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Non-Fock representations of the canonical commutation relations modeled over an
infinite-dimensional nuclear space are constructed in an explicit form. The example of
the nuclear space of smooth real functions of rapid decrease results in nonequivalent
quantizations of scalar fields.
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1. INTRODUCTION

By virtue of the well-known Stone–von Neumann uniqueness theorem, all
irreducible representations of the canonical commutation relations (henceforth
the CCR) for finite degrees of freedom are equivalent. On the contrary, the CCR
for infinite degrees of freedom admit infinitely many nonequivalent irreducible
representations (see (Florig and Summers, 2000) for a survey).

One can find the comprehensive description of representations of the CCR
modeled over an infinite-dimensional nuclear spaceQ in Gelfand and Vilenkin
(1964). These representations are associated to translationally quasi-invariant mea-
sures on the (topological) dualQ′ of Q and, due to the well-known Bochner
theorem, are characterized by continuous positive-definite functions onQ. In Sec-
tions 4–5 of this work, operators of these representations are written in an explicit
form. For instance, the Fock representation is associated to a certain Gaussian
measure onQ′. If Q is not a nuclear space, the Fock representation need not exist
(see Remark 2 below).

Nuclear (non-Banach) involutive algebras are widely studied in algebraic
quantum field theory since the well-known GNS construction forC∗-algebras can
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be generalized to these algebras too (Borchers, 1984; Horuzhy, 1990; Iguri and
Catagnino, 1999). A Banach space is not nuclear, unless it is finite-dimensional
(see Remark 1 below). A physically relevant example of an infinite-dimensional
nuclear space is the spaceRS4 of smooth real functions of rapid decrease onR4. It is
the real subspace of the spaceS(R4) of smooth complex functions of rapid decrease
onR4 (see Remark 5 below). Its (topological) dual is the spaceS′(R4) of tempered
distributions (generalized functions) (Bogoliubovet al., 1990). Of course, elements
of RS4 by no means are physical fields, but test functions. Continuous positive
forms f on the tensor Borchers algebra

ARS4 = R⊕ RS4⊕ RS8⊕ · · · (1)

of RS4 are expressed as

f (ψn) =
∫

Wn(x1, . . . , xn)ψn(x1, . . . , xn) d4x1 · · ·d4xn, ψn ∈ RS4n, (2)

into the tempered distributionsWn ∈ S′(R4n) whose Fourier transform is regarded
as the vacuum expectations of the plane wave operators of quantum scalar fields.

Of course, quantum fields do not constitute any CCR algebra, but there is a
morphism ofRS4 to the CCR algebra over the nuclear spaceRS3. It is treated as
the instantaneous CCR algebra of scalar fields. Its Fock representation provides
the familiar vacuum expectations of free quantum scalar fields on the Minkowski
spaceR4, while the non-Fock ones lead to nonstandard quantizations of these fields
(see Section 6).

In order to characterize interacting quantum fields created at some instant and
annihilated at another one, one should turn to the causal formsf c on the Borchers
algebraARS4 (1). They are given by the functionals

f c(ψn) =
∫

Wc
n (x1, . . . , xn)ψn(x1, . . . , xn) d4x1 · · ·d4xn, ψn ∈ RS4n, (3)

Wc
n (x1, . . . , xn) =

∑
(i1...in)

θ
(
x0

i1 − x0
i2

) · · · θ (x0
i n−1
− x0

i n

)
Wn(x1, . . . , xn), (4)

whereWn ∈ S′(R4n) are tempered distributions,θ is the step function, and the
sum runs through all permutations (i1 · · · i n) of the tuple of numbers 1,. . . , n
(Bogoliubov and Shirkov, 1980). The problem is that the functionalsWc

n (4) need
not be tempered distributions and, therefore, the causal formsf c (3) are neither
positive nor continuous forms on the Borchers algebraARS4.

At the same time, the causal forms issue from the Wick rotation of Euclidean
states of the Borchers algebraARS4 which describe particles in the interaction zone
(see Section 7). The key point is that, since the causal forms (4) are symmetric,
the Euclidean states of the Borchers algebraARS4 can be obtained as states of
the corresponding commutative tensor algebraBRS4 (Sardanashvily, 1991, 1994;
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Sardanashvily and Zakharov, 1991). They characterize different representations of
the Abelian subgroup of the CCR group modeled over the nuclear spaceSR4, and
are associated to different positive measures on the space of generalized functions
S′(R4). From the physical viewpoint, these states are Euclidean Green’s functions
whose Wick rotation gives complete Green’s functions of interacting quantum
scalar fields on the Minkowski space. Some nonperturbative phenomena, e.g., the
Higgs vacuum can be studied in this manner (Sardanashvily, 1991).

For the sake of simplicity, our consideration here is restricted to scalar fields.
In order to describe nonscalar fields onR4 with values in a vector spaceV , one can
consider the Borchers algebra of the tensor product spaceV ⊗ SR4 (Sardanashvily,
1994). Difficulties arise if nonscalar fields are defined on a noncontractible mani-
fold X, i.e., they are sections of a vector bundleY→ X. If this is a trivial bundle,
the spaceYK (X) of its sections of compact support equipped with the Schwartz
topology is a nuclear space. In the general case,Y→ X is a Whitney summand
of a trivial bundle, and the vector spaceYK (X) of its sections of compact sup-
port is provided with the relative Schwartz topology, which makes it to a nuclear
Schwartz manifold. However, the extension of the Bocher theorem for this nuclear
manifold remains under question. Note that quantum gauge theory on compact
manifolds usually deals with Sobolev spaces of gauge potentials (Kondracki and
Sadowski, 1986; Mitter and Viallet, 1981). To dispose of the compactness assump-
tion, the technique of nuclear Schwartz manifolds also has been applied to gauge
theory (Abatiet al., 1986; Cirelli and Mani`a, 1985). However, it meets serious
inconsistencies because of the lack of the inverse function theorem.

