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Covariant Hamiltonian Field Theory:
Path Integral Quantization

D. Bashkirov1 and G. Sardanashvily1,2

Received

The Hamiltonian counterpart of classical Lagrangian field theory is covariant
Hamiltonian field theory where momenta correspond to derivatives of fields with respect
to all world coordinates. In particular, classical Lagrangian and covariant Hamiltonian
field theories are equivalent in the case of a hyperregular Lagrangian, and they are quasi-
equivalent if a Lagrangian is almost-regular. In order to quantize covariant Hamiltonian
field theory, one usually attempts to construct and quantize a multisymplectic gener-
alization of the Poisson bracket. In the present work, the path integral quantization of
covariant Hamiltonian field theory is suggested. We use the fact that a covariant Hamil-
tonian field system is equivalent to a certain Lagrangian system on a phase space which
is quantized in the framework of perturbative quantum field theory. We show that, in the
case of almost-regular quadratic Lagrangians, path integral quantizations of associated
Lagrangian and Hamiltonian field systems are equivalent.

KEY WORDS: polysymplectic theory; quantum Hamiltonian field theory.

1. INTRODUCTION

As is well-known, the familiar symplectic Hamiltonian technique applied
to field theory leads to an instantaneous Hamiltonian formalism on an infinite-
dimensional phase space coordinated by field functions at some instant of time (see
Gotay, 1991, for the strict mathematical exposition of this formalism). The true
Hamiltonian counterpart of classical first-order Lagrangian field theory is covari-
ant Hamiltonian formalism, where canonical momenta pµ

i correspond to deriva-
tives yi

µ of fields yi with respect to all world coordinates xµ. This formalism has
been vigorously developed since the 1970s in its polysymplectic, multisymplectic,
and Hamilton–De Donder variants (see Echeverrı́a-Enrı́quez et al., 2000, 2004;
Giachetta et al., 1997, 1999; Hélein and Kouneiher, 2002, and references therein).
In order to quantize covariant Hamiltonian field theory, one usually attempts to
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construct multisymplectic generalization of the Poisson bracket with respect to the
derivatives ∂/∂yi and ∂/∂pµ

i (Castrillón Lòpez and Marsden, 2003; Forger et al.,
2003; Kanatchikov, 1999).

We have suggested quantizing covariant (polysymplectic) Hamiltonian field
theory in path integral terms (Sardanashvily, 1994). In the present work, this quan-
tization scheme is modified owing to the fact that a polysymplectic Hamiltonian
system with a Hamiltonian H(xµ, yi , pµ

i ) is equivalent to a Lagrangian system
with the Lagrangian

LH
(
xµ, yi , pµ

i , yi
λ

) = pλ
i yi

λ − H
(
xµ, yi , pµ

i

)
(1)

of the variables yi and pµ

i . This Lagrangian system can be quantized in the frame-
work of familiar perturbative quantum field theory. If there is no constraint and
the matrix ∂2H/∂pµ

i ∂pν
j is nondegenerate and positive-definite, this quantization

is given by the generating functional

Z = N−1
∫

exp

{∫ (
LH + � + i Ji yi + i J i

µ pµ

i

)
dx

} ∏
x

[dp(x)][dy(x)] (2)

of Euclidean Green functions, where � comes from the normalization condition∫
exp

{∫ (
−1

2
∂ i
µ∂ j

νHpµ

i pν
j + �

)
dx

} ∏
x

[dp(x)] = 1.

If a HamiltonianH is degenerate, the LagrangianLH (1) may admit gauge symme-
tries. In this case, integration of a generating functional along gauge group orbits
must be finite. If there are constraints, the Lagrangian system with a Lagrangian
LH (1) restricted to the constraint manifold is quantized.

In order to verify this path quantization scheme, we apply it to Hamiltonian
field systems associated to Lagrangian field systems with quadratic Lagrangians

L = 1

2
aλµ

i j yi
λy j

µ + bλ
i yi

λ + c, (3)

where a, b, and c are functions of world coordinates xµ and field variables yi . Note
that, in the framework of perturbative quantum field theory, any Lagrangian is split
into the sum of a quadratic Lagrangian (3) and an interaction term quantized as a
perturbation.

For instance, let the Lagrangian (3) be hyperregular, i.e., the matrix function a
is nondegenerate. Then there exists a unique associated Hamiltonian system whose
HamiltonianH is quadratic in momenta pµ

i , and so is the LagrangianLH (1). If the
matrix function a is positive-definite on an Euclidean space–time, the generating
functional (2) is a Gaussian integral of momenta pµ

i (x). Integrating Z with respect
to pµ

i (x), one restarts the generating functional of quantum field theory with the
original Lagrangian L (3). We extend this result to field theories with almost-
regular Lagrangians L (3), e.g., Yang–Mills gauge theory. The key point is that,
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though such a Lagrangian L yields constraints and admits different associated
Hamiltonians H, all the Lagrangians LH coincide on the constraint manifold, and
we have a unique constrained Hamiltonian system which is quasi-equivalent to the
original Lagrangian one (Giachetta et al., 1997, 1999).

