STRUCTURE OF MATTER AND QUANTUM CHEMISTRY

# Quantum-Chemical Modeling of Ethylene and Acetylene Adsorption on Gold Clusters

D. A. Pichugina, S. A. Nikolaev, D. F. Mukhametzyanova, and N. E. Kuz'menko

Faculty of Chemistry, Moscow State University, Moscow, Russia

*e-mail: dashapi@mail.ru* Received August 27, 2013

**Abstract**—The interaction of ethylene and acetylene molecules with planar (2D) and nonplanar (3D) gold clusters  $Au_n$  (n = 10, 12, 20) was studied by the density functional theory (DFT) method. The coordination of hydrocarbons at the vertices, edges, and fragments of the  $Au_3$  cluster was shown to form  $\pi$ , di- $\sigma$ , and  $\mu$  type complexes, respectively. The standard Gibbs energy and the C–C bond length of the hydrocarbon change during its adsorption in the series  $\mu > di-\sigma > \pi$  complexes. The highest selectivity in adsorption of acetylene relative to that of ethylene was achieved on  $Au_{12}$  (3D) and  $Au_{20}$  (2D) clusters.

*Keywords*: gold clusters, ethylene, acetylene, adsorption, quantum chemistry, density functional theory. **DOI:** 10.1134/S0036024414060235

### **INTRODUCTION**

Gold nanoparticles are active catalysts of the oxidation of CO, alkanes, and alcohols [1, 2]; hydrodechlorination of chloroaromatic compounds [3]; and allyl isomerization of alkenes [4]. Recently, gold-containing catalysts were found to be highly active in the hydrogenation of acetylene hydrocarbons into the corresponding alkenes [5, 6]. The technological significance of this process depends on the necessity of preliminary purification of the ethylene raw material from the acetylene impurity in the synthesis of highquality polymers [7].

For selective hydrogenation of acetylene, the acetylene molecules should be bound to the active center of the catalyst more strongly than the ethylene molecules [8]. As is known, the tightness of substrate-catalyst surface binding is largely determined by the type of the adsorbed complex [8–10]. When interacting with transition metals, acetylene and ethylene can form  $\pi$ , di- $\sigma$ , and  $\mu$  type complexes [7–11]. The complexation involves the  $\pi$  electrons of the hydrocarbon and the electronic system of one metal atom for the  $\pi$  complex; the electronic systems of two carbon atoms and two metal atoms for the di- $\sigma$  complex; and the electronic systems of two carbon atoms and three metal atoms for the  $\mu$  complex.

The type of the resulting complex and the degree of activation of the hydrocarbon depend on the structural and electronic features of the cluster. The structurally nonrigid (dynamic) clusters are characterized by minor energy change during the hydrocarbon adsorption and facilitate the activation of the C–C bond [12, 13]. The formation of adsorbed complexes is accompanied by a redistribution of electron density in the carbon–metal system [11]. Consequently, the C–C

bond activation is strongly affected by the electronic structure of the cluster, in particular, the energy difference between the highest occupied molecular orbital and the lowest unoccupied molecular orbital [14].

Recently, theoretical approaches have started to be actively used for structure elucidation and studies of the adsorption properties of clusters [14–18]. It was predicted, using a quantum-chemical calculation, that the Au<sub>20</sub> atomic cluster has a tetrahedral structure [18]. Later, this was confirmed experimentally using electron microscopy [16] (Fig. 1a). Density functional theory (DFT) calculations showed that the nickel atoms in the Au<sub>x</sub>Ni<sub>y</sub> clusters bind carbon more weakly than in Ni<sub>x</sub> [2]. On the basis of the results of these studies, Au–Ni catalysts were created which had high stability against deactivation in the vapor conversion of butane [2].

