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Abstract: In this paper, we continue the research cycle on the properties of convolutional neural
network-based image recognition systems and ways to improve noise immunity and robustness.
Currently, a popular research area related to artificial neural networks is adversarial attacks. The
adversarial attacks on the image are not highly perceptible to the human eye, and they also drastically
reduce the neural network’s accuracy. Image perception by a machine is highly dependent on
the propagation of high frequency distortions throughout the network. At the same time, a human
efficiently ignores high-frequency distortions, perceiving the shape of objects as a whole. We propose a
technique to reduce the influence of high-frequency noise on the CNNs. We show that low-pass image
filtering can improve the image recognition accuracy in the presence of high-frequency distortions in
particular, caused by adversarial attacks. This technique is resource efficient and easy to implement.
The proposed technique makes it possible to measure up the logic of an artificial neural network to
that of a human, for whom high-frequency distortions are not decisive in object recognition.

Keywords: adversarial attacks; artificial neural networks; robustness; image filtering; convolutional
neural networks; image recognition; image distortion

1. Introduction

Convolutional neural networks (CNNs) are used in a wide range of applications in
modern computing since they allow for the automation of a wide class of tasks, such as
image classification and segmentation [1], object detection and tracking in video streams [2],
and image generation [3,4]. In addition, CNNs are the most effective machine learning
tool for some audio processing tasks [5,6]. Recently, an increasing part of computational
processing power has been involved in multimedia processing. The growth of overall
computing power allows for the use of increasingly complex and demanding machine
learning algorithms. The CNNs also allow for the extraction of features from multimedia
efficiently and to process big data, so they are used to solve difficult-to-formalize or
fuzzy tasks.

However, a significant unsolved problem for CNNs is their sensitivity to distortions
and noise. Neural networks trained using clean data do not provide sufficient gener-
alizability to recognize distorted or noisy images. So far, the precise noise/distortion
robustness characteristics of CNNs are not known yet, and only a few studies in this
field are available [7–9]. The adversarial distortions severely reduce the image recognition
accuracy since they are targeted to the exact neural network model. One of the first men-
tions of this problem is the study [10], which demonstrated, among other limitations, the
weaknesses in the neural network’s generalization ability. The authors have also found
out that adversarial distortions are relatively effective for a variety of neural networks
with a diverse number of layers, various architectures, or that have been trained using
different datasets. Adversarial images are also transferable to other neural networks, even
if these networks are trained with different hyperparameters or datasets. Later, a range of
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techniques for generating adversarial examples were proposed, including the Fast Gradient
Sign Method (FGSM) [11], Deepfool [12], One-pixel attack [13,14], and many others. The
maxout network [15], initially achieving an error probability of 0.45%, after the application
of FGSM, misclassified 89.4% of adversarial examples, with an average confidence rate
of 97.6%. Moreover, with a higher image resolution, the recognition error of adversarial
examples increases. Currently, the “arms race” of adversarial attacks and countermeasures
is relevant [16–18]. There are still no effective methods to counteract the high-frequency ad-
versarial attacks. The autoencoder techniques help in detecting high-frequency adversarial
attacks, not mitigating them.

Numerous digitally presented natural images also have distortions. These distortions
are usually induced during the imaging process. Such distortions emerge in the images
without the attacker’s involvement (unusual camera angles and perspectives, camera
matrix thermal noise and lens features, atmospheric distortions, image digitization, and
compression artefacts). Natural adversarial examples are unpredictable, so the correspond-
ing mitigation methods are often not obvious.

These distortions are referred to as domain shifts [19] and can be exploited by at-
tackers [20]. One of the first works on natural adversarial examples is [21]. Based on the
ImageNet dataset, which includes tens of millions of images, the authors created datasets
(ImageNet-A and ImageNet-O) containing images that are the worst recognized by the
state-of-the-art machine learning models. At the same time, the presented images contain a
limited number of false features (Figure 1).

Figure 1. Examples of natural adversarial images from ImageNet-A dataset. The black text shows
the actual image class, and red text shows the result of recognition using ResNet-50.

State-of-the-art convolutional network models such as AlexNet, DenseNet-121, ResNet-50,
SqueezeNet, and VGG-19 achieve a recognition accuracy no higher than 2.2% on the
ImageNet-A dataset (which is approximately 90% lower than the recognition accuracy
of the ImageNet dataset by the same networks). The work [21] shows that existing data
augmentation methods do not improve performance significantly. Training on other public
datasets provides limited improvement. However, [21] does not propose efficient ways
to overcome the effect of adversarial distortion. The above-mentioned problems must be
addressed in developing modern CNN-based image recognition systems.