2. COVARIANT HAMILTONIAN FIELD THEORY

We follow the geometric formulation of classical field theory where classical
fields are represented by sections of fiber bundles. Let Y → X be a smooth fiber
bundle provided with bundle coordinates (xµ, yi ). The configuration space of
Lagrangian field theory on Y is the first-order jet manifold J 1Y of Y . It is equipped
with the bundle coordinates (xµ, yi , yi

µ) compatible with the composite fibration

J 1Y
π1

0−→Y
π−→X.

Any section s of Y → X is prolonged to the section J 1s of J 1Y → X such that
yi
µ ◦ J 1s = ∂µsi . A first-order Lagrangian is defined as a horizontal density

L = Lω : J 1Y → n∧ T ∗ X, ω = dx1 ∧ · · · dxn , n = dim X, (4)

on the jet manifold J 1Y . The corresponding Euler–Lagrange equations are given
by the subset (

∂i − dλ∂
λ
i

)
L = 0, dλ = ∂λ + yi

λ∂i + yi
λµ∂

µ

i , (5)

of the second-order jet manifold J 2Y of Y coordinated by (xµ, yi , yi
λ, yi

λµ). A
section s of Y → X is a solution of these equations if its second jet prolongation
J 2s lives in the subset (5).

The phase space of covariant (polysymplectic) Hamiltonian field theory on
Y is the Legendre bundle

� = n∧ T ∗ X ⊗
Y

V ∗Y ⊗
Y

T X = V ∗Y ∧ ( n−1∧ T ∗ X
)
, (6)

where V ∗Y is the vertical cotangent bundle of Y → X . The Legendre bundle � is
equipped with the holonomic bundle coordinates (xλ, yi , pµ

i ) compatible with the
composite fibration

�
πY−→ Y

π−→ X.

It is endowed with the canonical polysymplectic form

� = dpλ
i ∧ dyi ∧ ω ⊗ ∂λ.

A covariant Hamiltonian H on � (6) is defined as a section p = −H of the trivial
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one-dimensional fiber bundle

ZY = T ∗Y ∧ ( n−1∧ T ∗ X
) → �, (7)

equipped with holonomic bundle coordinates (xλ, yi , pµ

i , p). This fiber bundle is
provided with the canonical multisymplectic Liouville form

 = pω + pλ
i dyi ∧ ωλ, ωλ = ∂λ�ω.

The pull-back of  onto � by a Hamiltonian H is a Hamiltonian form

H = H∗Y = pλ
i dyi ∧ ωλ − Hω (8)

on �. The corresponding covariant Hamilton equations on � are given by the
closed submanifold

yi
λ = ∂ i

λH, pλ
λi = −∂iH (9)

of the jet manifold J 1� of �. A section r of � → X is a solution of these equations
if its jet prolongation J 1r lives in the submanifold (9).

Proposition 1. A section r of � → X is a solution of the covariant Hamilton
equations (9) iff it satisfies the condition r∗(u�d H ) = 0 for any vertical vector
field u on � → X.

Proposition 2. A section r of � → X is a solution of the covariant Hamilton
equations (9) iff it is a solution of the Euler–Lagrange equations for the first-order
Lagrangian

LH = h0(H ) = LHω = (
pλ

i yi
λ − H

)
ω (10)

on J 1�, where h0 sends exterior forms on � onto horizontal exterior forms on
J 1� → X by the rule h0(dyi ) = yi

λdxλ.
Note that, for any section r of � → X , the pull-backs r∗ H and J 1r∗LH

coincide. This fact and Proposition 2 motivate us to quantize covariant Hamiltonian
field theory with a HamiltonianH on� as a Lagrangian system with the Lagrangian
LH (10).

Furthermore, let iN : N → � be a closed imbedded subbundle of the Legen-
dre bundle � → Y which is regarded as a constraint space of a covariant Hamilto-
nian field system with a Hamiltonian H. This Hamiltonian system is restricted to
N as follows. Let HN = i∗

N H be the pull-back of the Hamiltonian form H (8) onto
N . The constrained Hamiltonian form HN defines the constrained Lagrangian

L N = h0(HN ) = (
J 1iN

)∗
LH (11)

on the jet manifold J 1 NL of the fiber bundle NL → X . The Euler–Lagrange equa-
tions for this Lagrangian are called the constrained Hamilton equations.
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Note that, in fact, the Lagrangian LH (10) is the pull-back onto J 1� of the
horizontal form LH on the bundle product � ×

Y
J 1Y over Y by the canonical map

J 1� → � ×
Y

J 1Y . Therefore, the constrained Lagrangian L N (11) is simply the

restriction of LH to N ×
Y

J 1Y .

Proposition 3. A section r of the fiber bundle N → X is a solution of constrained
Hamilton equations iff it satisfies the condition r∗(uN �d H ) = 0 for any vertical
vector field uN on N → X.

It follows from Proposition 1 and Proposition 3 that any solution of the
covariant Hamilton equations (9) which lives in the constraint manifold N is also
a solution of the constrained Hamilton equations on N . This fact motivates us
to quantize covariant Hamiltonian field theory on a constraint manifold N as a
Lagrangian system with the pull-back Lagrangian L N (11).

