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Abstract—Two-dimensional (2D) inverse scattering problems for the acoustic wave equation consist-
ing of obtaining the density and acoustic impedance of the medium are considered. A necessary and
sufficient condition for the unique solvability of these problems in the form of the law of energy con-
servation has been established. It is proved that this condition is that for each pulse oscillation source
located on the boundary of a half-plane, the energy f low of the scattered waves is less than the energy
flux of waves propagating from the boundary of this half-plane. This shows that for inverse dynamic
scattering problems in acoustics and geophysics when the law of energy conservation holds it is possi-
ble to determine the elastic density parameters of the medium. The obtained results significantly
increase the class of mathematical models currently used in solving multidimensional inverse scatter-
ing problems. Some specific aspects of interpreting inverse problems solutions are considered.
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INTRODUCTION
We consider two-dimensional (2D) inverse dynamic scattering problems for a wave equation describ-

ing the propagation of bulk waves in an inhomogeneous medium. There is extensive scientific literature
on inverse dynamic coefficient problems for hyperbolic equations [4–23] starting from [1–3]. To date, the
development of methods for the solution of one-dimensional inverse problems have been practically
accomplished. The most effective among those are Volterra’s method for integral and functional equations [7,
8], the method of the Gelfand–Levitan–Kreyn integral equations [9–12], the method of inverting a difference
scheme [13, 14], variational methods [15, 16], and the boundary control (BC) method [17, 18].

The transition to the solution of multidimensional inverse dynamic problems of scattering in one form
or another was due to the reduction of multidimensional inverse problems to one-dimensional ones based
on the mapping approach [19–21]. First of all, it was successfully done by reconstructing the coefficients
in the lower part of the equations [19]. The further sophistication of the model was based on coordinate
systems connected with the notions of wave fronts and rays. This significantly narrowed the range of the
considered equations. The best studied is the acoustic equation where the inverse problem is reduced to
the reconstruction of the medium’s density [5].

This work is an attempt to extend the range of mathematical models, for which the statement of inverse
problems seems practically feasible. We considered a 2D medium characterized by two parameters,
including density and the elastic parameter, i.e., the volume compressibility coefficient. Other pairs of
functions can also be considered, such as the density and the propagation velocity of the compressional
waves or density and acoustic impedance. The paper shows that the exact scattering data make it possible
to reconstruct alongside the density also the two remaining parameters in the observer’s frame of refer-
ence. From the practical viewpoint, a medium can be interpreted as a substance. This result can prove use-
ful, in particular, in interpreting the data of a geophysical survey.

One of the main tasks of a geophysical survey is subsurface imaging. This is especially important for
deep-seated deposits of hydrocarbons. The main component of comprehensive geophysical prospecting
is a seismic survey, which supplies up to 90% of the useful information about the structure of the layers of
the earth’s strata. At the same time, the method of seismic reflection (MSR) and the refracted waves
method (RWM) are based on the solution of the inverse dynamic problem of scattering, when the geolog-
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ical structure of the medium is to be reconstructed using the field of elastic waves scattered by the near-
surface layers of earth formations (up to 4–5 km).

The classical scheme of observations in exploration geophysics is two-dimensional land seismic pro-
filing, in which a local source of seismic waves (explosive, acoustic, vibrational, etc.) is located on the sur-
face, and the registration of the reflected or refracted waves is linear or areal. In the first case, the task is
two-dimensional seismic imaging. There, the source is located at  different points and, therefore, 
seismograms are recorded where  is the number of seismic receivers in the geophone streamer.

For areal observations, the number of seismograms is about , and the task is to construct a 3
model of the geological environment. It should be noted that for various reasons this research is confined
to constructing a series of independent longitudinal sections followed by the reconstruction of a 3  model
based on interpolation methods. Moreover, 2D imaging can be implemented in field conditions on
medium-powered workstations.

Thus, the considered statements of direct and inverse scattering problems are the basis for the relevant
mathematical models of modern seismic exploration.

1. BODY WAVES IN LAYERED MEDIA
The propagation of seismic waves in the geological environment is extremely complex and, therefore,

mathematical models describing this process mostly offer a limited scope of application. However, long
years of geophysical research have firmly established the understanding of the earth’s crust as a layered
structure where the wave propagation is described by a system of partial differential equations.

Even in the simplest case of an isotropic medium, the equations of elasticity theory determine two dif-
ferent velocities of the propagating elastic (compressional and shear ) waves, which results in the converted
waves. Despite this, many inverse problems of seismic explorations are solved using acoustic approxima-
tion, which only involves the consideration of compressional or -waves. This approach is justified by the
fact that most seismic sources directly generate only -waves, and since under the waves’ incidence on
the layer boundaries close to normal, the mode conversion can be neglected, the elastic problem leads to
the corresponding acoustic statement.