2. THE NUCLEAR CCR

Let us recall the notion of a nuclear space (Gelfand and Vilenkin, 1964;
Pietsch, 1972). Let a complex vector spaceQ have a countable set of nondegenerate
Hermitian forms〈. | .〉k,= 1, . . . , such that

〈q | q〉1 ≤ · · · ≤ 〈q | q〉k ≤ · · ·
for all q ∈ Q. If Q is complete with respect to the (Hausdorff) topology defined
by the set of norms

‖.‖k = 〈. | .〉1/2k , k = 1, . . . , (5)

it is called a countably Hilbert space. The dualQ′ of Q is provided with the weak
and strong topologies.

Let Qk denote the completion ofQ with respect to the norm‖.‖k (5). We
have the chain of injections

Q1 ⊃ Q2 ⊃ · · · Qk ⊃ · · ·
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together with the homeomorphismQ = ∩
k

Qk. Let Tn
m, m≤ n, be a prolongation

of the map

Qn ⊃ Q 3 q 7→ q ∈ Q ⊂ Qm

to the continuous map ofQn onto the dense subset ofQm. A countably Hilbert
spaceQ is called a nuclear space if, for anym, there existsn such thatTm

n is a
nuclear map, i.e.,

Tn
m(q) =

∑
i

λi
〈
q | qi

n

〉
Qn

qi
n,

where: (i){qi
n} and{qi

m} are bases for the Hilbert spacesQn andQm, respectively,
(ii) λi ≥ 0, and (iii) the series6λi converges.

Remark 1. A nuclear space is perfect, i.e., every bounded closed set in a nuclear
space is compact. It follows that a Hilbert space is not nuclear, unless it is finite-
dimensional. Furthermore, a nuclear space is separable, and the weak and strong
topologies both on this space and its dual coincide.

Let a nuclear spaceQ be provided with still another nondegenerate Hermitian
form 〈. | .〉 which is separately continuous. It follows that there exist numbersM
andm such that

〈q | q〉 ≤ M‖q‖m, ∀q ∈ Q. (6)

Let Q̃ denote the completion ofQ with respect to this form. There are the injections

Q ⊂ Q̃ ⊂ Q′, (7)

whereQ is dense inQ̃, and so isQ̃ in Q′. The triple (7) is called the rigged Hilbert
space.

Given a real nuclear spaceQ together with a nondegenerate separately contin-
uous Hermitian form〈. | .〉, let us consider the groupG(Q) of triplesg = (q1, q2, λ)
of elementsq1, q2 of Q and complex numbersλ of unit modulus which are subject
to multiplications

(q1, q2, λ)(q′1, q′2, λ′) = (q1+ q′1, q2+ q′2, exp[i 〈q2, q′1〉]λλ′). (8)

It is a Lie group whose group space is a nuclear manifold modeled overQ⊕ Q⊕
R. Let us denote

T(q) = (q, 0, 0), P(q) = (0, q, 0).

Then the multiplication law (8) takes the form

T(q)T(q′) = T(q + q′), P(q)P(q′) = P(q + q′),

P(q)T(q′) = exp[i 〈q | q′〉]T(q′)P(q). (9)

Written in this form,G(Q) is called the nuclear Weyl CCR group.
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The complexified Lie algebra of the nuclear Lie groupG(Q) is the Heisenberg
CCR algebraG(Q). It is generated by the elementsφ(q), π (q), q ∈ Q, andI which
obey the Heisenberg CCR commutation relations

[φ(q), I ] = [π (q), I ] = 0, [φ(q), φ(q′)] = [π (q), π (q′)] = 0,

[π (q), φ(q′)] = −i 〈q | q′〉I . (10)

There is the exponential map

T(q) = exp[iφ(q)], P(q) = exp[iπ (q)].

Because of the relation (6), the normed topology on the pre-Hilbert spaceQ defined
by the Hermitian form〈. | .〉 is coarser than the nuclear space topology. The latter
is metric, separable and, consequently, second-countable. Hence, the pre-Hilbert
spaceQ is also second-countable and, therefore, admits a countable orthonormal
basis. Given such a basis{qi } for Q, the Heisenberg CCR (10) take the form

[φ(qj ), φ(qk)] = [π (qk), π (qj )] = 0, [π (qj ), φ(qk)] = −i δ jk I .

3. REPRESENTATIONS OF THE NUCLEAR CCR GROUP

The CCR groupG(Q) contains two nuclear Abelian subgroupsT(Q) and
P(Q). Following the representation algorithm in Gelfand and Vilenkin (1964), we
first construct representations of the nuclear Abelian groupT(Q). These represen-
tations under certain conditions can be extended to representations of the whole
CCR groupG(Q).

One can think of the nuclear Abelian groupT(Q) as being the group of trans-
lations in the nuclear spaceQ. Its cyclic strongly continuous unitary representation
π in a Hilbert space (E, 〈. | .〉E) with a (normed) cyclic vectorθ ∈ E defines the
complex function

Z(q) = 〈π (T(q))θ |θ〉E
on Q. This function is proved to be continuous and positive-definite, i.e.,Z(0)= 1
and ∑

i , j

Z(qi − qj )c̄i cj ≥ 0

for any finite setq1, . . . , qm of elements ofQ and arbitrary complex numbers
c1, . . . , cm.

In accordance with the well-known Bochner theorem for nuclear spaces, any
continuous positive-definite functionZ(q) on a nuclear spaceQ is the Fourier
transform

Z(q) =
∫

exp[i 〈q, u〉]µ(u) (11)
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of a positive measureµ of total mass 1 on the dualQ′ of Q (Gelfand and Vilenkin,
1964). Then the above mentioned representationπ of T(Q) can be given by the
operators

TZ(q)ρ(u) = exp[i 〈q, u〉]ρ(u) (12)

in the Hilbert spaceL2
C(Q′, µ) of classes ofµ-equivalent square integrable complex

functionsρ(u) onQ′. The cyclic vectorθ of this representation is theµ-equivalence
classθ ≈µ 1 of the constant functionρ(u) = 1. Then we have

Z(q) = 〈TZ(q)θ |θ〉µ =
∫

exp[i 〈q, u〉]µ. (13)

Conversely, every positive measureµ of total mass 1 on the dualQ′ of Q
defines the cyclic strongly continuous unitary representation (12) of the group
T(Q). By virtue of the above mentioned Bochner theorem, it follows that every
continuous positive-definite functionZ(q) on Q characterizes a cyclic strongly
continuous unitary representation (12) of the nuclear Abelian groupT(Q). We
agree to callZ(q) a generating function of this representation.