Since a constraint manifold is assumed to be a closed imbedded submanifold
of �, there exists its open neighborhood U which is a fibered manifold U → N .
If � is a fibered manifold πN : � → N over N , it is often convenient to quantize
a Lagrangian system on � with the pull-back Lagrangian π∗

N L N , but integration
of the corresponding generating functional along the fibers of � → N must be
finite.

In order to verify this quantization scheme, let us associate to a Lagrangian
field system on Y a covarinat Hamiltonian system on �, then let us quantize
this Hamiltonian system and compare this quantization with that of an original
Lagrangian system.

3. ASSOCIATED LAGRANGIAN AND HAMILTONIAN SYSTEMS

In order to relate classical Lagrangian and covariant Hamiltonian field theo-
ries, let us recall that, besides the Euler–Lagrange equations, a Lagrangian L (4)
also yields the Cartan equations which are given by the subset(

y j
µ − y j

µ

)
∂λ

i ∂
µ

j L = 0, ∂iL − dλ∂
λ
i L + (

y j
µ − y j

µ

)
∂i∂

µ

j L = 0,

dλ = ∂λ + yi
λ∂i + yi

λµ∂
µ

i , (12)

of the repeated jet manifold J 1 J 1Y coordinated by (xµ, yi , yi
λ, yi

λ, yi
λµ). A solu-

tion of the Cartan equations is a section s of the jet bundle J 1Y → X whose
jet prolongation J 1s lives in the subset (12). Every solution s of the Euler–
Lagrange equations (5) defines the solution J 1s of the Cartan equations (12).
If s is a solution of the Cartan equations and s = J 1s, then s is a solution of the
Euler–Lagrange equations. If a Lagrangian L is regular, the Eqs. (5) and (12) are
equivalent.
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Any Lagrangian L (4) yields the Legendre map

L̂ : J 1Y−→
Y

�, pλ
i ◦ L̂ = ∂λ

i L, (13)

over Id Y whose image NL = L̂(J 1Y ) is called the Lagrangian constraint space. A
Lagrangian L is said to be hyperregular if the Legendre map (13) is a diffeomor-
phism. A Lagrangian L is called almost-regular if the Lagrangian constraint space
is a closed imbedded subbundle iN : NL → � of the Legendre bundle � → Y
and the surjection L̂ : J 1Y → NL is a submersion (i.e., a fibered manifold) whose
fibers are connected. Conversely, any Hamiltonian H yields the Hamiltonian map

Ĥ : � −→
Y

J 1Y, yi
λ ◦ Ĥ = ∂ i

λH. (14)

A Hamiltonian H on � is said to be associated to a Lagrangian L on J 1Y if
H satisfies the relations

L̂ ◦ Ĥ ◦ L̂ = L̂ , pµ

i = ∂
µ

i L
(
xµ, yi , ∂

j
λH

)
,

(
xµ, yi , pµ

i

) ∈ NL , (15)

Ĥ∗LH = Ĥ∗L , pµ

i ∂ i
µH − H = L

(
xµ, y j , ∂

j
λH

)
. (16)

If an associated HamiltonianH exists, the Lagrangian constraint space NL is given
by the coordinate relations (15) and Ĥ ◦ L̂ is a projector from � onto NL .

For instance, any hyperregular Lagrangian L admits a unique associated
Hamiltonian H such that

Ĥ = L̂−1, H = pµ

i L̂−1i
µ − L

(
xλ, yi , L̂−1i

λ

)
.

In this case, any solution s of the Euler–Lagrange equations (5) defines the solution
r = L̂ ◦ J 1s, of the covariant Hamilton equations (9). Conversely, any solution r
of these Hamilton equations yields the solution s = πY ◦ r of the Euler–Lagrange
equations (5).

A degenerate Lagrangian need not admit an associated Hamiltonian. If such a
Hamiltonian exists, it is not necessarily unique. Let us restrict our consideration to
almost-regular Lagrangians. From the physical viewpoint, the most of Lagrangian
field theories is of this type. From the mathematical one, this notion of degeneracy is
particularly appropriate for the study of relations between Lagrangian and covariant
Hamiltonian formalisms as follows.

Theorem 4. Let L be an almost-regular Lagrangian and H an associated
Hamiltonian. Let a section r of � → X be a solution of the covariant Hamil-
ton equations (9) for H. If r lives in the constraint manifold NL, then s = πY ◦ r
satisfies the Euler–Lagrange equations (5) for L, while s = Ĥ ◦ r obeys the Car-
tan equations (12). Conversely, let s be a solution of the Cartan equations (12) for
L. If H satisfies the relation

Ĥ ◦ L̂ ◦ s = J 1
(
π1

0 ◦ s
)
,
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the section r = L̂ ◦ s of the Legendre bundle � → X is a solution of the Hamilton
equations (9) for H. If s = J 1s, we obtain the relation between solutions of the
Euler–Lagrange equations and the covariant Hamilton ones.

By virtue of Theorem 4, one need a set of different associated Hamiltonians
in order to recover all solutions of the Euler–Lagrange and Cartan equations for
an almost-regular Lagrangian L . We can overcome this ambiguity as follows.