Some works that focused on mitigation methods to cope with distortions and noise
in images are known [22–27]. Some of these works propose various denoising filters, i.e.,
image preprocessing, generative adversarial networks, and training with noisy data. Most
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image preprocessing systems are specific to certain types of distortions and adversarial
attack designs, so they are being quickly overcome by new adversarial algorithms [28,29].
Important requirements for denoisers, such as boundaries and texture preservation, do not
give an advantage in resisting adversarial attacks.

Another known technique to provide adversarial robustness is to use two or more op-
posing networks. Here, a competing adversarial network generates distorted images to pro-
vide misclassification by the classifier. The classifier is trained to resist these attacks [30,31].
Accordingly, adversarial examples can be a good source of augmentation. This augmenta-
tion method is effective for increasing the CNN robustness to unobvious and unobservable
distortions. However, this approach significantly complicates the development process,
the neural network training, and also requires training process monitoring, and is still not
always reliable [32]. A crucial way to counteract noise and distortion in test data is to train
a neural network using augmented data [33,34]. Various methods, specific to the task, are
used for data augmentation. However, a significant amount of research related to CNNs
application still does not address this problem.

We can summarize the known adversarial noise countermeasure methods as follows:

1. Defensive distillation [24] implies using two or more networks; it is good for some
undefined threats, but weak against fine-tuning the high-frequency attacks;

2. Gradient regularization [35,36]—it is hard to implement; no quantitative evaluation
for gradient-based attack robustness is available;

3. Denoisers—they are used mostly for visual image enhancement or upscaling, not
proven to be effective against gradient-based attacks; little quantitative evaluation is
available [26];

4. There is a work implementing a generator for synthesizing images [37], its authors
use incomparable CNN model and datasets;

5. Generative adversarial networks [27] are effective for detecting adversarial noise; the dis-
criminator (the important part of GANs) is also vulnerable to the same adversarial attacks;

6. Low-level transformations [38] are easy and effective techniques. Still, available
results are incomparable (different CNN model and datasets).

In this paper, we propose a technique to reduce the influence of high-frequency noise
on the CNNs. We adopt radio engineering principles—filtering noisy images using a low-
pass Gaussian filter [39,40]. Image filtering allows for the suppression of high-frequency
noise. In addition, the filtering blurs the image, reducing its sharpness. This leads to a
recognition accuracy decrease, as a CNN is initially trained to recognize sharp images.
Thus, filtering images with a Gaussian filter allows us to reduce the problem of overcoming
high-frequency adversarial attacks to the problem of blurred image recognition, considered
in our previous work [41]. We perform a large set of tests for FGSM intensities and
Gaussian filter sizes. This allows us to determine the optimal Gaussian filter size for the
proposed technique. The essence of the proposed technique is shown in Figure 2. We do
not consider complex image preprocessing systems, such as GAN or autoencoders since
they are not effective against gradient-based adversarial attacks. The proposed technique
is easy to implement and efficient. It can be used in various image recognition systems
implemented on a variety of hardware platforms, including those with extremely limited
computational resources.

To improve the recognition accuracy, it is essential to train the recognition system to
recognize blurred images efficiently. It can be completed by training the recognition system
using augmentation with blurred images [42]. In this paper, we prove that this technique
for image pre-processing effectively improves noisy image recognition accuracy without
a significant reduction in clean image recognition accuracy. We show the existence of an
optimum for the Gaussian filter size and propose a technique for finding this optimum.
We analyze and compare the behavior of two neural networks: a simple convolutional
neural network and the state-of-the-art EfficientNetB3 network [43]. Our simple CNN
is tested on datasets with a small number of classes, such as CIFAR-10, Natural Images,
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and Rock-Paper-Scissors datasets. The EfficientNetB3 is tested on Natural Images and
ImageNet-1k.

Figure 2. The essence of the proposed technique.

2. Materials and Methods
2.1. Datasets

To evaluate the performance of the proposed framework under different conditions
and confirm transferability, we carried out experiments on publicly available datasets.
We used 4 datasets to train the networks and analyze the results, including CIFAR-10,
ImageNet, Rock-Paper-Scissors, and the Natural Images datasets. In this subsection we
provide the description of these datasets and briefly describe the justification of our choice.