It should be emphasized that the representation (12) need not be (topologi-
cally) irreducible. For instance, letρ(u) be a function onQ′ such that the set where
it vanishes is not aµ-null subset ofQ′. Then the closure of the setTZ(Q)ρ is a
T(Q)-invariant closed subspace ofL2

C(Q′, µ).
One can show that distinct generating functionsZ(q) and Z′(q) determine

equivalent representationsTZ andTZ′ (12) ofT(Q) in the Hilbert spacesL2
C(Q′, µ)

and L2
C(Q′, µ′) iff they are the Fourier transform of equivalent measures onQ′

(Gelfand and Vilenkin, 1964). Indeed, let

µ′ = s2µ, (14)

where a functions(u) is strictly positive almost everywhere onQ′, andµ(s2) = 1.
Then the map

L2
C(Q′, µ′) 3 ρ(u) 7→ s(u)ρ(u) ∈ L2

C(Q′, µ) (15)

provides an isomorphism between the representationsTZ′ andTZ .
The representationTZ (12) of the nuclear Abelian groupT(Q) in the Hilbert

spaceL2
C(Q′, µ) determined by the generating functionZ(11) can be extended to

the CCR groupG(Q) if the measureµ possesses the following property.
Let uq, q ∈ Q, be an element ofQ′ given by the condition

〈q′, uq〉 = 〈q′ | q〉, ∀q′ ∈ Q. (16)

These elements form the image of the monomorphismQ→ Q′ determined by the
Hermitian form〈. | .〉 on Q. Let the measureµ in (11) remains equivalent under
translations

Q′ 3 u 7→ u+ uq ∈ Q′, ∀uq ∈ Q ⊂ Q′,
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in Q′, i.e.,

µ(u+ uq) = a2(q, u)µ(u), ∀uq ∈ Q ⊂ Q′, (17)

where a functiona(q, u) is squareµ-integrable and strictly positive almost every-
where onQ′. This function fulfils the relations

a(0, u) = 1, a(q + q′, u) = a(q, u)a(q′, u+ uq). (18)

A measure onQ′ obeying the condition (17) is called translationally quasi-invariant,
but it does not remain equivalent under any translation inQ′, unlessQ is finite-
dimensional.

Let a generating functionZ of a cyclic strongly continuous unitary represen-
tation of the nuclear groupT(Q) be the Fourier transform (11) of a translationally
quasi-invariant measureµ on Q′. Then one can extend the representation (12) of
this group to the representation of the CCR group in the Hilbert spaceL2

C(Q′, µ)
by operators

PZ(q)ρ(u) = a(q, u)ρ(u+ uq). (19)

Indeed, it is easily justified that the Weyl CCR (9) hold, while the equalities

‖ρ‖µ =
∫
|ρ(u)|2µ(u) =

∫
|ρ(u+ uq)|2µ(u+ uq)

=
∫

a2(q, u)|ρ(u+ uq)|2µ(u) = ‖PZ(q)ρ‖2µ, (20)

show that the operators (19) are unitary.
Let µ′(14) be aµ-equivalent positive measure of total mass 1 onQ′. The

equality

µ′(u+ uq) = s−2(u)a2(q, u)s2(u+ uq)µ′(u)

shows that it is also translationally quasi-invariant. Then the isomorphism (15)
between representationsTZ andTZ′ of the nuclear Abelian groupT(Q) is extended
to the isomorphism

PZ′ (q) = s−1PZ(q)s : ρ(u) 7→ s−1(u)a(q, u)s(u+ uq)ρ(u+ uq)

of the corresponding representations of the CCR groupG(Q).

4. REPRESENTATIONS OF THE CCR ALGEBRA

Similarly to the case of a finite-dimensional Lie group, any strongly con-
tinuous unitary representationTZ (12), PZ (19) of the nuclear CCR groupG(Q)
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implies a representation of its Lie algebraG(Q) by (unbounded) operators in the
same Hilbert spaceL2

C(Q′, µ). This representation reads

I = 1, φ(q)ρ(u) = 〈q, u〉ρ(u), π (q)ρ(u) = −i (δq + η(q, u))ρ(u),

δqρ(u) = lim
α→0

α−1[ρ(u+ αuq)− ρ(u)], α ∈ R, (21)

η(q, u) = lim
α→0

α−1[a(αq, u)− 1]. (22)

One at once derives from the relations (18) that

δqδq′ = δq′δq, δq(η(q′, u)) = δq′ (η(q, u)),

δq = −δ−q, δq(〈q′, u〉) = 〈q′ | q〉,
η(0, u) = 0, ∀u ∈ Q′, δqθ = 0, ∀q ∈ Q.

With the aid of these relations, it is easily justified that the operators (21) fulfil the
Heisenberg CCR (10). The unitarity condition (20) implies the conjugation rule

〈q, u〉∗ = 〈q, u〉, δ∗q = −δq − 2η(q, u).

Hence, the operators (21) are Hermitian.
Let us further restrict our consideration to representations with generating

functionsZ(q) such that

R 3 t → Z(tq) (23)

is an analytic function onR at t = 0 for all q ∈ Q. Then one can show that the
function〈q | u〉 on Q′ is squareµ-integrable for allq ∈ Q and that, consequently,
the operatorsφ(q) (21) are bounded everywhere in the Hilbert spaceL2

C(Q′, µ).
Moreover, the mean values of operatorsφ(q) can be computed by the formula

〈φ(q1) · · ·φ(qn)〉 = i−n ∂

∂α1
· · · ∂

∂αn
Z(αi qi )|αi=0 =

∫
〈q1, u〉 · · · 〈qn, u〉µ(u).

(24)

The operatorsπ (q) (21) act in the subspaceE∞ of all smooth complex func-
tions in L2

C(Q′, µ) whose derivatives of any order also belongs toL2
C(Q′, µ).