Proposition 5. LetH,H′ be two different Hamiltonians associated to an almost-
regular Lagrangian L. Let H, H ′ be the corresponding Hamiltonian forms (8).
Their pull-backs i∗

N H and i∗
N H ′ onto the Lagrangian constraint manifold NL

coincide with each other.

It follows that, if an almost-regular Lagrangian admits associated Hamilto-
nians H, it defines a unique constrained Hamiltonian form HN = i∗

N H on the
Lagrangian constraint manifold NL and a unique constrained Lagrangian L N =
h0(HN ) (11) on the jet manifold J 1 NL of the fiber bundle NL → X . For any Hamil-
tonian H associated to L , every solution r of the Hamilton equations which lives
in the Lagrangian constraint space NL is a solution of the constrained Hamilton
equations for L N .

Theorem 6. Let an almost-regular Lagrangian L admit associated Hamiltoni-
ans. A section s of the jet bundle J 1Y → X is a solution of the Cartan equations for
L iff L̂ ◦ s is a solution of the constrained Hamilton equations. In particular, any
solution r of the constrained Hamilton equations provides the solution s = Ĥ ◦ r
of the Cartan equations.

Theorem 6 shows that the constrained Hamilton equations and the Car-
tan equations are quasi-equivalent. Thus, one can associate to an almost-regular
Lagrangian L (4) a unique constrained Lagrangian system on the constraint
Lagrangian manifold NL (15). Let us compare quantizations of these Lagrangian
systems on Y and NL ⊂ � in the case of an almost-regular quadratic
Lagrangian L .

4. QUADRATIC DEGENERATE SYSTEMS

Given a fiber bundle Y → X , let us consider a quadratic Lagrangian L (3),
where a, b, and c are local functions on Y . This property is coordinate-independent
since J 1Y → Y is an affine bundle modelled over the vector bundle T ∗ X⊗

Y
V Y ,

where V Y denotes the vertical tangent bundle of Y → X . The associated Legendre
map (13) reads

pλ
i ◦ L̂ = aλµ

i j y j
µ + bλ

i . (17)
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Let a Lagrangian L (3) be almost-regular, i.e., the matrix function a is a linear
bundle morphism

a : T ∗ X ⊗
Y

V Y → �, pλ
i = aλµ

i j y j
µ, (18)

of constant rank, where (xλ, yi , yi
λ) are bundle coordinates on T ∗ X ⊗

Y
V Y . Then

the Lagrangian constraint space NL (17) is an affine subbundle of the Legendre
bundle � → Y . Hence, NL → Y has a global section. For the sake of simplicity,
let us assume that it is the canonical zero section 0̂(Y ) of � → Y . The kernel of the
Legendre map (17) is also an affine subbundle of the affine jet bundle J 1Y → Y .
Therefore, it admits a global section

� : Y → Ker L̂ ⊂ J 1Y, aλµ

i j � j
µ + bλ

i = 0, (19)

which is a connection on Y → X . If the Lagrangian (3) is regular, the connection
(19) is unique.

The forthcoming theorems are the key points of our analysis of quadratic
degenerate systems (Giachetta et al., 1997, 1999).

Theorem 7. There exists a linear bundle morphism

σ : � →
Y

T ∗ X ⊗
Y

V Y, yi
λ ◦ σ = σ

i j
λµ pµ

j , (20)

such that

a ◦ σ ◦ a = a, aλµ

i j σ jk
µαaαν

kb = aλν
ib . (21)

Note that σ is not unique, but it falls into the sum σ = σ0 + σ1 such that

σ0 ◦ a ◦ σ0 = σ0, a ◦ σ1 = σ1 ◦ a = 0, (22)

where σ0 is uniquely defined. For instance, there exists a nondegenerate map σ

(20).

Theorem 8. There are the splittings

J 1Y = S(J 1Y ) ⊕
Y
F(J 1Y ) = Ker L̂ ⊕

Y
Im (σ0 ◦ L̂), (23)

yi
λ = S i

λ + F i
λ = [

yi
λ − σ0

ik
λα

(
aαµ

k j y j
µ + bα

k

)] + [
σ0

ik
λα

(
aαµ

k j y j
µ + bα

k

)]
,

� = R(�) ⊕
Y
P(�) = Ker σ0 ⊕

Y
NL , (24)

pλ
i = Rλ

i + Pλ
i = [

pλ
i − aλµ

i j σ0
jk
µα pα

k

] + [
aλµ

i j σ0
jk
µα pα

k

]
.

The relations (22) lead to the equalities

σ0
jk
µαRα

k = 0, σ1
jk
µαPα

k = 0, Rλ
i F i

λ = 0. (25)
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By virtue of these equalities, the Lagrangian (3) takes the form

L = Lω, L = 1

2
aλµ

i j F i
λF j

µ + c′. (26)

One can show that, this Lagrangian admits a set of associated Hamiltonians

H� = (
Rλ

i + Pλ
i

)
�i

λ + 1

2
σ0

i j
λµPλ

i P
µ

j + 1

2
σ1

i j
λµRλ

i R
µ

j − c′ (27)

indexed by connections � (19). Accordingly, the Lagrangian constraint manifold
(17) is given by the reducible constraints

Rλ
i = pλ

i − aλµ

i j σ0
jk
µα pα

k = 0. (28)

Given a Hamiltonian H� , the corresponding Lagrangian (10) reads

LH�
= Rλ

i

(
S i

λ − �i
λ

) + Pλ
i F i

λ − 1

2
σ0

i j
λµPλ

i P
µ

j − 1

2
σ1

i j
λµRλ

i R
µ

j + c′. (29)

Its restriction (11) to the Lagrangian constraint manifold NL (28) is

L N = LN ω, LN = Pλ
i F i

λ − 1

2
σ0

i j
λµPλ

i P
µ

j + c′. (30)

It is independent of the choice of a Hamiltonian (27). Note that the Lagrangian
LN may admit gauge symmetries due to the term Pλ

i F i
λ.

