A Novel Fluorescent Sensor for Diammonium and Metal Ions Based on a Supramolecular Charge-Transfer Complex of Bis(aza-18-crown-6)-containing Dienone

Sergey P. Gromov^{*1,2}, Marina V. Fomina¹, Ilia P. Zdorovenko^{1,2}, Artem N. Fakhrutdinov³, Evgeny N. Ushakov^{1,4}

¹Photochemistry Center of RAS, FSRC "Crystallography and Photonics", Russian Academy of Sciences, Moscow, Russian Federation.

²Chemistry Department, M. V. Lomonosov Moscow State University, Moscow, Russian Federation.

³N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation.

⁴Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russian Federation.

* Correspondence: Sergey P. Gromov: <u>spgromov@mail.ru</u>

CONTENT:

1	The ¹ H NMR spectra of compounds 1 , 2 , a mixture of compound 1 and 2 , a mixture of compound 1 and 3 (Figures S1-S5)
2	The NOESY NMR spectra of a mixture of compound 1 and 2 (Figure S6)4
3	The DOSY NMR spectra of compounds 1, 2 and a mixture of compound 1 and 2 (Figure S7)
4	Spectroscopy data for compounds 1, 2, a mixture of 1 and 2, a mixture of 1 and 2 in the presence of diammonium salt 3 and a mixture of 1 and 2 in the presence of $Ca(ClO_4)_2$ (Table S1)
5	Structures of dienone 1 and complex $1 \cdot 2$ in MeCN, as calculated by DFT (Figure S8)8
6	Cartesian coordinates for all atoms in the DFT calculated structures of dienone 1 and complex $1 \cdot 2$ in MeCN (Tables S2 and S3)

1 The ¹H NMR spectra of compounds 1, 2, a mixture of compound 1 and 2, a mixture of compound 1 and 3

Figure S1. ¹H NMR spectrum of compound 1; MeCN- d_3 , 25 °C.

Figure S2. ¹H NMR spectrum of compound **2**; MeCN- d_3 , 25 °C.

Figure S3. ¹H NMR spectrum an equimolar mixture of **1** and **2**; the reactant concentrations are 1×10^{-3} M; MeCN- d_3 , 25 °C.

Figure S4. ¹H NMR spectra in MeCN- d_3 at 25 °C: (**A**) compound **2**, (**B**) equimolar mixture of dienone **1** and **2**, and (**C**) compaund **1**; the reactant concentrations are 1×10^{-3} M.

Figure S5. ¹H NMR spectra in MeCN- d_3 at 25 °C: (A) compound 1 and (B) equimolar mixture of dienone 1 and 3; the reactant concentrations are 1×10^{-3} M.

2 The NOESY NMR spectra of a mixture of compound 1 and 2

Figure S6. Fragment of the NOESY spectrum of a mixture of compound 1 and viologen analog 2, MeCN- d_3 , 25 °C, the reactant concentrations are 2.4×10^{-3} M.

3 The DOSY NMR spectra of compounds 1, 2 and a mixture of compound 1 and 2

Figure S7. 2D DOSY NMR spectra: (A) 1 ($C_1 = 3 \times 10^{-3}$ M), (B) 2 ($C_2 = 3 \times 10^{-3}$ M), (C) equimolar mixture of 1 and 2; 500 MHz, MeCN- d_3 , 25 °C.