However,E∞ need not be dense in the Hilbert spaceL2
C(Q′, µ), unlessQ is finite-

dimensional. The spaceE∞ is also the carrier space of a representation of the
enveloping algebrāG(Q) of the CCR algebraG(Q). The representations ofG(Q)
andḠ(Q) in E∞ need not be irreducible. Therefore, let us consider the subspace
Eθ = Ḡ(Q)θ of E∞, whereθ is a cyclic vector for the representation of the CCR
group in L2

C(Q′, µ). Obviously, the representation of the CCR algebraG(Q) in
Eθ is (algebraically) irreducible. Ifθ ′ is another cyclic vector inL2

C(Q′, µ), the
representations ofG(Q) in Eθ andEθ ′ are equivalent.



P1: GVG

International Journal of Theoretical Physics [ijtp] PP597-379787-06 September 2, 2002 17:5 Style file version May 30th, 2002

Nonequivalent Representations of Canonical Commutation Relations 1549

One also introduces creation and annihilation operators

a±(q) = 1√
2

[φ(q)∓ iπ (q)] = 1√
2

[∓δq ∓ η(q, u)+ 〈q, u〉]. (25)

They obey the conjugation rule (a±(q))∗ = a∓(q) and the commutation relations

[a−(q), a+(q′)] = 〈q | q′〉1, [a+(q), a+(q′)] = [a−(q), a−(q′)] = 0.

The particle number operatorN in the carrier spaceEθ is defined by the conditions

[N, a±(q)] = ±a±(q)

up to a summandλ1. With respect to a countable orthonormal basis{qk}, this
operatorN is given by the sum

N =
∑

k

a+(qk)a−(qk), (26)

but need not be defined everywhere inEθ , unlessQ is finite dimensional.

5. NON-FOCK REPRESENTATIONS OF THE NUCLEAR CCR

Gaussian measures exemplifies the physically relevant class of translation-
ally quasi-invariant measures on the dualQ′ of a nuclear spaceQ. The Fourier
transform of a Gaussian measure reads

Z(q) = exp

[
−1

2
B(q)

]
, (27)

whereB(q) is a seminorm onQ′ called the covariance form.

Remark 2. If Q is a Banach space provided with the norm‖.‖, there exists a
Gaussian quasi-measure on its dualQ′ with the covariance form‖.‖, but it is not a
measure unlessQ is finite-dimensional. LetT be a continuous operator inQ. The
Gaussian quasi-measure onQ′ with the covariance formq 7→ ‖Tq‖ is proved to be
a measure iffT is a Hilbert–Schmidt operator. LetQ = Rn be a finite-dimensional
vector space andB a norm onQ. Let its dualQ′ be coordinated by (xi ). The
Gaussian measure onQ′ with the covariance formB is equivalent to the Lebesgue
measurednx on Q′. It reads

µB = det[B]1/2

(2π )n/2
exp

[
−1

2
(B−1)i j xi x j

]
dnx.

Let µK denote a Gaussian measure onQ′ whose Fourier transform is the
generating function

ZK = exp

[
−1

2
BK (q)

]
(28)
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with the covariance form

BK (q) = 〈K−1q | K−1q〉, (29)

whereK is a bounded invertible operator in the Hilbert completionQ̃ of Q with
respect to the Hermitian form〈. | .〉. The Gaussian measureµK is translationally
quasi-invariant, i.e.,

µK (u+ uq) = a2
K (q, u)µK (u).

Using the formula (24), one can show that

aK (q, u) = exp

[
−1

4
BK (Sq)− 1

2
〈Sq, u〉

]
, (30)

whereS= K K ∗ is a bounded Hermitian operator iñQ.
Let us construct the representation of the CCR algebraG(Q) determined by

the generating functionZK (28). Substituting the function (30) into the formula
(22), we find

η(q, u) = −1

2
〈Sq, u〉.

Hence, the operatorsφ(q) andπ (q) (21) take the form

φ(q) = 〈q, u〉, π (q) = −i

(
δq − 1

2
〈Sq, u〉

)
. (31)

Accordingly, the creation and annihilation operators (25) read

a±(q) = 1√
2

[
∓δq ± 1

2
〈Sq, u〉 + 〈q, u〉

]
. (32)

They act on the subspaceEθ , θ ≈µK 1, of the Hilbert spaceL2
C(Q′, µK ), and are

Hermitian with respect to the Hermitian form〈. | .〉µK on L2
C(Q′, µK ).

Remark 3. If a representation of the CCR is characterized by the Gaussian gener-
ating function (28), it is convenient for a computation to express all operator into
the operatorsδq andφ(q), which obey the commutation relation

[δq, φ(q′)] = 〈q′ | q〉.
For instance, we have

π (q) = −i δq − i

2
φ(Sq).

The mean values〈φ(q1) · · ·φ(qn)δq〉 vanishes, while the meanvalues〈φ(q1) · · ·
φ(qn)〉, defined by the formula (24), obey the Wick theorem relations

〈φ(q1) · · ·φ(qn)〉 =
∑
〈φ(qi1)φ(qi2)〉 · · · 〈φ(qin−1)φ(qin)〉, (33)
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where the sum runs through all partitions of the set 1,. . . , n in ordered pairs
(i1 < i 2), . . . (i n−1 < i n), and where

〈φ(q)φ(q′)〉 = 〈K−1q | K−1q′〉.

In particular, putK = √2 · 1. Then the generating function (28) takes the
form

ZF(q) = exp

[
−1

4
〈q | q〉

]
, (34)

and determines the Fock representation of the CCR algebraG(Q). It is given by
the operators

φ(q) = 〈q, u〉, π (q) = −i (δq − 〈q, u〉),

a+(q) = 1√
2

[−δq + 2〈q, u〉], a−(q) = 1√
2
δq.

Its carrier space is the subspaceEθ , θ ≈µF 1, of the Hilbert spaceL2
C(Q′, µF),

whereµF denotes the Gaussian measure whose Fourier transform is (34). We
agree to call it the Fock measure.

The Fock representation up to an equivalence is characterized by the existence
of a cyclic vectorθ such that

a−(q)θ = 0, ∀q ∈ Q. (35)

For the representation in question, this isθ ≈µF 1. An equivalent condition is that
the particle number operatorN (26) exists and its spectrum is lower bounded. The
corresponding eigenvector ofN in Eθ is θ itself so thatNθ = 0. Therefore, one
often interprets this eigenvector as a vacuum state.