The Hamiltonian H� yields the Hamiltonian map Ĥ� (14) and the projector

T = L̂ ◦ Ĥ� , pλ
i ◦ T = T λ j

iµ pµ

j = aλν
ik σ0

k j
νµ pµ

j = Pλ
i , (31)

from � onto its summand NL in the decomposition (24). It obeys the relations

σ ◦ T = σ0, T ◦ a = a. (32)

The projector T (31) is a linear morphism over Id Y . Therefore, T : � → NL is
a vector bundle. Let us consider the pull-back L� = T ∗L N of the constrained
Lagrangian L N (30) onto �. By virtue of the relations (25), it is given by the
coordinate expression

L� = L�ω, L� = pλ
i F i

λ − 1

2
σ0

i j
λµ pλ

i pµ

j + c′. (33)

This Lagrangian is gauge-invariant under the subgroup of the gauge group of ver-
tical automorphisms � of the affine bundle � → Y such that T ◦ � = T . Clearly,
this subgroup coincides with the gauge group Aut Ker σ0 of vertical automorphisms
of the vector bundle Ker σ0 → Y .

In fact, the splittings (23) and (24) result from the splitting of the vector
bundle

T ∗ X ⊗
Y

V Y = Ker a ⊕
Y

E ,
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which can be provided with the adapted coordinates (ya , y A) such that a (18)
is brought into a diagonal matrix with nonvanishing components aAA. Then the
Legendre bundle � → Y (6) is endowed with the dual (nonholonomic) coordinates
(pa , pA) where pA are coordinates on the Lagrangian constraint manifold NL ,
given by the irreducible constraints pa = 0. Written relative to these coordinates,
σ0 becomes the diagonal matrix

σ AA
0 = (aAA)−1, σ aa

0 = 0, (34)

while σ Aa
1 = σ AB

1 = 0. Moreover, one can choose the coordinates ya (accordingly,
pa) and the map σ (20) such that σ1 becomes a diagonal matrix with nonvanishing
positive components σ aa

1 = V−1, where Vω is a volume form on X . We further
follow this choice of the adapted coordinates (pa , pA). Let us write

pa = Ma
i
λ pλ

i , pA = MA
i
λ pλ

i , (35)

where M are the matrix functions on Y obeying the relations

Ma
i
λaλµ

i j = 0, M−1λa
i σ0

i j
λµ = 0, Ma

i
λPλ

i = 0, MA
i
λRλ

i = 0.

Then the Lagrangian L N (30) with respect to the adapted coordinates (pa , pA)
takes the form

LN = M−1λA
i pAF i

λ − 1

2

∑
A

(aAA)−1(pA)2 + c′, (36)

5. QUANTIZATION

Let us quantize a Lagrangian system with the Lagrangian L N (30) on the
constraint manifold NL (28). In the framework of a perturbative quantum field
theory, we should assume that X = R

n and Y → X is a trivial affine bundle. It
follows that both the original coordinates (xλ, yi , pλ

i ) and the adapted coordinates
(xλ, yi , pa , pA) on the Legendre bundle � are global. Passing to field theory on
an Euclidean space R

n , we also assume that the matrix a in the Lagrangian L (26)
is positive-definite, i.e., aAA > 0.

Let us start from a Lagrangian (30) without gauge symmetries. Since the
Lagrangian constraint space NL can be equipped with the adapted coordinates pA,
the generating functional of Euclidean Green functions of the Lagrangian system
in question reads

Z = N−1
∫

exp

{ ∫ (
LN + 1

2
tr ln σ 0 + i Ji yi + i J A pA

)
ω

}

×
∏

x

[dpA(x)][dy(x)], (37)



Covariant Hamiltonian Field Theory: Path Integral Quantization 1327

where LN is given by the expression (36) and σ 0 is the square matrix

σ AB
0 = M−1λA

i M−1µB
j σ0

i j
λµ = δAB(aAA)−1.