This communication presents the results of our quantum-chemical modeling of the effect of the structure of gold clusters on ethylene and acetylene adsorption. We considered planar (2D) clusters Au<sub>10</sub>, Au<sub>12</sub>, and Au<sub>20</sub> (Fig. 2a–c), which were models of the structural units of small gold particles immobilized on the substrate surface [16, 19] and their three-dimensional (3D) isomers (Fig. 1d–f). The changes in the standard Gibbs energy during the formation of  $\pi$ , di- $\sigma$ , and  $\mu$  complexes of ethylene and acetylene with gold clusters were calculated. For most stable clusters, the selectivity in the adsorption of acetylene relative to that of ethylene was evaluated.

## CALCULATION PROCEDURE

The geometry was optimized and the energies of the clusters and their hydrocarbon complexes were

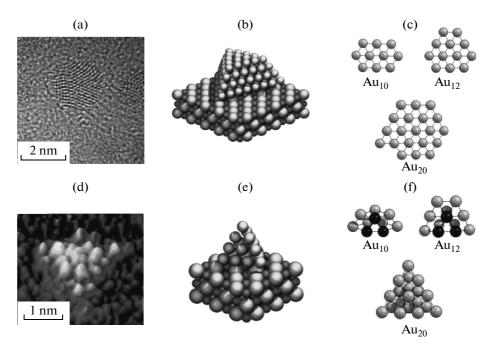
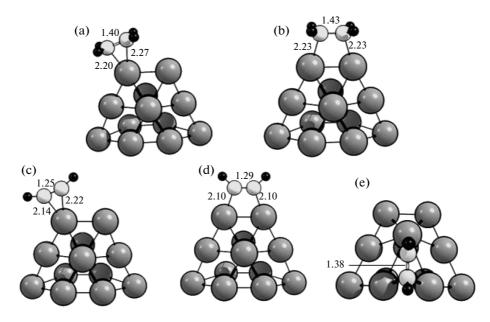




Fig. 1. (a, d) Micrographs of differently shaped gold particles immobilized on the substrate [16, 19]; (b, e) models of the surface of these systems; and (c, f) gold clusters studied in this work.



**Fig. 2.** Optimized structures of the complexes (a)  $\pi$ -C<sub>2</sub>H<sub>4</sub>Au<sub>12</sub>, (b) di- $\sigma$ -C<sub>2</sub>H<sub>4</sub>Au<sub>12</sub>, (c)  $\pi$ -C<sub>2</sub>H<sub>4</sub>Au<sub>12</sub>, (d) di- $\sigma$ -C<sub>2</sub>H<sub>2</sub>Au<sub>12</sub>, and (f)  $\mu$ -C<sub>2</sub>H<sub>2</sub>Au<sub>12</sub>. The key atomic distances are given in Å.

calculated by the DFT method using the PBE (Perdew–Burke–Ernzerhof) functional [20] in a scalar relativistic approximation [21]. The calculations were performed with the Priroda 06 program [22] using the basis functions Au  $\{30s29p20d14f\}/[8s7p5d2f]$ , H  $\{6s2p\}/[2s1p]$ , and C  $\{10s7p3d\}/[3s2p1d]$ . This approach was used earlier for calculating the structure and energies of gold clusters [10, 17, 23]. The Au<sub>10</sub>, Au<sub>12</sub>, and Au<sub>20</sub> clusters were obtained by structure optimization based on the literature data [18, 24, 25]. For ethylene and acetylene, the  $\pi$ , di- $\sigma$ , and  $\mu$  complexes  $C_x H_y Au_n$  were considered; the optimized structures of the  $C_2 H_2 Au_{12}$  and  $C_2 H_4 Au_{12}$  complexes are shown in Fig. 2.

The stability of the  $Au_n$  cluster was evaluated from the difference between the total energies of the 3D and

2D isomers  $(E_{3D-2D})$ , the binding energies per atom in the cluster  $(E_b)$ , and the energy difference between the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO)  $(E_g)$ 

$$E_{3D-2D} = E(Au_n(3D)) - E(Au_n(2D)),$$
  

$$E_b = (nE(Au) - E(Au_n))/n,$$
  

$$E_c = E(LUMO) - E(HOMO).$$

where E(Au) is the energy of the gold atom in the gas phase and  $E(Au_n)$  is the total energy of the Au<sub>n</sub> cluster.