CIFAR-10 is one of the most widely used image sets for CNN training and testing. The
dataset includes 60,000 images in 10 classes, and the image resolution is 32 × 32 × 3 [44].
This resolution is relatively low, which, on the one hand, allows us to spend much less
time and computational resources for training. On the contrary, it significantly reduces the
recognition accuracy of distorted or noisy images, even with low noise intensity (Figure 3).

Figure 3. Image examples from the CIFAR-10 dataset (1—truck, 2—ship, 3—horse, 4—frog, 5—dog,
6—deer, 7—cat, 8—bird, 9—car, 10—plane).
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Natural Images is a comparatively small dataset of natural images [45] consisting of
6899 images of 8 different classes (aircraft, car, cat, dog, flower, fruit, motorcycle, human)
(Figure 4). Since training neural networks using large datasets such as ImageNet-1k is
challenging, we used the Natural Images set to run a broad class of tests in order to reduce
the time and computational cost.

Figure 4. Image examples from the Natural Images dataset.

ImageNet-1k [46], a subset of the ImageNet dataset, is a large dataset, containing
~1.4 million images labeled into 1000 classes. The image resolution is not standardized.
Images are represented in 3 channels. ImageNet-1k is widely used for testing automated
image localization and classification systems, as it has rather complex feature sets and
class diversity. We used the ImageNet-1k dataset to extend and validate the results of this
research on a complex dataset.

The Rock-Paper-Scissors (RPS) Images dataset [47] contains images of hand ges-
tures from the Rock-Paper-Scissors game. Images are obtained as part of a project [47]
to implement a Rock-Paper-Scissors game using computer vision and machine learning.
The dataset contains 2188 images corresponding to the gestures “Stone” (726 images),
“Paper” (710 images), and “Scissors” (752 images). All images are made on a green back-
ground with relatively equal illumination and white balance. All images are RGB with
300 × 200 pixels resolution.

2.2. Convolutional Nets

In this study, we used two architectures of convolutional neural networks:

1. Simplified high-speed CNN called SimConvNet; defined below;
2. The commonly used EfficientNetB3 [43].
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We obtained the results of the first experiments using a simplified high-performance
network. The network contains 914,960 parameters, which is rather low in comparison
to state-of-the-art CNNs. This allows us to conduct brief tests at the expense of overall
classification accuracy (Figure 5). The simple CNN is tested on a few small datasets
since its generalization ability is extremely limited. We use this simple CNN to confirm
transferability of the results to various datasets.

Figure 5. The architecture of simplified high-speed CNN.

To extend the research and validate results, we used EfficientNet [43]. The research [43]
highlighted that insufficient attention is paid to balancing the resolution, width, and depth
in the new CNN architectures, and pointed out the importance of such balancing. An
efficient method for the combined CNN scaling to any size is proposed in [43]. With
orders of magnitude fewer parameters and training time compared to many state-of-the-art
network architectures, the EfficientNetB3 architecture achieves higher Top-1 classification
accuracy results on various datasets. Since we provide a broad test set in this research, we
use EfficientNetB3 to limit the time and computational resources spent on the experiment.
It allows us to analyze complex image sets with an acceptable accuracy. The EfficientNetB3
model has enough generalization ability for the complex ImageNet-1k dataset.

2.3. Adversarial Attacks

FGSM (Fast Gradient Sign Method) is currently one of the most popular adversarial
attack methods [11]. The core idea of the method is to add some non-random vector to the
original image. The direction of this vector matches the loss function gradient. The FGSM
vector can be represented as:

η = ε·sgn(∇xJ(θ,x,y)),

where θ is the neural network model parameters, x is the input vector (image), y is the
true class of vector x (if available), J(θ, x, y) is the loss function, ε is the empirically cho-
sen gain factor, ∇x is the gradient in image space, sgn is a sign function, and η is an
adversarial vector.

This adversarial vector looks to human perception as a high-frequency, low-intensity
noise that does not affect object recognition ability. However, this noise is extremely efficient
in reducing object recognition accuracy by neural networks. The intensity of the attack is
chosen in order to minimize the visible changes in the image and at the same time to achieve
a sufficient attack success rate. It is possible to perform the attack on some state-of-the-art
CNN models preserving the non-visibility of changes to a human (Figure 6).
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Figure 6. Effect of FGSM on the recognition accuracy of image datasets (a) Rock-Paper-Scissors
Images and (b) Natural Images.