4 Spectroscopy data for compounds 1, 2, a mixture of 1 and 2, a mixture of 1 and 2 in the presence of diammonium salt 3 and a mixture of 1 and 2 in the presence of Ca(ClO₄)₂ (Table S1)

Table S1. Spectroscopy data for compounds 1, 2, a mixture of 1 and 2, a mixture of 1 and 2 in the presence of diammonium salt 3 and a mixture of 1 and 2 in the presence of $Ca(ClO_4)_2^a$

Compound	λ_{\max}^{abs} (nm)	$\epsilon_{max} (mol^{-1}dm^3 cm^{-1})$	$ \begin{array}{c} \lambda_{\max}^{em} \left(nm \right)^{b} \\ \left(\lambda_{ex} \ 440 \ nm \right) \end{array} $	$\varphi_{\rm f}^{\rm c}$ ($\lambda_{\rm ex}$ 440 nm)
dienone 1 (1×10 ⁻ ⁵ M)	466	64000	568	0.16
diammonium compound 2 $(1 \times 10^{-5} \text{ M})$	321	44000	-	-
equimolar mixture of 1 and 2 (reactant concentrations of 1×10^{-5} M)	442	39000	-	-
a mixture of 1 $(6 \times 10^{-7} \text{ M})$ and 2 in 1:8 ratio	-	-	568	0.01
the 1:8 mixture in the presence of diammonium salt 3 (9×10^{-6} M)	-	-	562	0.18
the 1:8 mixture in the presence of Ca(ClO ₄) ₂ $(1.8 \times 10^{-5} \text{ M})$			572	0.09

^{*a*} In MeCN at ambient temperature.

^b The corrected fluorescence spectrum.

^c The fluorescence quantum yields derived from the corrected fluorescence spectra.

Figure S8. Structures of dienone 1 (A) and complex 1.2 (B) in MeCN, as calculated by DFT.

6 Cartesian coordinates for all atoms in the DFT calculated structures of dienone 1 and complex 1.2 in MeCN (Tables S1 and S2).

Table S2. Cartesian coordinates for all atoms in the DFT calculated structure of dienone 1 (the first column is atomic numbers; the next three columns are coordinates in Å).

6	0.130539	2.422874	3.703355
1	0.208833	2.421216	4.792145
6	0.023524	1.200731	3.143406
6	0.000000	-0.000000	4.017105
6	-0.023524	-1.200731	3.143406
6	0.065682	-0.773932	1.700265
1	-0.715960	-1.238910	1.090539
1	1.025938	-1.074768	1.264984
6	-0.065682	0.773932	1.700265
1	-1.025938	1.074768	1.264984
1	0.715960	1.238910	1.090539
8	0.000000	-0.000000	5.242102
6	-0.130539	-2.422874	3.703355
1	-0.208833	-2.421216	4.792145
8	2.603093	9.643522	1.467792

5 Structures of dienone 1 and complex 1.2 in MeCN, as calculated by DFT

8	4.499494	9.944026	-0.747762
8	3.934011	9.812871	-3.649898
8	1.542311	8.577809	-4.706293
8	1.086852	7.485852	-2.056222
7	0.318170	7.677182	1.518705
6	0.173485	3.740149	3.089052
6	0.466749	4.851171	3.899359
6	0.538062	6.138485	3.398435
6	0.293294	6.400332	2.028044
6	-0.000292	5.282467	1.206738
1	-0.190799	5.414825	0.148246
6	-0.060579	4.001178	1.726015
6	0.566216	8.819039	2.384521
1	0.047564	8.677853	3.337015
1	0.128164	9.702493	1.911655
6	2.039050	9.093093	2.640005
6	3.996506	9.826141	1.598233
6	4.521608	10.668809	0.462966
6	5 150589	10 664047	-1 773645
6	5 204869	9 844661	-3 038661
6	3 960691	9.064884	-4 843833
6	2 592875	9.090197	-5 497637
6	1 696685	7 222998	-4 328340
6	2 155582	7.092043	-2 889844
6	1 448980	7.572043	-0 694229
1	2 253281	8 238007	-0.510242
1	1 806818	6 520572	-0.372235
6	0 197/36	7 904018	0.088012
1	0.6558/19	A 692146	4 958635
1	0.055045	6 9/2170	4.078200
1	0.772032	3 102127	1.0/0/13
1	-0.311443	9.801075	3 477002
1	2.145150	9.001075 8.163111	2 017406
1	2.339240 4 513332	8.103111	2.917400
1	4.313332	0.034422	2 542281
1	4.221297	11 596099	2.342201
1	5.920393	10.065748	0.370092
1	5.554422	10.903748	1 465000
1	0.180370	11.61/286	-1.403900
1	4.031318	10.206685	-1.9/1910
1	5.541002	10.290083	-3.721392
1	J.J47210 4 281558	0.024723 8.020707	-2.602270
1	4.201330	0.030797	-4.030397
1	4.067520	9.495402	-3.335117
1	2.319433	10.1201/4	-5.720182
1	2.004140	0.J4U//ð	-0.4493/8
1 1	2.39343/	0./01352	-4.990304
1	0./10013	0./41009	-4.423489
1	2.430000	0.040482	-2.081020
1	3.031420	1.131694	-2./08408
1	-0.01122/	ð.904334	-0.008018
1	-0.65/550	1.54/502	-0.312910
ð	-2.603093	-9.643522	1.467792