To assess the possibility of formation of  $C_x H_y A u_n$ for each cluster and type of complex, we calculated the changes in the standard Gibbs energy ( $\Delta G_{ads}^{\circ}$ ) at 298 K in the reaction

$$C_xH_v + Au_n \rightarrow C_xH_vAu_n$$
.

The differences  $\Delta G_{ads}^{\circ}$  were calculated from the total energies of the substance involved in the reaction  $(E(C_xH_yAu_n), E(C_xH_y), \text{ and } E(Au_n))$  and the temperature corrections  $(G_{298}^{\circ}(C_xH_yAu_n), G_{298}^{\circ}(C_xH_y), \text{ and } G_{298}^{\circ}(Au_n))$  calculated by the statistic thermodynamic method [26]:

$$\Delta G_{\text{ads}}^{\circ} = E(C_x H_y A u_n) - E(C_x H_y) - E(A u_n)$$

+  $G_{298}^{\circ}(C_xH_yAu_n) - G_{298}^{\circ}(C_xH_y) - G_{298}^{\circ}(Au_n).$ 

The degree of hydrocarbon activation was evaluated from the change in the C–C bond length ( $\Delta R$ ) in the C<sub>x</sub>H<sub>y</sub>Au<sub>n</sub> complex relative to the corresponding bond length in the isolated C<sub>2</sub>H<sub>4</sub> (1.34 Å) and C<sub>2</sub>H<sub>2</sub> (1.21 Å) molecules. The selectivity in the adsorption of acetylene compared to that of ethylene for the most stable complexes was evaluated by calculating the  $\Delta G_{ads}^{\circ}(C_2H_2)/\Delta G_{ads}^{\circ}(C_2H_4)$  ratios. At  $\Delta G_{ads}^{\circ}(C_2H_2)/\Delta G_{ads}^{\circ}(C_2H_4) > 1$ , the acetylene adsorption is dominant. To evaluate the energy change of the cluster in the reaction with C<sub>x</sub>H<sub>y</sub> in each C<sub>x</sub>H<sub>y</sub>Au<sub>n</sub> complex, we calculated the energy of cluster distortion ( $E_{dis}$ )

$$E_{\rm dis} = E({\rm Au}_n^*) - E({\rm Au}_n),$$

where  $E(Au_n^*)$  and  $E(Au_n)$  are the total energies of the cluster distorted as a result of the interaction with the hydrocarbon and of the cluster before the interaction, respectively.

## **RESULTS AND DISCUSSION**

The energies  $E_{3D-2D}$ ,  $E_b$ , and  $E_g$  for the Au<sub>10</sub>, Au<sub>12</sub>, and Au<sub>20</sub> 2D and 3D clusters are given in Table 1. The high positive values of  $E_{3D-2D}$  and  $E_g$  obtained for the Au<sub>10</sub> (2D) cluster suggest that it is stable in the 2D form, which agrees with the data of [24] about the stability of the planar structure of small gold clusters. For the Au<sub>12</sub> cluster, the existence of 2D and 3D isomers, which differ but slightly in energy, was predicted earlier [23]. The structural instability of the Au<sub>12</sub> cluster is

**Table 1.** Relative energies  $(E_{3D-2D}, \text{kJ/mol})$ , binding energies  $(E_{\text{bnd}}, \text{kJ/mol})$ , and differences in HOMO–LUMO energies  $(E_{\text{g}}, \text{eV})$  for 2D and 3D Au<sub>10</sub>, Au<sub>12</sub>, and Au<sub>20</sub> clusters

| Energy           | Au <sub>10</sub> |            | Au         | 1 <sub>12</sub> | Au <sub>20</sub> |            |
|------------------|------------------|------------|------------|-----------------|------------------|------------|
|                  | 2 <i>D</i>       | 3 <i>D</i> | 2 <i>D</i> | 3 <i>D</i>      | 2 <i>D</i>       | 3 <i>D</i> |
| $E_{3D-2D}$      | 51               |            | 2          | 5               | -207             |            |
| E <sub>bnd</sub> | 198              | 193        | 205        | 203             | 216              | 453        |
| Eg               | 1.30             | 0.87       | 0.95       | 0.91            | < 0.001          | 1.73       |