Thus, the considered problem of 2-  imaging within the acoustic approximation is meaningful and
informative. Note that the mathematical formulation of the problem and methods for its study are
extended to the multidimensional case.

We consider a system of equations describing changes in the pressure f luctuations  and in the dis-
placement velocity  in a two-dimensional acoustic medium

where  is the density and  is the kinematic (sound) velocity. The pressure in this case is governed by the
acoustic wave equation, i.e.,

As is known [5, 22], the equation in some (semigeodesic) coordinate system is reduced to a special
form, for which the description of the wave propagation is one-dimensional. In the two-dimensional case,
this coordinate system can be constructed explicitly and has a transparent physical meaning. This natu-
rally yields a system of coordinate curves, i.e., wave fronts.

Further consideration will be within the frame of an layered  acoustic medium, which fills a half-
space  where  is the observation system of the Cartesian coordinate system. According to the geo-
physical tradition,  here acts as the depth,  is the daylight surface, and  denotes a lateral variable
along the direct recording of observations on the daylight surface. It is assumed that  and

 are known. In our consideration, we also use functions  , i.e., the
hardness (acoustic impedance) of the medium, and, accordingly, 

Let there exist a function , which is the solution of the following initial eikonal problem:

The physical meaning of the eikonal  is the time of signal propagation from the point  to the
surface .
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We consider a set of curves  which are orthogonal to the curves  From
the orthogonality condition we have

(1)

Hence, for  we obtain the Cauchy problem for the transport equation

where , , and the initial condition is selected for the convenience of further con-
sideration.

Thus, a semigeodesic orthogonal coordinate system has been constructed. Since the differential oper-
ators in this coordinate system take the form

the initial acoustic wave equation in the new coordinates is written as follows:

where , and when the coordinates are changed the coefficients are marked
by a dot subscript.

We assume , then  and . This last equation can
be represented in the form

(2)

Coefficients  have a definite physical meaning and are interconnected. Indeed, by definition
, and the properties of the transport equation solution imply the equality , which

holds true along the ray tube where  is the magnitude of its cross section depending on the space dimen-
sionality (for a 2D medium it is the linear dimension). Under a slight change in the section along the ray,
the following approximated equalities hold true:

Summing up, the proposed mathematical model takes into account the following main properties of
the studied object:

⎯the inhomogeneous medium is characterized by two functions, i.e., density and compressional wave
velocity, as well as the acoustic impedance depending on it, which are known on the daylight surface;

⎯the medium is layered; i.e., the changes in the parameters along the daylight surface are small in
comparison to their depth changes;

⎯the ray approximation there holds; within it, only effects along the ray’s tube are significant, i.e.,
scattering and geometrical divergence;

⎯the ray’s propagation is close to vertical due to the method of the excitation of vibrations and the lay-
ered medium;

⎯the law of the energy conservation holds and consists in the energy f low of the waves scattered by the
medium being less than the energy f low of the waves leaving the daylight surface.

It should be noted that this physical and, accordingly, mathematical model is common in geophysics.
At the same time, within this model, we have obtained new results, mostly on the solvability of the inverse
dynamic seismic problem based on energy considerations and the possibility of constructing geological
cross sections for various physical parameters (density, velocity, impedance) in the observation coordinate
system (the depth profiles). The latter circumstance is crucial for enhancing the resolution of the existing
methods for processing and interpreting seismic data.

2. SCATTERING PROBLEMS IN GALERKIN’S APPROXIMATION
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where , . The simplifying replacement  in (3) yields the Klein–Gor-
don equation describing the propagation of bulk waves of pressure f luctuations in the layered seismic
acoustic medium

(4)

where  is determined by the equality

(5)

Evidently, Eq. (4) can also be considered in the case of an arbitrary continuous potential , i.e.,
unrepresentable in the above form, just as Eq. (3), in which coefficient  is not bound by equality (5).

In the domain  in Eq. (4) let  and . We impose the
following initial and boundary conditions for (4):

(6)

where  and . Further, we assume that functions , , , and  are -peri-
odic in . Let them be representable in the interval  by a finite Fourier series by the complex system

, , i.e.,

(7)

Further, both the direct and inverse problems for (4) are considered within the projected approach
illustrated by the Galerkin method as an example. It will be shown that in this case problem (4) and (6)
has a unique solution also representable as a finite series similar to (7), i.e.,

(8)

From (4), (6), and (7), we find that , , where, at ,  are the com-
plex solution of the following initial boundary-value problem for a second-order hyperbolic system of α
equations ( ):

(9)

It is readily shown that the scattering problem (9) has a unique classical solution when the matching con-
ditions  are fulfilled. For this purpose, we introduce complex vector functions

,  and  Hermitian matrices , ,
, where , , and  at ; and  at

; and the diagonal matrix , here  everywhere.