A glance at the expression (32) shows that the condition (35) does not hold,
unlessZK is ZF (34). For instance, the particle number operator in the represen-
tation (32) reads

N =
∑

j

a+(qj )a
−(qj ) =

∑
j

[
− δqj δqj + Sj

k 〈qk, u〉∂qj

+
(
δkm− 1

4
Sj

k Sj
m

)
〈qk, u〉〈qm, u〉 −

(
δ j j − 1

2
Sj

j

)]
,

where{qk} is the orthonormal basis for the pre-Hilbert spaceQ. One can show that
this operator is defined everywhere onEθ and is lower bounded only if the operator
S is a sum of the scalar operator 2·1 and a nuclear operator iñQ, in particular, if

Tr

(
1− 1

2
S

)
< ∞.
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This condition is also sufficient for the measuresµK andµF (and, consequently,
the corresponding representations) to be equivalent (Gelfand and Vilenkin, 1964).
For instance, the generating function

Zc(q) = exp

[
−c2

2
〈q | q〉

]
, c2 6= 1

2
,

determines a non-Fock representation of the nuclear CCR.

Remark 4. The non-Fock representation (31) of the CCR algebra (10) in the
Hilbert spaceL2

C(Q′, µK ) is the Fock representation

φK (q) = φ(q) = 〈q, u〉,

πK (q) = π (S−1q) = −i

(
δK

q −
1

2
〈q, u〉

)
, δK

q = δS−1q,

of the CCR algebra{φK (q), πK (q), I }, where

[φK (q), πK (q)] = i 〈K−1q | K−1q′〉I .
This fact motivates somebody to regard representations of the CCR group (9) as
representation of two mutually commutative Abelian groupsT(Q) and (P(Q) up
to phase multipliers (Yamashita and Ozawa, 2000).

Since the Fock measureµF on Q′ remains equivalent only under translations
by vectorsuq ∈ Q ⊂ Q′, the measure

µσ − µF(u− σ ), σ ∈ Q′ \ Q,

on Q′ determines a non-Fock representation of the nuclear CCR. Indeed, this
measure is translationally quasi-invariant:

µσ (u+ uq) = a2
σ (q, u)µσ (u), aσ (q, u) = aF(q, u− σ ),

and its Fourier transform

Zσ (q) = exp[i 〈p, σ 〉]ZF(q)

is a positive-definite continuous function onQ. Then the corresponding represen-
tation of the CCR algebra is given by operators

a+(q) = 1√
2

(−δq + 2〈q, u〉 − 〈q, σ 〉), a−(q) = 1√
2

(δq + 〈q, σ 〉). (36)

In comparison with all the above representations, these operators possess nonva-
nishing vacuum mean values

〈a±(q)θ | θ〉µF = ∓〈q, σ 〉.
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If σ ∈ Q ⊂ Q′, the representation (36) becomes equivalent to the Fock represen-
tation (32) due to the morphism

ρ(u) 7→ exp[−〈q′, u〉]ρ(u+ uq′ ).

6. FREE QUANTUM FIELDS

In this section, representations of the nuclear CCR are utilized in order to
describe free quantum fields. In the framework of algebraic quantum field theory,
quantum fields are characterized by a unital involutive topological algebraA and
a (continuous positive) statef of A. The key point is that a quantum field algebra
is never normed.

With reference to the field-particle dualism, realistic quantum field models
are described by tensor algebras, as a rule. LetQ be a real (locally convex) topo-
logical vector space, endowed with an involution operationq 7→ q∗, q ∈ Q. Let
us consider the tensor algebra

AQ = R⊕ Q⊕ Q2⊕ · · · , Qn = ⊗n Q, (37)

of Q. It is a∗-algebra with respect to the involution

(q1 · · ·qn)∗ = (qn)∗ · · · (q1)∗.

The direct sum topology makesAQ to a topological involutive algebra. A statef
of this algebra is given by a tuple{ fn} of continuous forms on the tensor products
Qn. Its value f (q1 · · ·qn) are interpreted as the vacuum expectation of the system
of fieldsq1, . . . , qn. Further, we choose byQ the real subspaceSR4 of the nuclear
space of smooth complex functions of rapid decrease onR4.

Remark 5. By functions of rapid decrease on an Euclidean spaceRn are called
complex smooth functionsψ(x) such that the quantities

‖ψ‖k,m = max
|α|≤k

sup
x

(1+ x2)m|Dαψ(x)| (38)

are finite for allk, m ∈ N. Here, we follow the standard notation

Dα = ∂ |α|

∂α1x1 · · · ∂αn xn
, |α| = α1+ · · · + αn,

for ann-tuple of natural numbersα = (α1, . . . , αn). The functions of rapid decrease
constitute the nuclear spaceS(Rn) with respect to the topology determined by the
seminorms (38). Its dual is the spaceS′(Rn) of tempered distributions (Bogoliubov
et al., 1990; Gelfand and Vilenkin, 1964; Pietsch, 1972). The corresponding con-
traction form is written as

〈ψ, h〉 =
∫
ψ(x)h(x) dnx, ψ ∈ S(Rn), h ∈ S′(Rn).
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The spaceS(Rn) is provided with the nondegenerate separately continuous
Hermitian form

〈ψ | ψ ′〉 =
∫
ψ(x)ψ ′(x) dnx.

The completion ofS(Rn) with respect to this form is the spaceL2
C(Rn) of square

integrable complex functions onRn. We have the rigged Hilbert space

S(Rn) ⊂ L2
C(Rn) ⊂ S′(Rn).

LetRn denote the dual ofRn coordinated by (pλ). The Fourier transform

ψF(p) =
∫
ψ(x) eipx dnx, px = pλx

λ, (39)

ψ(x) =
∫
ψF(p) e−i px dn p, dn p = (2π )−ndn p, (40)

defines an isomorphism between the spacesS(Rn) andS(Rn). The Fourier trans-
form of tempered distributions is defined by the condition∫

h(x)ψ(x) dnx =
∫

hF(p)ψF(−p) dn p,

and is written in the form (39)–(40). It provides an isomorphism between the spaces
of tempered distributionsS′(Rn) andS′(Rn).