confirmed by the small positive value of  $E_{3D-2D}$  and small (<1 eV) value of  $E_g$ . The stable Au<sub>20</sub> isomer has a 3D structure indicated by the significant negative  $E_{3D-2D}$  and high  $E_g$ . Note that  $E_g$  increase from Au<sub>10</sub> to Au<sub>20</sub> because of the transition of the clusters into a more compact structure characterized by a large number of aurophilic interactions [27].

Table 2 lists the calculated  $\Delta G_{ads}^{\circ}$  values for interactions of the clusters with ethylene and acetylene. According to these data, ethylene can form  $\pi$  complexes with the Au<sub>10</sub>, Au<sub>12</sub>, and Au<sub>20</sub> 2D and 3D isomers and di-[pi] complexes with the Au<sub>10</sub> and Au<sub>12</sub> 2D and 3D isomers.

The  $\pi$ -C<sub>2</sub>H<sub>4</sub>Au<sub>n</sub> complexes are formed when the hydrocarbon is coordinated to the gold atom that forms a vertex and an angle in the 3D and 2D clusters, respectively. For di- $\sigma$ -C<sub>2</sub>H<sub>4</sub>Au<sub>n</sub>, the center of adsorption is the Au(vertex)-Au(edge) fragment. A change in the C–C distance in the complexes compared with the C–C distance in C<sub>2</sub>H<sub>4</sub> ( $\Delta R$ , Table 2) points to a more significant activation of ethylene in the di- $\sigma$ complexes ( $\Delta R = 0.11 \pm 0.03$  Å) relative to that in the  $\pi$  complexes ( $\Delta R = 0.05 \pm 0.01$  Å). A comparison of the  $\Delta G_{ads}^{\circ}$  values for  $\pi$ -CC<sub>2</sub>H<sub>4</sub>Au<sub>n</sub> and di- $\sigma$ -C<sub>2</sub>H<sub>4</sub>Au<sub>n</sub> shows that the formation of the  $\pi$  complex is preferable for ethylene irrespective of the structure and composition of the cluster (Table 1). A similar conclusion was made in the quantum-chemical modeling of ethylene adsorption on small Au<sub>n</sub> clusters (n = 1-10) [28] and structure elucidation of ethylene complexes adsorbed on the surface of gold electrodes [29].

Let us correlate the calculated  $\Delta G_{ads}^{\circ}$  values for the formation of  $\pi$ -C<sub>2</sub>H<sub>4</sub>Au<sub>n</sub> with the peculiarities of the structure and electronic structure of the cluster. On passing from Au<sub>10</sub> to Au<sub>20</sub>,  $\Delta G_{ads}^{\circ}$  increased (in magnitude) from -34 to -41 kJ/mol for the 2D isomers and decreased from -35 to -18 kJ/mol for the 3D isomers. The interaction of ethylene with the Au<sub>10</sub> (2D and 3D) and Au<sub>12</sub> (2D and 3D) clusters with  $E_g$  of ~1 eV is characterized by almost identical  $\Delta G_{ads}^{\circ}$  values. In contrast to this, the Au<sub>20</sub> 3D isomer with high  $E_g$  shows the lowest activity in the formation of the  $\pi$  complex, while its 2D isomer with low  $E_g$  shows the highest activity. The established correlation between  $\Delta G_{ads}^{\circ}$ 