The generating functional (37) is a Gaussian integral of variables pA(x). Its inte-
gration with respect to pA(x) under the condition J A = 0 restarts the generating
functional

Z = N−1
∫

exp

{ ∫ (
L + i Ji yi

)
ω

} ∏
x

[dy(x)], (38)

of the original Lagrangian field system on Y with the Lagrangian (26). However,
the generating functional (37) can not be rewritten with respect to the original
variables pµ

i , unless a is a nondegenerate matrix function.
In order to overcome this difficulty, let us consider a Lagrangian system on the

whole Legendre manifold � with the Lagrangian L� (33). Since this Lagrangian
is constant along the fibers of the vector bundle � → NL , an integration of the
generating functional of this field model with respect to variables pa(x) should be
finite. One can choose the generating functional in the form

Z = N−1
∫

exp

{ ∫ (
L� − 1

2
σ1

i j
λµ pλ

i pµ

j + 1

2
tr ln σ + i Ji yi

+ i J i
µ pµ

i

)
ω

} ∏
x

[dp(x)][dy(x)]. (39)

Its integration with respect to momenta pλ
i (x) restarts the generating functional (38)

of the original Lagrangian system on Y . In order to obtain the generating functional
(39), one can follow a procedure of quantization of gauge-invariant Lagrangian
systems. In the case of the Lagrangian L� (33), this procedure is rather trivial, since
the space of momenta variables pa(x) coincides with the translation subgroup of
the gauge group Aut Ker σ0.

Now let us suppose that the Lagrangian L N (30) and, consequently, the
Lagrangian L� (33) are invariant under some gauge group G X of vertical automor-
phisms of the fiber bundle Y → X (and the induced automorphisms of � → X )
which acts freely on the space of sections of Y → X . Its infinitesimal generators
are represented by vertical vector fields u = ui (xµ, y j )∂i on Y → X which give
rise to the vector fields

u = ui∂i − ∂ j u
i pλ

i ∂
j
λ + dλui∂λ

i , dλ = ∂λ + yi
λ∂i , (40)

on � ×
Y

J 1Y . Let us also assume that G X is indexed by m parameter functions

ξ r (x) such that u = ui (xλ, y j , ξ r )∂i , where

ui (xλ, y j , ξ r ) = ui
r (xλ, y j )ξ r + uiµ

r (xλ, y j )∂µξ r (41)
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are linear first order differential operators on the space of parameters ξ r (x). The
vector fields u(ξ r ) must satisfy the commutation relations

[u(ξ q ), u(ξ ′p)] = u
(
cr

pqξ
′pξ q

)
,

where cr
pq are structure constants. The Lagrangian L� (33) is invariant under the

above mentioned gauge transformations iff its Lie derivative Lu L� along vector
fields (40) vanishes, i.e.,(

ui∂i − ∂ j u
i pλ

i ∂
j
λ + dλui∂λ

i

)
L� = 0. (42)

Since the operator Lu is linear in momenta pµ

i , the condition (42) falls into the
independent conditions(

uk∂k − ∂ j u
k pν

k ∂
j
ν + dνu j∂ν

j

)(
pλ

i F i
λ

) = 0, (43)(
uk∂k − ∂ j u

k pν
k ∂

j
ν

)(
σ0

i j
λµ pλ

i pµ

j

) = 0, (44)

ui∂i c
′ = 0. (45)

It follows that the Lagrangian L� is gauge-invariant iff its three summands are
separately gauge-invariant.

Note that, if the Lagrangian L� on � is gauge-invariant, the original
Lagrangian L (26) is also invariant under the same gauge transformations. In-
deed, one obtains at once from the condition (43) that

u
(
F i

µ

) = ∂ j u
iF j

µ, (46)

i.e., the quantity F is transformed as the dual of momenta p. Then the condition
(44) shows that the quantity σ0 p is transformed by the same law asF . It follows that
the term aFF in the Lagrangian L (26) is transformed exactly as a(σ0 p)(σ0 p) =
σ0 pp, i.e., is gauge-invariant. Then this Lagrangian is gauge-invariant due to the
equality (45).

Since S i
λ = yi

λ − F i
λ, one can easily derive from the formula (46) the trans-

formation law

u
(
S i

µ

) = dµui − ∂ j u
iF j

µ = dµui − ∂ j u
i
(
y j
µ − S j

µ

) = ∂µui + ∂ j u
iS j

µ (47)

of S. A glance at this expression shows that the gauge group G X acts freely on the
space of sections S(x) of the fiber bundle Ker L̂ → Y in the splitting (23). Let the
number m of parameters of the gauge group G X do not exceed the fiber dimension
of Ker L̂ → Y . Then some combinations br µ

i S i
µ of S i

µ can be used as the gauge
condition

br µ

i S i
µ(x) − αr (x) = 0,

similar to the generalized Lorentz gauge in Yang–Mills gauge theory.
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Turn now to quantization of a Lagrangian system with the gauge-invariant
Lagrangian L� (33). In accordance with the well-known quantization procedure,
let us modify the generating functional (39) as follows

Z = N−1
∫

exp

{ ∫ (
L� − 1

2
σ1

i j
λµ pλ

i pµ

j + 1

2
tr ln σ − 1

2
hrsα

rαs + i Ji yi

+ i J i
µ pµ

i

)
ω

}
�

∏
x

r× δ
(
brµ

i S i
µ(x) − αr (x)

)
[dα(x)][dp(x)][dy(x)]

= N ′−1
∫

exp

{ ∫ (
L� − 1

2
σ

i j
1λµ pλ

i pµ

j + 1

2
tr ln σ − 1

2
hrsbrµ

i bsλ
j S i

µS
j
λ

+ i Ji yi + i J i
µ pµ

i

)
ω

}
�

∏
x

[dp(x)][dy(x)], (48)

where ∫
exp

{ ∫ (
−1

2
hrsα

rαs

)
ω

} ∏
x

[dα(x)]

is a Gaussian integral, and the factor � is defined by the condition

�

∫ ∏
x

r× δ
(
u(ξ )

(
brµ

i S i
µ

))
[dξ (x)] = 1.