The tensor algebra⊗RS4 of the nuclear spaceRS4 is called the Borchers
algebra (Borchers, 1984; Horuzhy, 1990). Since the subset⊗n S(Rk) is dense in
S(Rkn), we henceforth identify it with the algebra (1). Then any statef of this
algebra is represented by a collection of tempered distributions{Wn ∈ S′(R4n)}
by the formula (2). Let us focus on the states of the Borchers algebraARS4 which
describe free real scalar fields of massm.

Let us provide the nuclear spaceRS4 with the positive complex bilinear form

(ψ | ψ ′) = 2

i

∫
ψ(x)D−(x − y)ψ ′(y) d4x d4y

=
∫
ψF(−ω,−Ep)ψ ′F(ω, Ep)

d3 p

ω
,

D−(x) = i (2π )−3
∫

exp[−i px]θ (p0)δ(p2−m2) d4 p, (41)

whereD−(x) is the negative frequency part of the Pauli–Jordan function,p2 is the
Minkowski square, and

ω = ( Ep2+m2)1/2.
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Since the functionψ(x) is real, its Fourier transform satisfies the equalityψF(p) =
ψ̄F(−p).

The bilinear form (41) is degenerate because the Pauli–Jordan functionD−(x)
obeys the mass shell equation

(h+m2)D−(x) = 0.

It takes nonzero values only at elementsψF ∈ RS4 which are not zero on the mass
shell p2 = m2. Therefore, let us consider the quotient spaceγ : RS4→ RS4/J,
whereJ = {ψ ∈ RS4 : (ψ | ψ) = 0} is the kernel of the square form (41). The map
γ assigns to each elementψ ∈ RS4 with the Fourier transformψF(p0, Ep) ∈ RS4

the couple of functions (ψF(ω, Ep), ψF(−ω, Ep)). Let us equip the factor space
RS4/J with the real bilinear form

(γψ | γψ ′)L = Re(ψ | ψ ′) = 1

2

∫
[ψF(−ω,−Ep)ψ ′F(ω, Ep)

+ψF(ω,−Ep)ψ ′F(−ω, Ep)]
d3 Ep
ω
. (42)

Then it is decomposed into the direct sumRS4/J = L+ ⊕ L− of the subspaces

L± =
{
ψF
±(ω, Ep) = 1

2
(ψF(ω, Ep)± ψF(−ω, Ep))

}
,

which are mutually orthogonal with respect to the bilinear form (42).
There exist continuous isometric morphisms

γ+ : ψF
+(ω, Ep) 7→ qF( Ep) = ω−1/2ψF

+(ω, Ep),

γ− : ψF
−(ω, Ep) 7→ qF( Ep) = −iω−1/2ψF

−(ω, Ep)

of spacesL+ andL− to the nuclear spaceRS3 endowed with the nondegenerate
separately continuous Hermitian form

〈q | q′〉 =
∫

qF(−Ep)q′F( Ep) d3 p. (43)

It should be emphasized that the imagesγ+(L+) and γ−(L−) in RS3 are not
orthogonal with respect to the scalar form (43). Combiningγ andγ±, we obtain
the continuous morphismsτ±RS4→ RS3 given by the expressions

τ+(ψ) = γ+(γψ)+ = 1

2ω1/2

∫
[ψF(ω, Ep)+ ψF(−ω, Ep)] exp[−i EpEx] d3 p,

τ−(ψ) = γ−(γψ)− = 1

2iω1/2

∫
[ψF(ω, Ep)− ψF(−ω, Ep)] exp[−i EpEx] d3 p.

Now let us consider the CCR algebra

G(RS3) = {(φ(q), π (q), I ), q ∈ RS3} (44)
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modeled over the nuclear spaceRS3, which is equipped with the Hermitian form
(43). Using the morphismsτ±, let us define the map

RS4 3 ψ 7→ φ(τ+(ψ))− π (τ−(ψ)) ∈ G(RS3). (45)

With this map, one can think of (44) as being the algebra of the instantaneous
CCR of scalar fields on the Minkowski spaceR4. Owing to the map (45), any
representation of the nuclear CCR algebraG(RS3) determined by a translationally
quasi-invariant measureµ on S′(Rn) induces a state

f (ψ1 · · ·ψn) = 〈φ(τ+(ψ1))+ π (τ−(ψ1))] · · · [φ(τ+(ψn))+ π (τ−(ψn))]〉 (46)

on the Borchers algebraARS4 of scalar fields. Furthermore, one can justify that the
corresponding distributionsWn fulfil the mass shell equation and that the following
commutation relation holds:

W2(x, y)−W2(y, x) = −i D(x − y),

where

D(x) = i (2π )−3
∫

exp[−i px](θ (p0)− θ (−p0))δ(p2−m2) d4 p,

is the Pauli–Jordan commutation function. Thus, the states (46) describe real scalar
fields of massm.

For instance, let us take the Fock representation (31) of the CCR algebra
G(RS3). Using the formulae in Remark 3 where the form〈q | q′〉 is given by the
expression (43), one observes that the statesfF (46) satisfy the Wick theorem
relations

fF(ψ1 · · ·ψn) =
∑

(i1...in)

f2(ψ i1ψ i2) · · · f2(ψ in−1ψ in), (47)

while the statef2 is given by the Wightman function

W2(x, y) = 1

i
D−(x − y). (48)

Thus, the statefF describes standard quantum free scalar fields of massm.
Similarly, one can obtain states of the Borchers algebraARS4 generated by

non-Fock representations of the instantaneous CCR algebraG(RS3), e.g., ifK−1 =
c1 6= 2−1/21. These states fail to be given by Wightman functions. In particular,
they are not covariant under time translations.

7. EUCLIDEAN SCALAR FIELDS

As was mentioned above, the causal forms (3) on the Borchers algebraARS4

are neither positive nor continuous. At the same time, they issue from the Wick
rotation of Euclidean states of the commutative tensor algebraBRS4. These states



P1: GVG

International Journal of Theoretical Physics [ijtp] PP597-379787-06 September 2, 2002 17:5 Style file version May 30th, 2002

Nonequivalent Representations of Canonical Commutation Relations 1557

play the role of Green’s functions in Euclidean quantum field theory. It should be
emphasized that they do not coincide with the Schwinger functions in axiomatic
quantum field theory whose Minkowski partners are the Wightman functions, but
not causal forms.