**Table 2.** Variation of the standard Gibbs energy at 298 K ( $\Delta G_{ads}^{\circ}$ , kJ/mol), cluster distortion energies ( $E_{dis}$ , kJ/mol) during the interactions of C<sub>2</sub>H<sub>4</sub> and C<sub>2</sub>H<sub>2</sub> with the 2D and 3D Au<sub>10</sub>, Au<sub>12</sub>, and Au<sub>20</sub> clusters, and variation of the C–C bond of the hydrocarbon during the formation of the C<sub>x</sub>H<sub>y</sub>Au<sub>n</sub> complex ( $\Delta R$ , Å)

| Cluster          |               |                               | $\pi$ type  |             | di-o type                     |      |            |  |
|------------------|---------------|-------------------------------|-------------|-------------|-------------------------------|------|------------|--|
|                  |               | $-\Delta G_{\rm ads}^{\rm o}$ | Edis        | $\Delta R$  | $-\Delta G_{\rm ads}^{\rm o}$ | Edis | $\Delta R$ |  |
|                  |               | •                             | $C_x H_y =$ | $= C_2 H_4$ |                               |      |            |  |
| Au <sub>10</sub> | 2 <i>D</i>    | 34                            | 5           | 0.05        | 10                            | 6    | 0.10       |  |
|                  | 3 <i>D</i>    | 35                            | 11          | 0.06        | 6                             | 33   | 0.13       |  |
| Au <sub>12</sub> | 2 <i>D</i>    | 32                            | 5           | 0.05        | 9                             | 12   | 0.08       |  |
|                  | 3 <i>D</i>    | 34                            | 9           | 0.06        | 26                            | 9    | 0.09       |  |
| Au <sub>20</sub> | 2 <i>D</i>    | 41                            | 5           | 0.05        | 14                            | 15   | 0.14       |  |
|                  | 3 <i>D</i>    | 18                            | 5           | 0.04        |                               | _    | _          |  |
|                  | I             | 1                             | $C_x H_v =$ | $= C_2 H_2$ | I                             |      | I          |  |
| $Au_{10}$        | 2 <i>D</i>    | 32                            | 5           | 0.02        | 36                            | 6    | 0.09       |  |
|                  | 3 <i>D</i> *  | 38                            | 11          | 0.04        | 28                            | 33   | 0.15       |  |
| Au <sub>12</sub> | 2 <i>D</i>    | 31                            | 5           | 0.04        | 13                            | 12   | 0.08       |  |
|                  | 3 <i>D</i> ** | 32                            | 9           | 0.04        | 51                            | 9    | 0.09       |  |
| Au <sub>20</sub> | 2 <i>D</i>    | 68                            | 2           | 0.03        | 51                            | 9    | 0.10       |  |
| _0               | 3 <i>D</i>    | 18                            | 5           | 0.03        | -24                           | 12   | 0.08       |  |

\* Formation of the  $\mu$  complex:  $\Delta G_{ads}^{o} = -37$  kJ/mol,  $E_{dis} = 88$  kJ/mol, and  $\Delta R = 0.16$  Å.

\*\* Formation of the  $\mu$  complex:  $\Delta G_{ads}^{\circ} = -78$  kJ/mol,  $E_{dis} = 69$  kJ/mol, and  $\Delta R = 0.17$  Å.

and  $E_{\rm g}$  is determined by the mechanism of the formation of the  $\pi$  complex on the surface of transition metals. As is known, the C–C bond of olefin interacts with the gold atom according to the donor–acceptor mechanism [28]. The energy of the  $\pi$  complex decreases during the overlap of the binding orbitals of gold and olefin, thus increasing the adsorption energy. The structure of the cluster changes slightly during the formation of  $\pi$ -C<sub>2</sub>H<sub>4</sub>Au<sub>n</sub>. The calculated  $E_{\rm dis}$  values are small (5–11 kJ/mol). In contrast to  $\pi$ -C<sub>2</sub>H<sub>4</sub>Au<sub>n</sub>, the possibility that di- $\sigma$ -C<sub>2</sub>H<sub>4</sub>Au<sub>n</sub> will form depends strongly on the cluster distortion energy. The structure ally rigid Au<sub>10</sub> (3D) with high  $E_{\rm dis}$  has the lowest  $\Delta G_{\rm ads}^{\circ}$  (–6 kJ/mol). In contrast, the "dynamic" Au<sub>12</sub> (3D) shows high activity in the formation of the di- $\sigma$  complex ( $\Delta G_{\rm ads}^{\circ} = -26$  kJ/mol).