Although FGSM is one of the first adversarial attack algorithms, it is considered one
of the most efficient, is simple to implement, and fast. A more complex variant of FGSM is
the PGD (projected gradient descent) algorithm. The essence of the PGD algorithm is to
iterate the FGSM algorithm to improve the attack efficiency [48]. Many other adversarial
attack algorithms are also based on FGSM [49]. We can presume that a proposed high-
frequency noise countermeasure technique can be rather effective against high-frequency
distortions such as PGD [48], C&W attack [50], Zeroth Order Optimization (ZOO) [51],
HopSkipJumpAttack (HSJA) [52], and DeepFool [12]. At the same time, we should note
that the proposed technique will not work well against low-frequency adversarial attacks
such as physical space attacks [53] and the Square attack [54].

2.4. The Theoretical Approach to the Problem Solution

An important feature of image recognition CNNs is the low receptivity to the object’s
size. It makes the influence of both low-frequency and high-frequency image components
nearly equal. It is the fundamental difference between the functioning of modern CNNs and
human perception. The research [55] investigated the impact of various image frequency
spectrum components on the CNN. High-frequency image components cause CNNs’
vulnerability to adversarial attacks [55]. Despite that, human vision is immune to high-
frequency image components [56]. Some commonly used filters can exacerbate CNNs’ high
frequency distortion vulnerability [55]. Additionally, adversarially robust neural networks
tend to use smoother gradients in the convolutional kernels (filters) [55].

Most adversarial attack algorithms exploit CNNs’ high frequency distortion vulnerabil-
ity of convolutional neural networks [57]. Some research aimed at detecting the adversarial
attacks is based on image spectrum analysis [58,59]. Low-pass filters, such as the Gaussian
filter, protect the recognition system from high-frequency distortions, thus being effective in
counteracting adversarial attacks. After low-pass filtering, the high-frequency components
of the image will be lost, but the overall structure of the image, the position of the objects of
interest, and their shapes remain distinguishable (Figure 7).
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Figure 7. Two-dimensional Fourier transform of an image (a) Clean; (b) Clean with FGSM (10%);
(c) FGSM; (d) Filtered by Gaussian low-pass filter.

Figure 7 shows the Cartesian Fourier power spectrum of the image. FGSM attack
erodes the image spectrum. The low-pass filter limits the spectrum, bringing it closer to the
original. As another example of reducing the effect of adversarial attacks on an image, we
consider it in terms of its images brightness profile. Figure 8 represents the one-dimensional
brightness profiles of the image, FGSM 10% of image’s dynamic range, adversarial image,
and blurred adversarial image.

Figure 8. Effect of Gaussian blurring on image content: (a) brightness profile of the original image
aligned in one line, (b) FGSM brightness profile of the same dimension, (c) the adversarial image
(image + 0.1 FGSM), (d) the Gaussian filter impulse response, (e) the convolution on the adversarial
image and the Gaussian filter impulse response.
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As can be seen in Figure 8, the adversarial attack affects the brightness profile ex-
tensively, making it unrecognizable. At the same time, Gaussian filtering made after the
adversarial attack restores the brightness profile of the image, bringing it closer to the origi-
nal one. To confirm the hypothesis about the efficiency of low-pass filtering to overcome
the adversarial attack, we analyze the Gaussian blurring effect on the image and attack
matrix structure. The red curve in Figure 9 shows the dependence of the scalar product
of the blurred and original image on the Gaussian filter size. The blue curve in Figure 9
shows the dependence of the scalar product of the blurred and original attack matrix on
the Gaussian filter size. The scalar product of two images (presented as a vectors) can be
considered as the similarity or correlation measure. The vectors with similar directions and
magnitudes will provide the higher scalar product, and the lower scalar product indicates
the orthogonality of vectors.

Figure 9. Scalar product of the original image and blurred image (red); the attack matrix and blurred
attack matrix (blue) vs Gaussian filter size.