Let Q be a real nuclear space as above andAQ its tensor algebra (37). We
abbreviate withBQ the complexified quotient ofAQ with respect to the ideal gener-
ated by the elementsq ⊗ q′ − q′ ⊗ q for all q, q′ ∈ Q. It is the commutative tensor
algebra ofQ. Provided with the direct sum topology,BQ becomes a topological
involutive algebra. It coincides with the enveloping algebra of the Lie algebra of
the additive Lie groupT(Q) of translations inQ. Therefore, we can obtain the
states of the algebraBQ by constructing cyclic strongly continuous unitary repre-
sentations of the nuclear Abelian groupT(Q). As was stated in Section 3, such a
representation is characterized by a positive-definite continuous generating func-
tion Z onQ which is the Fourier transform (11) of a bounded positive measureµ of
total mass 1 on the (topological) dualQ′ of Q. The corresponding cyclic strongly
continuous unitary representation of the nuclear Abelian groupT(Q) is given by
the operators (12) in the Hilbert spaceL2

C(Q′, µ) of squareµ-integrable complex
functionsρ(u) on Q. If the function (23) is analytic att = 0 for all φ ∈ 8, a state
F(q1 · · ·qn) of BQ is given by the expression (24).

A glance at this expression shows that, in applications to quantum field theory
whereQ = RS4, the generating functionZ plays the role of a generating functional
represented by the functional integral (11), while the values (24) of the stateF are
vacuum expectations of Euclidean fields.

For instance, letµ be a Gaussian measure onQ′ whose Fourier transform
reads

Z(ϕ) = exp

[
−1

2
M(ϕ)

]
,

where the covariance formM(φ1, φ2) is a nondegenerate separately continuous
Hermitian form onRS4. This generating function defines a Gaussian stateF of
the algebraBRS4 such that

F1(φ) = 0, F2(φ1φ2) = M(φ1, φ2),

while Fn> 2 obey the Wick relations (33). Furthermore, a covariance formM on
RS4 is uniquely determined as

M(φ1, φ2) =
∫

W2(x1, x2)φ1(x1)φ2(x2) dnx1 dnx2. (49)

by a tempered distributionW2 ∈ S′(R8).
In particular, let a tempered distributionM(φ, φ′) in the expression (49) be

Green’s function of some positive elliptic differential operatorE , i.e.,

Ey1W2(y1, y2) = δ(y1− y2),
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whereδ is Dirac’sδ-function. Then the distributionW2 reads

W2(y1, y2) = w(y1− y2), (50)

and we obtain the form

F2(φ1φ2) = M(φ1, φ2) =
∫

w(y1− y2)φ1(y1)φ2(y2) d4y1 d4y2

=
∫

w(y)φ1(y1)φ2(y1− y) d4y d4y1 =
∫

w(y)ϕ(y) d4y

=
∫

wF(q)ϕF(−q) d4q, y = y1− y2,

ϕ(y) =
∫
φ1(y1)φ2(y1− y) d4y1.

For instance, if

Ey1 = −1y1 +m2,

where1 is the Laplacian, then

w(y1− y2) =
∫

exp(−iq(y1− y2))

q2+m2
, (51)

whereq2 is the Euclidean square, is the propagator of a massive Euclidean scalar
field. Note that, restricted to the domain (y0

1 − y0
2) < 0, it coincides with the

Schwinger functions2(y1− y2).
Let the Fourier transformwF of the distributionw (50) satisfy the condition

(57) below. Then its Wick rotation (61) is the functional

ŵ(x) = θ (x)
∫

Q̄+
wF(q) exp(−qx) dq+ θ (−x)

∫
Q̄−

wF(q) exp(−qx) dq

on scalar fields on the Minkowski space. For instance, letw(y) be the Euclidean
propagator (51) of a massive scalar field. Then due to the analyticity of

wF(q) = (q2+m2)−1

on the domain Imq · Req > 0, one can show that ˆw(x) = −i Dc(x) whereDc(x)
is familiar causal Green’s function.

8. THE WICK ROTATION

Let us describe the above mentioned Wick rotation of Euclidean states in
the previous section. We start from the basic formulae of the Fourier–Laplace
transform (Bogoliubovet al., 1990). It is defined on Schwartz distributions, but
we focus on the tempered ones.
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Throughout,Rn
+ andR̄n

+ denote the subset of points ofRn with strictly positive
Cartesian coordinates and its closure, respectively. Letf ∈ S′(Rn) be a tempered
distribution and0( f ) the convex subset of pointsq ∈ Rn such that

e−qx f (x) ∈ S′(Rn). (52)

In particular, 0∈ 0( f ). Let Int0( f ) and∂0( f ) denote the interior and the bound-
ary of0( f ), respectively.

The Fourier–Laplace (henceforth FL) transform of a tempered distribution
f ∈ S′(Rn) is said to be the tempered distribution

f FL(p+ iq) = (e−qx f (x))F(p) =
∫

f (x) ei (p+iq)x dnx ∈ S′(Rn), (53)

which is the Fourier transform of the distribution (52) depending onq as
parameters.

If Int 0( f ) 6= Ø, the FL transformf FL(k) is a holomorphic function of com-
plex argumentsk = p+ iq on the open tubeRn + i Int0( f ) ⊂ Cn over Int0( f ).
Moreover, for any compact subsetQ ⊂ Int 0( f ), there exist strictly positive num-
bersA andm, depending ofQ and f , such that

| f FL(p+ iq)| ≤ A(1+ |p|)m, p ∈ Rn, q ∈ Q. (54)

The evaluation (54) is equivalent to the fact that the functionh(p+ iq) defines
a family of tempered distributionshq(p) ∈ S′(Rn) of the variablesp depending
continuously on parametersq ∈ S.