Acetylene can form  $\pi$  complexes with the Au<sub>10</sub>, Au<sub>12</sub>, and Au<sub>20</sub> 3D and 2D isomers, di- $\sigma$  complexes with the Au<sub>10</sub> and Au<sub>12</sub> 3D and 2D isomers, and  $\mu$ complexes with Au<sub>10</sub> (3D) and Au<sub>12</sub> (3D). As in the case of ethylene, the  $\pi$ -C<sub>2</sub>H<sub>2</sub>Au<sub>n</sub> complexes form by hydrocarbon coordination to the gold atom, which forms a vertex of the 3D cluster or an angle of the 2D cluster. For di- $\sigma$ -C<sub>2</sub>H<sub>2</sub>Au<sub>n</sub>, the Au(vertex)–Au(edge) fragment is the adsorption center. The formation of  $\mu$ -C<sub>2</sub>H<sub>2</sub>Au<sub>n</sub> demands the presence of special Au<sub>3</sub> structural fragments (Fig. 1f), which are present in Au<sub>10</sub> (3D) and Au<sub>12</sub> (3D). The  $\pi$ -C<sub>2</sub>H<sub>2</sub>Au<sub>n</sub>, di-σ-C<sub>2</sub>H<sub>2</sub>Au<sub>n</sub>, and μ-C<sub>2</sub>H<sub>2</sub>Au<sub>n</sub> complexes differ in the degree of activation of acetylene; the C–C bond is maximally extended in μ-C<sub>2</sub>H<sub>2</sub>Au<sub>n</sub> (3D). For μ-C<sub>2</sub>H<sub>2</sub>Au<sub>n</sub>,  $\Delta G^{\circ}_{ads}$  is –37 and –78 kJ/mol for Au<sub>10</sub> (3D) and Au<sub>12</sub> (3D), respectively. The stability of the μ complexes can be explained in terms of the degree of the reverse shift of electron density from the hydrocarbon to the unoccupied orbitals of gold in the adsorbed complexes. Thus the reverse shift is only 20% in the di-σ complex, very insignificant in the π complex, and approximately 50% in the μ complex [30].

Let us correlate the calculated  $\Delta G_{ads}^{\circ}$  values for the formation of the  $\pi$ , di- $\sigma$ , and  $\mu$ -C<sub>2</sub>H<sub>4</sub>Au<sub>n</sub> complexes with the peculiarities of the structure and electronic structure of the cluster. For acetylene bound according to the  $\pi$  and di- $\sigma$  types, the tendencies are the same as for ethylene (Table 2), namely, for  $\pi$ -C<sub>2</sub>H<sub>2</sub>Au<sub>n</sub>,  $\Delta G_{ads}^{\circ}$ increases (in magnitude) from -32 to -68 kJ/mol on passing from Au<sub>10</sub> to Au<sub>20</sub> for the 2D isomers and decreases from -38 to -18 kJ/mol for the 3D isomers. Also, there is an inverse relationship between  $\Delta G_{ads}^{\circ}$  of  $\pi$ -C<sub>2</sub>H<sub>2</sub>Au<sub>n</sub> and  $E_g$  of the cluster. As in the case of ethylene,  $\Delta G_{ads}^{\circ}$  for di- $\sigma$ -C<sub>2</sub>H<sub>2</sub>Au<sub>n</sub> are related to the distortion energy of the cluster. Because of the positive  $\Delta G_{ads}^{\circ}$  (+24 kJ/mol), the stable Au<sub>20</sub> (3D) cluster cannot form di- $\sigma$  complexes with acetylene. In contrast,

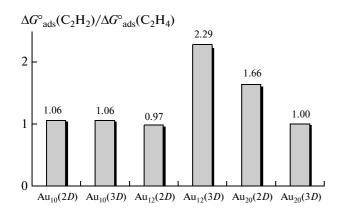



Fig. 3. Selectivity of adsorption of acetylene relative to that of ethylene  $(\Delta G_{ads}^{\circ}(C_2H_2)/\Delta G_{ads}^{\circ}(C_2H_4))$  on gold clusters.

the Au<sub>12</sub> (3D) cluster shows high activity during acetylene coordination according to the di- $\sigma$  type. The formation of the  $\mu$  complex is favored by the dynamic structure of the Au<sub>12</sub> (3D) cluster and the presence of special structural Au<sub>3</sub> fragments in Au<sub>10</sub> (3D) and Au<sub>12</sub> (3D).