8	-4.499494	-9.944025	-0.747762
8	-3.934011	-9.812871	-3.649898
8	-1.542311	-8.577809	-4.706293
8	-1.086852	-7.485852	-2.056222
7	-0.318170	-7.677182	1.518705
6	-0.173485	-3.740149	3.089052
6	-0.466749	-4.851171	3.899359
6	-0.538062	-6.138485	3.398435
6	-0.293294	-6.400332	2.028044
6	0.000292	-5.282467	1.206738
1	0.190799	-5.414825	0.148246
6	0.060579	-4.001178	1.726015
6	-0.566216	-8.819039	2.384521
1	-0.047564	-8 677853	3 337015
1	-0 128164	-9 702493	1 911655
6	-2 039050	-9 093093	2 640005
6	-3 996506	-9 826141	1 598233
6	-4 521608	-10 668809	0.462966
6	5 150580	10 664047	1 773645
6	5 204860	0.844661	3 038661
6	3 060601	-9.044001	-3.038001
6	-3.900091	-9.004884	-4.043033
0	-2.392873	-9.090197	-3.49/05/
0	-1.090083	-7.222998	-4.528540
0	-2.155582	-7.092043	-2.889844
0	-1.448980	-7.512063	-0.694229
1	-2.255281	-8.238007	-0.510242
I	-1.806818	-6.520572	-0.372235
6	-0.19/436	-/.904018	0.088012
1	-0.655849	-4.692146	4.958635
1	-0.792832	-6.942172	4.078299
1	0.311445	-3.192127	1.049413
1	-2.145136	-9.801075	3.477002
1	-2.559246	-8.163111	2.917406
1	-4.513332	-8.854422	1.615986
1	-4.221297	-10.346050	2.542281
1	-3.920396	-11.586988	0.376092
1	-5.554422	-10.965748	0.704201
1	-6.180576	-10.902662	-1.465900
1	-4.631318	-11.614386	-1.971918
1	-5.941002	-10.296685	-3.721592
1	-5.547216	-8.824723	-2.802270
1	-4.281558	-8.030797	-4.638397
1	-4.687320	-9.493402	-5.553117
1	-2.319433	-10.126174	-5.720182
1	-2.664140	-8.540778	-6.449578
1	-2.395437	-6.701352	-4.996304
1	-0.716615	-6.741009	-4.425489
1	-2.436006	-6.046482	-2.681020
1	-3.031420	-7.731694	-2.708408
1	0.011227	-8.964554	-0.068618
1	0.657550	-7.347302	-0.312910

Table S3. Cartesian coordinates for all atoms in the DFT calculated structure of complex $1 \cdot 2$ (the first column is atomic numbers; the next three columns are coordinates in Å).