As one can see in Figure 9, with the Gaussian filter size growth, the scalar product
of the original and blurred attack matrix decreases faster than the scalar product of the
original and blurred image. With a filter size (standard deviation) exceeding 10 pixels,
the blurred and initial attack matrices are nearly uncorrelated. Since the attack matrix is
a target function (each pixel is not random), the attack performance will decrease with
increasing Gaussian filter size growth more rapidly than the quality of image recognition.

2.5. The Proposed Technique

The block diagram of the proposed image processing algorithm is shown in Figure 10.
As for blurring the testing images, it is crucial to train a neural network with blurred
data. CNN is pre-trained using the augmented data [42,60]. This approach is efficient
since the implementation of a Gaussian filter is computationally cheap. The augmentation
procedure uses only this simple filter. The training does not require computationally
complex adversarial attack algorithms for data augmentation. We train the neural network
in one shot. The original training dataset is split into two parts. One part remained
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unchanged, the second part was blurred with a filter size chosen randomly in the range
between 0 and 0.1 of the image size.

Figure 10. Algorithm scheme.

At the testing stage, we added the FGSM vectors to the testing images. After that, the
adversarial images were filtered using a Gaussian filter. We used the trained neural network
to recognize these blurred adversarial images. The high-frequency image component
includes the adversarial attack, other high-frequency noise (e.g., impulse or thermal noise
for natural images) and small image patterns. The Gaussian filter significantly reduces the
effect of the high-frequency image component. The overall image structure degrades much
less significantly. This technique is a trade-off of the overall recognition accuracy for the
adversarial image recognition accuracy. The first one decreases just slightly, and the second
one rises significantly. We perform a large set of tests involving image recognition with a
wide range of FGSM intensities and Gaussian filter sizes. This allows us to obtain 3D plots
of the dependence of the image recognition accuracy on FGSM intensity and Gaussian filter
size, as well as to determine the optimal Gaussian filter size for recognized images.

3. Results

We obtained the results of the testing dataset recognition for various neural networks
using the algorithm presented in Figure 10. The following graphs (Figure 11) show the
dependence of image recognition accuracy on FGSM attack intensity and Gaussian filter
size. We further evaluate the FGSM attack intensity as a percentage of the image dynamic
range (DR). We further evaluate Gaussian filter size as a percentage of the image size.

To obtain these graphs, we performed 441 independent experiments on testing dataset
recognition with adversarial distortions injection (for each CNN and dataset combination).
The total number of independent experiments represented in Figures 11–13 is 2646. We
varied distortion intensities and subsequently processed images with a Gaussian filter. As
one can see from the Figure 11, the image recognition accuracy decreases rapidly with
increasing adversarial distortion intensity. At the adversarial distortion intensity equal
to 4–5% of the image dynamic range (Figure 11a), the recognition accuracy drops to the
random level. However, the accuracy increases with Gaussian-filtered adversarial test
images. As we further increase the filter size, important image features are lost, and the
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recognition accuracy drops. Figure 11 shows that as the intensity of adversarial distortion
increases, a wider Gaussian filter size is required. Image recognition accuracy does not
reach the initial values (as for clean images) but approaches it. With a further increase
in the adversarial distortion intensity, the Gaussian filtering becomes less effective. The
optimal Gaussian filter size depends on the adversarial distortion intensity, as well as on
the features of the data and the neural network, as shown in Figures 11 and 12. For example,
CNN with the Rock-Paper-Scissors dataset using augmentation (blurred images) showed
high performance at low values of the adversarial distortion intensity (less than 3% of
the dynamic range). With a further adversarial distortion intensity increase, the network
trained without augmentation obtained a greater gain (Figure 12).

Figure 11. Accuracy for SimConvNet and Natural Dataset: (a) CNN trained using augmentation
with blurred images; (b) no augmentation used.

Figure 12. Accuracy for SimConvNet and Rock-Paper-Scissors dataset: (a) CNN trained using
augmentation with blurred images; (b) no augmentation used.

Since, in practice, the intensity of the adversarial attack does not exceed 10–15% of the
dynamic range of the original image, the use of image augmentation gives an advantage in
recognition accuracy. As one can see from Figure 12, training with an augmented dataset
allows us to apply a wider range of Gaussian filter sizes to enhance the recognition accuracy.
The obtained results are transferable to complex CNN architectures. In this paper, we con-
ducted experiments using the proposed algorithm (Figure 10) for the EfficientNetB3 using
the Natural and ImageNet datasets (Figure 13). We used the augmented ImageNet dataset
(augmentation using Gaussian filter). We trained the model without Transfer Learning.