As mentioned above, hydrogenation occurs selectively if adsorption of acetylene is stronger than that of ethylene [8]. Figure 3 shows the variation of the calculated adsorption selectivities  $\Delta G_{ads}^{\circ}(C_2H_2)/\Delta G_{ads}^{\circ}(C_2H_4)$  depending on the type of the cluster. The Au<sub>12</sub> (3D) and Au<sub>20</sub> (2D) clusters have the highest  $\Delta G_{ads}^{\circ}(C_2H_2)/\Delta G_{ads}^{\circ}(C_2H_4)$  value and hence facilitate the selective adsorption of acetylene.

The considerable activation of acetylene on Au<sub>12</sub> (3D) is related to the formation of the  $\mu$  complex. The formation of such complexes is favored by the presence of special trigonal Au<sub>3</sub> fragments in gold nanoparticles. The concentration of Au<sub>3</sub> fragments is proportional to the number of atoms that form the edges of the model clusters (Fig. 1f). The high selectivity in acetylene adsorption on Au<sub>20</sub> (2D) is due to the large  $\Delta G_{ads}^{\circ}$  value for the  $\pi$ -C<sub>2</sub>H<sub>2</sub>Au<sub>n</sub> complex, whose for-

mation involves the angular gold atoms with a low coordination number. Thus the selectivity of hydrogenation in real catalysts should be determined by the number of atoms with an uncrowded coordination sphere and located on the edges and at the vertices of nanoparticles.

As is known, the number of edge and angular fragments in real particles increases when the particle size decreases [1, 2]; therefore, high selectivity of hydrogenation should be expected for small gold particles. This assumption is consistent with the results of [6, 31]. It was shown [31] that the selectivity increased 20fold when the gold particle size decreased from 8 to 2.5 nm. The number of atoms with an unsaturated coordination sphere can be increased by doping gold with the oxide of another metal. This was done in the case of highly selective Au–NiO catalysts of acetylene hydrogenation into ethylene [10].

## CONCLUSIONS

Thus the interaction of ethylene with 2D and 3D Au<sub>10</sub>, Au<sub>12</sub>, and Au<sub>20</sub> clusters can form  $\pi$  and di- $\sigma$ complexes. The ethylene  $\pi$  complexes form if the clusters contain angular atoms with low coordination numbers and low HOMO-LUMO energy differences. The di- $\sigma$  complexes form if the cluster contains edge elements. The degree of ethylene activation in di- $\sigma$ - $C_2H_4Au_n$  is higher than that in  $\pi$ - $C_2H_4Au_n$ . Acetylene forms  $\pi$ , di- $\sigma$ , and  $\mu$  complexes depending on the properties of the surface. The vertices of the cluster are the centers of  $\pi$  type coordination of acetylene and the edges are the centers of  $di-\sigma$  coordination. The dynamic structure of the surface and the presence of special Au<sub>3</sub> structural fragments favor the formation of the  $\mu$  complex. The highest activation of acetylene was observed in the  $\mu$  complex. Selective adsorption of acetylene relative to ethylene is possible on the  $Au_{12}$ (3D) and  $Au_{20}$  (2D) clusters. The formation of a catalyst from gold particles having  $Au_{12}$  (3D) and  $Au_{20}$ (2D) structural units should increase the selectivity of acetylene hydrogenation to ethylene.

#### ACKNOWLEDGMENTS

The quantum-chemical calculations were performed on a Chebyshev SKIF supercomputer of Moscow State University. This study was financially supported by the President Grants Council for Support of Young Russian Scientists (grant no. MK-92.2013.3) and the Russian Foundation for Basic Research (project nos. 12-03-31011, 13-03-00320, and 12-03-33062).