We have the linear second order differential operator

Mr
s ξ

s = u(ξ )
(
br µ

i S i
µ(x)

) = br µ

i

(
∂µui (ξ ) + ∂ j u

i (ξ )S j
µ

)
(49)

on the parameter functions ξ (x), and obtain � = det M . Then the generating func-
tional (48) takes the form

Z = N ′−1
∫

exp

{ ∫ (
L� − 1

2
σ1

i j
λµ pλ

i pµ

j + 1

2
tr ln σ − 1

2
hrsbr µ

i bsλ
jS i

µS
j
λ

−cr Mr
s cs + i Ji yi + i J i

µ pµ

i

)
ω

} ∏
x

[dc][dc][dp(x)][dy(x)], (50)

where cr , cs are odd ghost fields. Integrating Z (50) with respect to momenta under
the condition J i

µ = 0, we come to the generating functional

Z = N ′−1
∫

exp

{ ∫ (
L − 1

2
hrsbrµ

i bsλ
j S i

µS
j
λ − cr Mr

s cs + i Ji yi

)
ω

}

×
∏

x

[dc][dc][dy(x)] (51)

of the original field model on Y with the gauge-invariant Lagrangian L (26).
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Note that the Lagrangian

L′ = L − 1

2
hrsbrµ

i bsλ
j S i

µS
j
λ − cr Mr

s cs (52)

fails to be gauge-invariant, but it admits the BRST symmetry whose odd operator
reads

ϑ = ui (xµ, yi , cs)∂i + dλui (xµ, yi , cs)∂λ
i + vr

(
xµ, yi , yi

µ

) ∂

∂cr

+ vr (xµ, yi , cs)
∂

∂cr
+ dλvr (xµ, yi , cs)

∂

∂cr
λ

+ dµdλvr (xµ, yi , cs)
∂

∂cr
µλ

,

(53)

dλ = ∂λ + yi
λ∂i + yi

λµ∂
µ

i + cr
λ

∂

∂cr
+ cr

λµ

∂

∂cr
µ

.

Its components ui (xµ, yi , cs) are given by the expression (41) where parameter
functions ξ r (x) are replaced with the ghosts cr . The components vr and vr of the
BRST operator ϑ can be derived from the condition

ϑ(L′) = −hrs Mr
q bsλ

jS
j
λcq − vr Mr

q cq + crϑ
(
ϑ

(
br λ

jS
j
λ

)) = 0

of the BRST invariance of L′. This condition falls into the two independent

relations

hrs Mr
q bsλ

j S
j
λ + vr Mr

q = 0,

ϑ(cq )
(
ϑ(cp)

(
br λ

jS
j
λ

)) = u(cp)
(
u(cq )

(
br λ

jS
j
λ

)) + u(vr )
(
br λ

jS
j
λ

)
= u

(
1

2
cr

pqcpcq + vr

)(
br λ

jS
j
λ

) = 0.

Hence, we obtain

vr = −hrsbsλ
jS

j
λ , vr = −1

2
cr

pqcpcq . (54)

6. HAMILTONIAN GAUGE THEORY

For example, let us consider gauge theory of principal connections on a
principal bundle P → X with a structure Lie group G. Principal connections on
P → X are represented by sections of the affine bundle

C = J 1 P/G → X, (55)

modelled over the vector bundle T ∗ X ⊗ VG P [5]. Here, VG P = V P/G is the
fiber bundle in Lie algebras g of the group G. Given the basis {εr } for g, we obtain
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the local fiber bases {er } for VG P . The connection bundle C (55) is coordinated by
(xµ, ar

µ) such that, written relative to these coordinates, sections A = Ar
µdxµ ⊗

er of C → X are the familiar local connection one-forms, regarded as gauge
potentials.

There is one-to-one correspondence between the sections ξ = ξ r er

of VG P → X and the vector fields on P which are infinitesimal generators of
one-parameter groups of vertical automorphisms (gauge transformations) of P .
Any section ξ of VG P → X yields the vector field

u(ξ ) = ur
µ

∂

∂ar
µ

= (
cr

pqa p
µξ q + ∂µξ r

) ∂

∂ar
µ

(56)

on C , where cr
pq are the structure constants of the Lie algebra g.

