(y)e(y) d'y
- / WF@eF(—) dsg, Y= Y1 — ¥

o(y) = / r(y)da(yr — y) dyi.

For instance, if
Ey, = —Ay, + 1P,
whereA is the Laplacian, then
expiglyr — y2))

W(yl - YZ) = / q2 + m2

whereg? is the Euclidean square, is the propagator of a massive Euclidean scalar
field. Note that, restricted to the domaigd(— y9) < 0, it coincides with the
Schwinger functiors;(y; — Y2).

Let the Fourier transfornv® of the distributionw (50) satisfy the condition
(57) below. Then its Wick rotation (61) is the functional

W(x) = 6(x) /Q WF(q) exp(-qx) g+ 6(—x) /Q WF(q) exp(-qx) dg

; (51)

on scalar fields on the Minkowski space. For instanceyigf) be the Euclidean

propagator (51) of a massive scalar field. Then due to the analyticity of
wh(g) = (@® + m)~*

on the domain Ing - Req > 0, one can show thai(X) = —i D¢(x) whereD®(x)

is familiar causal Green’s function.

8. THE WICK ROTATION

Let us describe the above mentioned Wick rotation of Euclidean states in
the previous section. We start from the basic formulae of the Fourier-Laplace
transform (Bogoliubowet al,, 1990). It is defined on Schwartz distributions, but
we focus on the tempered ones.
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ThroughoutR"} and@i denote the subset of pointsl®t with strictly positive
Cartesian coordinates and its closure, respectivelyfLetS(R") be a tempered
distribution and’( f) the convex subset of pointse R, such that

e f(x) € S(RM). (52)

In particular, Oe T'(f). LetIntT"(f) andaI"( f) denote the interior and the bound-
ary of ['(f), respectively.

The Fourier—Laplace (henceforth FL) transform of a tempered distribution
f € S(R") is said to be the tempered distribution

fH(p+ig) = (7 (x)(p) = / f(x) PP d"x € S(Rn),  (53)

which is the Fourier transform of the distribution (52) depending s
parameters.

If Int (f) # 0, the FL transformf F-(k) is a holomorphic function of com-
plex argument& = p + iq on the open tub®&, + i IntC'(f) c C, over IntC'(f).
Moreover, for any compact subggtc Int I'( f), there exist strictly positive num-
bersA andm, depending ofQ and f, such that

[t (p+ig) < AL+ 1Ip)™, peRn geQ. (54)

The evaluation (54) is equivalent to the fact that the funchipp + iq) defines
a family of tempered distributionisy(p) € S(Rn) of the variablesp depending
continuously on parametegse S.

Let us notice that, if G Int ['(f), then

fF(p+i0) = lim fF(p+iq)

coincides with the Fourier transforfif (p) of f. The case of & Int I'(f) is more
intricate. LetS be a convex domain iiR" such that 0= 39S, and leth(p +iq)
be a holomorphic function on the tulie® which defines a family of tempered
distributionshg(p) € S(R,), depending on parametersOne says thai(p +iq)
has a generalized boundary vahgp) € S(R,) if, for any frustumK" c SU {0}
of the coneK C R, (i.e.,K" = {g € K : |g| <r}), one has

ho(y (P = fim  ha(y(p)

for all functions ¢ € S(R,) of rapid decrease. Then the following assertion
holds.

Proposition 1. Let f € S(R"), IntT'(f) # 0 and0 ¢ Int T'(f). Then a gener-
alized boundary value of tHeL transform (k) in S(R,) exists and coincides
with the Fourier transform f(p) of the distribution £
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Let us apply this result to the following important case. The support of a
tempered distributioff is defined as the complement of the maximal open suibset
wheref vanishes,i.e.f () = Oforally € S(R,) of supportinJ.Let f € S(R")
be of supportirR’, . ThenR,; < I'(f), and the FL transfornfi™- is a holomorphic
function on the tube oveR,, while its generalized boundary value $(R;,) is
given by the equality

ho(lﬁ(p))— Jim fs-(w(p) = fF(w(p), V¥ € SRn).

q€Rny

Conversely, one can restore a tempered distribufiaf support in@i from its
FL transformh(k) = fF-(k) even if this function is known only oriR,.... Indeed,
the formulae

h= /R h(iq)¢(q) dng :/Rn+ dnq/@eqxf(X)aﬁ(q) d"x
_ /@n F060) A%, ¢ € S(Rny), (55)

00 = /R e Vo) da, X € R, § e SR, (56)

define alinear continuous functiorfgly) = h(iq) on the spac&(R,. ). Itis called
the Laplace transforni(q) = fF-(iq) of a tempered distributiorfi.
The image of the spac®Rn.) with respect to the mapping(q) — (x)
(56) is dense wS(R )- Then the family of seminormgg | ., = ||¢||k m» Where
Il m are seminorms (38) oS(R ), determines new coarser topologyﬁ(ﬂRM)
such that the functional (55) remains continuous with respect to this topology.
Then the following is proved (Bogoliubaet al., 1990).

Theorem 1. The mappingg55) and (56) provide one-to-one correspondence
between the Laplace transforms () = fF-(iq) of tempered distributions &
S(Ri) and the elements of @) which are continuous with respect to the
coarser topology on ).

This Theorem enables one to define the above mentioned Wick rotation of
Euclidean states to causal forms on the Minkowski space.

Since the Minkowski spacX and its Euclidean partnef in C* have the
same spatial subspace, we further omit the dependence on spatial coordinates.
Therefore, let us consider the complex plaife= X @ iZ of the timex and the
Euclidean timez and the complex plan€; = P @i Q of the associated momen-
tum coordinatep andg.
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Let W(q) € S(Q) be atempered distribution such that
W=W, +W., W, eS(Q) W eS(Q) (57)

For instanceW(q) is an ordinary function at 0. For every test functign <
S(X4), we have

1 - 1
2 | V@i @da= 5 [ daf axwe ecaoy e

+ Xy

= (2—71r)2/Q+dq/pdp/x+dX[W(q)w£(p)

X expipx —gx)] = (Z;I)chj dq

<[ dp[wm)%}

1 .
- /Q W@y do (58)

due to the fact that the FL transforgf™(p + iq) of the functiony, € S(X;) C
S(X4) exists and that it is holomorphic on the tuBet- i Q, Q4 C Q.. More-
over,y"L(p +10) = ¢F (k), and the functiony,.(q) = ¥"(—q) can be regarded
as the Wick rotation of the test functiah, (x). The equality (58) can be brought
into the form

1 A .
o [ W@ da= [ W.(0u (0 dx
7 Q+ X+

~ 1
Wt = 5 [ ewCagw@ da, xeX.. (59)
T JQ,
It associates to a distributiail(q) € S(Q) the distributionW+(x) € S(X4), con-

tinuous with respect to the coarser topologyS§ixX, ).
For every test functiony_ € S(X_), the similar relations

1 - .
2 | W@ @da= [ W (ax

2w
hold. Combining (59) and (60), we obtain

W)= = /Q expqXW(q)dg, x € X_, (60)

1 R ~
= /Q W@ (@) da = | Weow( dx (61)
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T/Af=1/;++1/}fa v=vy+¢,

WhereW(x) is a linear functional on functiong € S(X), which together with all
derivatives vanish at = 0. One can think oiTV(x) as being the Wick rotation
of the distribution (57). One should additionally defWéat the pointx = 0 in
order to make it to a functional on the whole sp&). This is the well-known
ambiguity of chronological forms in quantum field theory.
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