Definition 1.1. Matrices of the type  form a linear space . 
We write (9) in vector form (further, vectors are understood as column-vectors)
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side step function, , and  is the Kronecker symbol. Obviously, by definition,
 is the Dirac delta function.

From the columns of the initial conditions , , we form a singular matrix  and
consider the following initial-boundary-value problem with respect to the matrix  of the fundamen-
tal solutions of the boundary-value problem for equations of the Klein-Gordon type, i.e.,

(11)

The statement and solution of this problem are understood in accordance with [15].
The following statements whose proofs are similar to the considerations from [23] hold true.
1. Let . The solution of problem (11) exists, is unique, and can be represented as

under any  where  is a continuous function.
2. We introduce domains  and .

Then  in ,  for any .
3. There the following equalities hold true:

(12)

4. Let . Then , , , and matrix  has
a central symmetry property ( -property): , where  is the inversion about the center of the matri-
ces and the upper bar denotes the complex conjugation.

We formulate the inverse scattering problem in terms of generalized solutions:
by tracing , , the solution of problem (11) is determined by the continuous matrices

 and , . 
Theorem 2.1. The solution of the inverse scattering problem for the Klein–Gordon equation (11) on 

is unique for any .
Proof. It follows from [23] that continuous matrix ,  is reconstructed uniquely from trac-

ing solution , . It will be shown that from , the Toeplitz matrices
 and  are reconstructed separately on . Indeed, for the elements of these matrices, we have

from where, assuming , first we find

and then also . Hence, it follows that in the inverse problem functions  and  are uniquely
reconstructed.

Now we consider the statement of direct and inverse scattering problems for (3) within the Galerkin
method. It should be noted that system (4) and (5), taking into account the equality , is equivalent
to (3). We introduce the Hermitian matrix  such that  at , 
at , , where  are the Fourier coefficients of the function  ,
and we assume that  and .

Let the coefficient  be related to  and  by Eq. (5). In this case we have
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(14)

We associate equality  with the equality , where  is a matrix corresponding
to . By substituting  in (11), we arrive at the following initial-boundary-value problem in

:

(15)

where . It is easy to see that (15) corresponds to the initial equation (3).
Since the solutions of problems (11) and (15) are related by the equality , the properties of

 are similar to the properties of . In particular, if  and  satisfy Eq. (13) at ,
then, with allowance for the equality , we have

(16)

The inverse scattering problem for (15) is given below:
from the trace , , find the matrix-valued functions  and , .
Theorem 2.2. The inverse scattering problem for the acoustic wave equation (15) on  has no more than

one continuous solution for any .
Proof. Since the traces of problems (11) and (15) coincide, by theorem 2.1, the matrices  and 

are determined uniquely, and from the condition , we find matrix . Thus, matrix  is
uniquely determined as the solution of the Cauchy problem (13).

3. SOLVABILITY OF INVERSE SCATTERING PROBLEMS
The existence of solution is one of the key issues in studying inverse scattering problems. It is estab-

lished in [12, 23] that the solvability of inverse problems is directly connected with the fulfillment of cer-
tain energy relations.

First we present the relevant result on a qualitative level. Suppose that the source in the boundary con-
dition is expanded in spatial harmonics. For each of these harmonics any excitation is possible in the con-
sidered time interval. The totality of such space-time sources generates a set of solutions for scattering
problems. At the same time, every solution corresponds to an energy f lux at the boundary over the time
of consideration.

We assume by definition that the f lux is positive if the scattered field energy is lower than the energy of
the field emerging from the border to the medium. The solvability criterion for any inverse scattering prob-
lem is the positive value of the f low for any spatial harmonic and any time representation of the source.