#### REFERENCES

- A. S. K. Hashmi and G. J. Hutchings, Angew. Chem., Int. Ed. Engl. 45, 7896 (2006).
- 2. V. I. Bukhtiyarov, Russ. Chem. Rev. 76, 553 (2007).
- M. A. Keane, S. Gómez-Quero, and F. Cárdenas-Lizana, Chem. Catal. Chem. 1, 270 (2009).
- 4. V. V. Smirnov, S. A. Nikolaev, G. P. Murav'eva, et al., Kinet. Catal. **48**, 265 (2007).
- 5. L. McEwan, M. Julius, S. Roberts, et al., Gold Bull. **43**, 298 (2010).
- J. Jia, K. Haraki, J. N. Kondo, K. Domen, et al., J. Phys. Chem. B 104, 11153 (2000).
- S. A. Nikolaev, L. N. Zanaveskin, V. V. Smirnov, et al., Russ. Chem. Rev. 78, 231 (2009).
- A. Molnár, A. Sárkány, and M. Varga, J. Mol. Catal. A 173, 185 (2001).
- 9. A. Fahmi and R. A. van Santen, Surf. Sci. **371**, 53 (1997).

- 10. S. Nikolaev, D. Pichugina, and D. F. Mukhamedzyanova, Gold Bull. **45**, 221 (2012).
- 11. E. Bus, D. E. Ramaker, and J. A. van Bokhoven, J. Am. Chem. Soc. **129**, 8094 (2007).
- G. A. Somorjai and J. Y. Park, Angew. Chem., Int. Ed. Engl. 47, 9212 (2008).
- 13. B. Hammer, Y. Morikawa, and J. K. Norskov, Phys. Rev. Lett. **76**, 2141 (1996).
- S. N. Lanin, Yu. G. Polynskaya, D. A. Pichugina, et al., Russ. J. Phys. Chem. A 87, 1520 (2013).
- D. A. Pichugina, S. N. Lanin, A. V. Beletskaya, et al., Russ. J. Phys. Chem. A 86, 1892 (2012).
- 16. Z. W. Wang and R. E. Palmer, Nanoscale 4, 4947 (2012).
- S. N. Lanin, D. A. Pichugina, A. F. Shestakov, et al., Russ. J. Phys. Chem. A 84, 2133 (2010).
- Jun Li, Xi Li, Hua-Jin Zhail, and Lai-Sheng Wang, Science 299, 864 (2003).
- 19. Catalysis: Principles, Types and Applications, Ed. by Minsuh Song (Nova Science, New York, 2011), p. 245.
- J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
- 21. K. G. Dyall, J. Chem. Phys. 100, 2118 (1994).

- 22. D. N. Laikov, *PRIRODA*, Electronic Structure Code, Vers. 6 (2006).
- 23. D. F. Mukhamedzyanova, N. K. Ratmanova, D. A. Pichugina, et al., J. Phys. Chem. C **116**, 11507 (2012).
- 24. Li Xiao, Bethany Tollberg, Xiankui Hu, and Lichang Wang, J. Chem. Phys. **124**,114309 (2006).
- 25. E. S. Kryachko and F. Remacle, Int. J. Quantum Chem. 107, 2922 (2007).
- 26. V. D. Yagodovskii, *Statistical Physics* (BINOM, Labor. Znanii, Moscow, 2005) [in Russian].
- 27. Xi-Bo Li, Hong-Yan Wang, Xiang-Dong Yang, et al., J. Chem. Phys. **126**, 084505 (2007).
- 28. A. Lyalin and T. Taketsugu, J. Phys. Chem. C **114**, 2484 (2010).
- 29. M. L. Patterson and M. J. Weaver, J. Phys. Chem. **89**, 1331 (1985).
- E. Bus, R. Prins, and J. A. van Bokhoven, Catal. Commun. 8, 1397 (2007).
- 31. S. Nikolaev and V. V. Smirnov, Gold Bull. **42**, 182 (2009).

Translated by L. Smolina

SPELL: OK