8	9.427300	1.026700	2.325200
8	7.753500	1.758100	4.411200
8	8.747900	-0.037600	6.358700
8	10.356900	-2.083900	5.341500
8	9.956300	-3.010200	2.696000
7	8.588900	-1.349200	0.757500
6	5.455200	0.612500	0.604000
1	5.108800	1.600200	0.899000
6	6.782300	0.275800	0.803600
1	7.457900	0.983400	1.274300
6	7.260000	-1.001600	0.448000
6	6.351700	-1.910000	-0.122800
1	6.673400	-2.898100	-0.429100
6	9.640200	-0.367200	0.428700
1	9.196800	0.463500	-0.127300
1	10.374500	-0.841000	-0.232700
6	10.350400	0.198300	1.648200
1	11.222700	0.784700	1.324800
1	10.701800	-0.605500	2.314900
6	9.955200	1.707900	3.445700
1	10.813600	2.329300	3.152800
1	10.288500	0.990500	4.214300
6	8.838600	2.577100	3.980400
1	9.205300	3.208000	4.796800
1	8.471900	3.227900	3.178700
6	7.434500	1.861300	5.792300
1	6.516900	1.281100	5.929200
1	7.230000	2.906100	6.059100
6	8.524100	1.317900	6.690200
1	9.456200	1.890300	6.570800
1	8.206000	1.414100	7.739100
6	9.808900	-0.592300	7.110500
1	9.589400	-0.539900	8.186700
1	10.738400	-0.035500	6.920900
6	9.983900	-2.033200	6.710200
1	10.769100	-2.488300	7.328900
1	9.050700	-2.593300	6.868400
6	10.663600	-3.406900	4.930000
1	9.790000	-4.059600	5.070400
1	11.491100	-3.801600	5.534900
6	11.070300	-3.392200	3.480200
1	11.904300	-2.691300	3.326200
1	11.410000	-4.398700	3.197000
6	10.224200	-3.131600	1.312800
1	11.093600	-2.517200	1.037100
1	10.469300	-4.174500	1.065500
6	8.979200	-2.743700	0.541500
1	8.168300	-3.384900	0.896400
1	9.143500	-2.954700	-0.526200

6	5.020000	-1.559000	-0.318400
6	4.537800	-0.287600	0.030600
1	4.352200	-2.298100	-0.747300
6	-0.848600	0.388600	-2.854400
1	-1.160100	1.286300	-2.317500
6	0.240500	-0.227100	-2.356800
6	0.937300	0.369100	-1.185000
6	2.232500	-0.345100	-1.020700
6	2.271300	-1.532900	-1.945800
1	2.251800	-2.469400	-1.373800
1	3.190900	-1.547100	-2.540500
6	1.010300	-1.426300	-2.847100
1	0.411900	-2.342600	-2.778100
1	1.282700	-1.310400	-3.902500
8	0.536300	1.301300	-0.502800
6	3.170100	0.166600	-0.201200
1	2.887500	1.083300	0.319400
8	-5.681000	1.900900	-7.385200
8	-6.827900	2.466600	-4.928900
8	-9.107400	0.814000	-5.180600
8	-8.961900	-1.037600	-7.271000
8	-6.436400	-2.043100	-8.086000
7	-4.024500	-0.552800	-7.502300
6	-2.504800	1.064200	-4.542200
1	-2 592100	2.006400	-4 006400
6	-3 251900	0.869500	-5 690100
1	-3.933200	1.641800	-6.033600
6	-3 176600	-0 347100	-6 396900
6	-2 309300	-1 340600	-5 910000
1	-2 199900	-2 284800	-6 430200
6	-4 111600	0.532200	-8 499100
1	-3 383300	1 309300	-8 250500
1	-3 835400	0.135500	-9 482600
6	-5 486600	1 175600	-8 582200
1	-5 522500	1.852300	-9 448200
1	-6 276700	0.417100	-8 702300
6	-6 883100	2 641800	-7 326600
1	-6 945500	3 348100	-8 166800
1	-7 755900	1 969000	-7 368000
6	-6 853600	3 392700	-6.013500
1	-7 715500	4.063800	-5 9/0800
1	-5 940300	3 996000	-5.963300
6	-7 937900	2 544600	-4.044600
1	-7 705900	1 866000	-3.218000
1	-8.035700	3 561700	-3.643800
6	-9.240500	2 13/900	-1 696500
1	-9.2+0500 _9.497000	2.13+200	-5 524800
1 1	-7.477000	2.012200	_3 957000
1 6	-10.040500	0 302000	-5.252200
1	-10.200300	0.372900	-5.001000
1 1	-10///3/00	1 05/300	-6 741500
1 6	-10.443400	1.03+300	-6 256700
U	-10.0+700	1.020200	0.550700