Let us notice that, if 0∈ Int 0( f ), then

f FL(p+ i 0)= lim
q→0

f FL(p+ iq)

coincides with the Fourier transformf F(p) of f . The case of 0/∈ Int 0( f ) is more
intricate. LetS be a convex domain inRn such that 0∈ ∂S, and leth(p+ iq)
be a holomorphic function on the tubeT S which defines a family of tempered
distributionshq(p) ∈ S′(Rn), depending on parametersq. One says thath(p+ iq)
has a generalized boundary valueh0(p) ∈ S′(Rn) if, for any frustumK r ⊂ S∪ {0}
of the coneK ⊂ Rn (i.e., K r = {q ∈ K : |q| ≤ r }), one has

h0(ψ(p)) = lim
|q|→0,q∈K r \{0}

hq(ψ(p))

for all functionsψ ∈ S(Rn) of rapid decrease. Then the following assertion
holds.

Proposition 1. Let f ∈ S′(Rn), Int 0( f ) 6= Ø and0 /∈ Int 0( f ). Then a gener-
alized boundary value of theFL transform fFL(k) in S′(Rn) exists and coincides
with the Fourier transform fF(p) of the distribution f.
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Let us apply this result to the following important case. The support of a
tempered distributionf is defined as the complement of the maximal open subsetU
where f vanishes, i.e.,f (ψ) = 0 for allψ ∈ S(Rn) of support inU . Let f ∈ S′(Rn)
be of support in̄Rn

+. ThenR̄n+ ⊂ 0( f ), and the FL transformf FL is a holomorphic
function on the tube overRn+, while its generalized boundary value inS′(Rn) is
given by the equality

h0(ψ(p)) = lim
|q|→0,q∈Rn+

f FL
q (ψ(p)) = f F(ψ(p)), ∀ψ ∈ S(Rn).

Conversely, one can restore a tempered distributionf of support inR̄n
+ from its

FL transformh(k) = f FL(k) even if this function is known only oniRn+. Indeed,
the formulae

h̃ =
∫
Rn+

h(iq)φ(q) dnq =
∫
Rn+

dnq
∫
R̄n
+

e−qx f (x)φ(q) dnx

=
∫
R̄n
+

f (x)φ̂(x) dnx, φ ∈ S(Rn+), (55)

φ̂(x) =
∫
Rn+

e−qxφ(q) dnq, x ∈ R̄n
+, φ̂ ∈ S(R̄n

+), (56)

define a linear continuous functionalh̃(q) = h(iq) on the spaceS(Rn+). It is called
the Laplace transformf L(q) = f FL(iq) of a tempered distributionf .

The image of the spaceS(Rn+) with respect to the mappingφ(q) 7→ φ̂(x)
(56) is dense inS(R̄n

+). Then the family of seminorms‖φ‖′k,m = ‖φ̂‖k,m, where
‖.‖k,m are seminorms (38) onS(R̄n

), determines new coarser topology onS(R̄n+)
such that the functional (55) remains continuous with respect to this topology.
Then the following is proved (Bogoliubovet al., 1990).

Theorem 1. The mappings(55) and (56) provide one-to-one correspondence
between the Laplace transforms fL(q) = f FL(iq) of tempered distributions f∈
S′(R̄n

+) and the elements of S′(R̄n+) which are continuous with respect to the
coarser topology on S(R̄n+).

This Theorem enables one to define the above mentioned Wick rotation of
Euclidean states to causal forms on the Minkowski space.

Since the Minkowski spaceX and its Euclidean partnerY in C4 have the
same spatial subspace, we further omit the dependence on spatial coordinates.
Therefore, let us consider the complex planeC1 = X ⊕ i Z of the timex and the
Euclidean timez and the complex planeC1 = P ⊕ i Q of the associated momen-
tum coordinatesp andq.
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Let W(q) ∈ S′(Q) be a tempered distribution such that

W = W+ +W−, W+ ∈ S′(Q̄+), W− ∈ S′(Q̄−). (57)

For instance,W(q) is an ordinary function at 0. For every test functionψ+ ∈
S′(X+), we have

1

2π

∫
Q̄+

W(q)ψ̂+(q) dq = 1

2π

∫
Q̄+

dq
∫

X+
dx[W(q) exp(−qx)ψ+(x)]

= 1

(2π )2

∫
Q̄+

dq
∫

P
dp
∫

X+
dx[W(q)ψF

+(p)

× exp(−i px − qx)] = −i

(2π )2

∫
Q̄+

dq

×
∫

P
dp

[
W(q)

ψF
+(p)

p− iq

]
= 1

2π

∫
Q̄+

W(q)ψL
+(iq) dq, (58)

due to the fact that the FL transformψFL
+ (p+ iq) of the functionψ+ ∈ S(X+) ⊂

S′(X+) exists and that it is holomorphic on the tubeP + i Q+, Q+ ⊂ Qφ+. More-
over,ψFL

+ (p+ i 0)= φF
+(k), and the functionψ̂+(q) = ψFL

+ (−q) can be regarded
as the Wick rotation of the test functionψ+(x). The equality (58) can be brought
into the form

1

2π

∫
Q̄+

W(q)ψ̂+(q) dq =
∫

X+
Ŵ+(x)ψ+(x) dx,

Ŵ+(x) = 1

2π

∫
Q̄+

exp(−qx)W(q) dq, x ∈ X+. (59)

It associates to a distributionW(q) ∈ S′(Q) the distribution̂W+(x) ∈ S′(X+), con-
tinuous with respect to the coarser topology onS(X+).

For every test functionψ− ∈ S(X−), the similar relations

1

2π

∫
Q̄−

W(q)φ̂−(q) dq =
∫

X−
Ŵ−(x)φ−(x) dx,

Ŵ−(x) = 1

2π

∫
Q̄−

exp(−qx)W(q) dq, x ∈ X−, (60)

hold. Combining (59) and (60), we obtain

1

2π

∫
Q

W(q)ψ̂(q) dq =
∫

X
Ŵ(x)ψ(x) dx, (61)
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ψ̂ = ψ̂+ + ψ̂−, ψ = ψ+ + ψ−,

whereŴ(x) is a linear functional on functionsψ ∈ S(X), which together with all
derivatives vanish atx = 0. One can think of̂W(x) as being the Wick rotation
of the distribution (57). One should additionally definêW at the pointx = 0 in
order to make it to a functional on the whole spaceS(X). This is the well-known
ambiguity of chronological forms in quantum field theory.
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