The configuration space of gauge theory is the jet manifold J 1C equipped
with the coordinates (xλ, am

λ , am
µλ). It admits the canonical splitting (23) given by

the coordinate expression

ar
µλ = Sr

µλ + F r
µλ = 1

2

(
ar

µλ + ar
λµ − cr

pqa p
µaq

λ

) + 1

2

(
ar

µλ − ar
λµ + cr

pqa p
µaq

λ

)
,

(57)

where F is the strength of gauge fields up to the factor 1/2. The Yang–Mills
Lagrangian on the configuration space J 1C reads

LYM = aG
pq gλµgβνF p

λβFq
µν

√
| g | ω, g = det(gµν), (58)

where aG is a non-degenerate G-invariant metric in the dual of the Lie algebra of

g and g is a pseudo-Riemannian metric on X .
The phase space � (6) of the gauge theory is endowed with the canonical coor-

dinates (xλ, a p
λ , pµλ

q ). It admits the canonical splitting (24) given by the coordinate
expression

pµλ
m = Rµλ

m + Pµλ
m = p(µλ)

m + p[µλ]
m = 1

2

(
pµλ

m + pλµ
m

) + 1

2

(
pµλ

m − pλµ
m

)
. (59)

With respect to this splitting, the Legendre map induced by the Lagrangian

(58) takes the form

p(µλ)
m ◦ L̂Y M = 0, (60)

p[µλ]
m ◦ L̂Y M = 4aG

mngµαgλβFn
αβ

√
|g|. (61)

The equalities (60) define the Lagrangian constraint space NL of Hamiltonian
gauge theory. Obviously, it is an imbedded submanifold of �, and the Lagrangian
LYM is almost-regular.
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In order to construct an associated Hamiltonian, let us consider a connection
� (19) on the fiber bundle C → X which take their values into Ker L̂ , i.e.,

�r
λµ − �r

µλ + cr
pqa p

λ aq
µ = 0.

Given a symmetric linear connection K on X and a principal connection B on
P → X , this connection reads

�r
λµ = 1

2

[
∂µ Br

λ + ∂λ Br
µ − cr

pqa p
λ aq

µ + cr
pq

(
a p

λ Bq
µ + a p

µ Bq
λ

)] − K β

λµ

(
ar

β − Br
β

)
.

The corresponding Hamiltonian (27) associated to LYM is

H� = pλµ
r �r

λµ + amn
G gµνgλβ p[µλ]

m p[νβ]
n

√
|g|.

Then we obtain the Lagrangian (30)

LN = p[λµ]
r F r

λµ − amn
G gµνgλβ p[µλ]

m p[νβ]
n

√
|g|

on the Lagrangian constraint manifold (60) and its pull-back (33)

L� = L�ω, L� = pλµ
r F r

λµ − amn
G gµνgλβ p[µλ]

m p[νβ]
n

√
|g|, (62)

onto �.
Both the Lagrangian LYM (58) on C and the Lagrangian L� (62) on � are

invariant under gauge transformations whose infinitesimal generators are the lifts

J 1u(ξ ) = (
cr

pqa p
µξ q + ∂µξ r

) ∂

∂ar
µ

+ (
cr

pq

(
a p

λµξ q + a p
µ∂λξ

q
) + ∂λ∂µξ r

) ∂

∂ar
λµ

,

u(ξ ) = J 1u(ξ ) − cr
pq pλµ

r ξ q ∂

∂pλµ
p

of the vector fields (56) onto J 1C and � ×
C

J 1C , respectively. We have the trans-

formation laws

J 1u(ξ )
(
F r

λµ

) = cr
pqF

p
λµξ q , J 1u(ξ )

(
Sr

λµ

) = cr
pqS

p
λµξ q + cr

pqa p
µ∂λξ

q + ∂λ∂µξ r .

Therefore, one can choose the gauge conditions

gλµSr
λµ(x) − αr (x) = 1

2
gλµ

(
∂λar

µ(x) + ∂µar
λ(x)

) − αr (x) = 0,

which are the familiar generalized Lorentz gauge. The corresponding second-order
differential operator (49) reads

Mr
s ξ

s = gλµ

(
1

2
cr

pq

(
∂λa p

µ + ∂µa p
λ

)
ξ q + cr

pqa p
µ∂λξ

q + ∂λ∂µξ r

)
.
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Passing to the Euclidean space and repeating the quantization procedure in
Section 5, we come to the generating functional

Z = N−1
∫

exp

{ ∫ (
pλµ

r F r
λµ − amn

G gµνgλβ pµλ
m pνβ

n

√
|g| − 1

8
aG

rs gανgλµ

× (
∂αar

ν + ∂νar
α

)(
∂λas

µ + ∂µas
λ

) − gλµcr

(
1

2
cr

pq

(
∂λa p

µ + ∂µa p
λ

)
cq

+ cr
pqa p

µcq
λ + cr

λµ

)
+ i Jµ

r ar
µ + i J r

µλ pµλ
r

)
ω

} ∏
x

[dc][dc][dp(x)][da(x)].

Its integration with respect to momenta restarts the familiar generating functional
of gauge theory.
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Hélein, F. and Kouneiher, J. (2002). Finite-dimensional formalism for gauge and quantum field theories.
Journal of Mathematical Physics 43, 2306.

Gotay, M. (1991). A multisymplectic framework for classical field theory and the calculus of variations.
II. Space + time decomposition. Differential Geometry and Its Application 1, 375.

Kanatchikov, I. (1999). De Donder Weyl theory and hypercomplex extensions of quantum mechanics
to field theory. Reports on Mathematical Physics 43, 157.

Sardanashvily, G. (1994). Multimomentum Hamiltonian formalism in quantum field theory. Interna-
tional Journal of Theoretical Physics 33, 2365.