1	-10.960400	-1.376900	-6.853200
1	-9.835000	-1.683800	-5.505800
6	-8.786300	-2.322300	-7.848000
1	-8.597400	-3.068000	-7.062300
1	-9.697100	-2.613300	-8.388800
6	-7.628700	-2.281300	-8.810100
1	-7.784400	-1.490600	-9.559000
1	-7.570200	-3.245500	-9.335000
6	-5.294200	-2.150200	-8.913500
1	-5.368700	-1.450600	-9.758700
1	-5.225400	-3.164200	-9.333000
6	-4.058800	-1.901000	-8.072500
1	-4.078100	-2.619200	-7.248600
1	-3.166800	-2.102900	-8.685000
6	-1.561700	-1.131600	-4.755800
6	-1.635300	0.076200	-4.043400
1	-0.912700	-1.930800	-4.415600
6	7.078200	-1.890800	4.323800
6	5 791600	-1 636300	3 552900
6	4 647400	-2.461500	4 124100
6	2 611700	-1 245200	3 531300
6	1 490500	-1 046600	2,755200
6	2 095300	-2 974700	1 459200
6	3 206500	-3 123200	2 259700
7	3 438600	-2 281000	3 287800
7	8 170700	-1 048400	3 777000
1	6 977400	-1.634300	5 380900
1	7 39/300	-2 933600	4 235600
1	5 534100	-0.570500	3 593900
1	5 931500	-0.370300	2 500700
1	1 389000	-2.156300	5 139300
1	4.382000	-2.130300	<i>A</i> 12/300
1	2 874400	-0.605400	4.124500
1	0.836000	-0.212000	2 980000
1	1.040800	3 603100	2.980000
1	3 028100	3 010800	0.002000
1	7.975400	-3.919800	2.120200
1	9.053300	-0.038400	<i>A</i> 275700
1	8 331500	1 233600	4.273700
1	1 10/000	-1.233000	2.709000
6	1.194900	-1.927400	1.703000
6	-0.003000	-1.243100	-4.726300
6	-3.414300	-1.204300	-3.693300
6	-3.320000	-2.118000	-2.063900
0	-5.830300	-1.240700	-1.131900
0	-2.041000	-1.204000	-0.400000
0	-2.14/200	-3.309/00	-1.0//000
07	-3.3/0300	-3.21/200	-2.290900
ן ד	-4.210400	-2.201900	-2.003000 5.040600
/	-0.381200	-0.2/0100	-3.048000
1	-1.30/300	-0.902000	-4.14/300
1	-0.843200	-2.233000	-3.103400
1	-5.213800	-0.1//600	-3.363000

1	-4.566400	-1.531400	-4.507700
1	-6.248200	-1.743000	-1.954300
1	-5.811500	-3.133000	-2.970600
1	-4.581000	-0.451900	-0.967200
1	-2.401800	-0.487000	0.205000
1	-1.500200	-4.146500	-1.916600
1	-3.727600	-3.943800	-3.020500
1	-6.549400	0.702500	-5.508300
1	-7.413800	-0.370800	-6.458600
1	-5.744900	-0.456400	-6.435400
6	-1.760000	-2.351300	-0.731700
6	-0.481000	-2.525100	-0.036100
1	0.096300	-3.393700	-0.346600
6	-0.041900	-1.721800	0.946200
1	-0.624900	-0.857300	1.254200