The following table (Table 1) shows the classification accuracy at various adversarial
distortion intensities and possible accuracy gain by applying the filter. The optimal filter
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size was chosen due to the maximization of the recognition accuracy for various values of
the adversarial attack intensity.

σopt = arg(max

 Imax
FGSM

∑
IFGSM=0

PLPF(σ, IFGSM)

)

where σopt—optimal filter size, PLPF—accuracy achieved using low-pass filtering,
IFGSM—adversarial attack intensity, Imax

FGSM—maximal adversarial attack intensity. Ac-
curacy gain G is calculated using the following formula:

G =
(1− Pno LPF)

(1− PLPF)

where G—accuracy gain, Pno LPF—accuracy achieved without use of low-pass filtering,
PLPF—accuracy achieved using low-pass filtering with optimal filter size. The gain G shows
the relative drop in the recognition error rate in the case of using low-pass filtering com-
pared to the bare CNN usage.

Figure 13. Accuracy for EfficientNetB3: (a) Natural dataset; (b) ImageNet.

Table 1. Classification accuracy at various adversarial distortion intensities and possible accuracy
gain by applying the filter.

FGSM Intensity FGSM Intensity
Accuracy with

FGSM and no LPF
Pno LPF

Accuracy with
FGSM and LPF

PLPF

Optimal Low-Pass
Filter Size Accuracy Gain G

SimConvNet
(Natural Dataset)

5 0.206 0.913
10

9.1
10 0.206 0.9 7.9
20 0.1875 0.894 6.7

SimConvNet (RPS)
5 0.738 0.947

8
4.9

10 0.66 0.879 2.8
20 0.576 0.738 1.6

EfficientNetB3
(ImageNet)

15 0.699 0.781
7

1.4
20 0.481 0.72 1.9

EfficientNetB3
(Natural Dataset)

5 0.977 1
7

∞
10 0.814 0.996 46.5
20 0.25 0.881 6.3

4. Discussion

In this paper, we propose a simple-to-implement method to counteract high-frequency
distortions, including high-frequency adversarial attacks. There is still no comprehensive
study for the effectiveness of low-pass filtering to counteract high-frequency attacks. The
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proposed technique can increase the adversarial robustness of deep convolutional neural
networks. The method is based on low-pass image filtering and usage of a network trained
to recognize blurred images. We show that a Gaussian filter disrupts the adversarial attack
structure faster than it blurs the original image features. Thus, the adversarial attack
efficiency exchange on the image blurring is found to be efficient. Training the neural
network to recognize blurred images is an important part of the proposed technique. This
training reduces the impact of image blurring on image recognition accuracy.

The accuracy gain G achieved using the proposed technique is in any case not less than
1.4. The average accuracy gain is G = 8.8 (excluding EfficientNetB3 evaluated on Natural
Dataset and FGSM intensity IFGSM = 5, where the gain is infinite due to the absence of
recognition errors with the use of low-pass filtering).

The proposed approach is computationally efficient as it requires only a simple training
dataset augmentation performed once before training, and simple image filtering before
recognition. The filtering time depends on the resolution of the image. With a simple
CNN such as SimConvNet, the time spent on filtering takes less than 0.4% of the overall
image recognition time. With complex networks such as EfficientNetB3, the relative time
consumption for image filtering is 0.25%.

Several parameters, such as image resolution and neural network type, should be
considered when choosing the Gaussian filter size. An excessively high filter size may
distort the object features important for classification, thus reducing the overall quality of
the neural network algorithm. We show how to choose the optimal filter size.

The proposed method, due to its high efficiency and low complexity, can be used
in various image recognition and vision systems implemented on a variety of hardware
platforms, including those with extremely limited computational resources. At the same
time, we should note that the proposed technique may be ineffective against low-frequency
adversarial attacks. In future research, it is expedient to extend the study of the convolu-
tional neural network behavior from the perspective of image preprocessing. This research
will include broader sets of state-of-the-art convolutional neural networks, including local-
ization networks. In addition, tests will be provided for the variety of adversarial attacks
(BIM, PGD, CW, low-frequency attacks, etc.). A good direction for future research could be
the investigation of the effectiveness of the proposed method against the domain shifts. The
broader sets of filters, including median filters, rejecting filters, etc., will also be considered.
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