Now the necessary and sufficient condition for the solvability of the inverse scattering problem for the
Klein-Gordon equation is obtained. We consider for (11) an auxiliary Cauchy problem with a timelike
variable  with respect to matrix 
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1. Let . Then the generalized solution of problem (11) and (17) can be represented in the
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We extend function , the solution of problem (11), in an odd way with respect to  to the entire
half-plane  while retaining the designation. Moreover, the trace of the solution  is also
extended in an odd way. We express  in terms of  by means of the matrix of fundamental solu-
tions . Thanks to the principle of superposition for , we have

(18)

Matrix  in the neighborhood of zero can be represented as  part.
Taking this into account, by differentiating (18) with respect to , at  we arrive at a matrix integral

equation of the Gelfand-Levitan type in , i.e.,
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The kernel of this equation is continuous and symmetric due to the evenness of . Moreover, func-
tion  is smooth when , which implies that the solution of Eq. (19) is even with respect to  and
continuously differentiable in  (and also after the closure in ). Hence, it follows, in particular, that

.
According to the properties of the solution of (11), the conditions presented below are necessary for the

solvability of the inverse scattering problem for the Klein-Gordon equation on the interval :

(20)

We also assume that function  in Eq. (19) is extended in an odd way retaining the designation. In
this case, we have the following necessary and sufficient condition for the solvability of the inverse scat-
tering problem whose proof can be found in [23].

Theorem 3.1. Let the conditions of (20) be fulfilled. In this case, the inverse scattering problem for (11) is
uniquely solvable in the class of the matrices  continuous in the interval  when and only
when Eq. (19) is uniquely solvable for any .

We consider the homogeneous parametric equation (19) and write it in operator form
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 and  from  the following inequality is fulfilled:
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We further multiply Eq. (11) on the left by , we multiply the one conjugated to it on the right by , and
add the resulting equalities. This yields the next conservation law at an arbitrary point , i.e.,

We integrate the obtained equality on the plane  over the characteristic triangle  with vertices at
points , , and  and apply Green’s formula in order to reduce the double integral to the
contour one. This yields the conservation law for Hermitian forms, which can naturally be called the law
of energy conservation,

(22)

where  is the interval (segment) , which can be passed in the direction of the
increasing . It can easily be shown that thanks to the -property, the scalar product in the right-hand side
of the last equality holds true.

The quantity  is by definition an energy f lux of waves at the boundary , which are
excited by the source , over time . For the thus introduced functional , it is assumed that

(23)

Intuitively, it is clear that for the physically realizable model of the medium the law of energy conser-
vation must be observed, which is expressed by the inequality . It appears that this inequality at the
same time determines the sufficient solvability condition of the inverse problem.

Theorem 3.2. The inverse scattering problem for Eq. (11) is solvable on  when and only when, .
Proof. In (21), we make a substitution ,  and write this inequality as follows:

Hence, taking into account the evenness of  and the possibility for a change in the integration order,
we have (the sign  denotes convolution)

Now we turn to the energy conservation law (22) and substitute the following boundary equalities into it:

where the latter equality is fulfilled for the solution of the boundary-value problem thanks to the superpo-
sition principle. As a result, we have for any matrix-valued function 

Since the integral operator  is completely continuous, we achieve  in (23) and, thereby,
.

The statement analogous to theorem 3.2 also holds for the case of the acoustic wave equation. It can
easily be shown that for (15) the energy conservation law is also observed. Indeed, at an arbitrary point

 the conservation law holds in the form

By integrating this equality over the characteristic triangle  and applying Green’s formula, we
obtain the energy conservation law for (15):
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Using considerations similar to those presented above for the inverse scattering problem for (11), we
prove that the necessary and sufficient condition of the solvability of the inverse scattering problem for
(15) is expressed by the same criterion as for (11), that is .

Theorem 3.3. The inverse scattering problem for the Klein–Gordon equation (11) is solvable in the class of
such matrices  that on  problem (14) is solvable. The equality  holds true when and only
when .

Proof. Let the inverse problem for (11) be solvable. Then, since , the Cauchy problem (13)
uniquely defines the matrix , . In contrast, if on  the inverse problem is solvable
for (15), Eq. (13) defines the matrix .

The second part of the statement is a direct corollary of the solvability criterion of the inverse scattering
problem for (15) and of the continuity of functions  and  with respect to variable .

We present the class of the matrices  and , for which the inverse scattering problem is solvable
for any . The validity of the following statements immediately follows from theorem 3.2.

Corollary 3.1. The inverse scattering problem for Klein–Gordon equation (11) for any  is solvable
in the class of continuous functional matrices   and  such that for any matrix

, , there holds the inequality

(24)

Corollary 3.2. The inverse scattering problem for the acoustic wave equation (15) for any  is solvable
in the class of continuous functional matrices  such that for any matrix ,

, there holds the inequality

(25)

4. INTERPRETATION OF SOLUTIONS AND IMAGING OF GEOLOGICAL ENVIRONMENT
Since the purpose of the interpretation is to obtain the material parameters of the geomedium and its

imaging, it is natural to impose the following conditions on the solutions of the above-mentioned inverse
problems: the validity of inequalitues  for (4) and ,  for (3) in

. It will be shown that for sufficiently large  it is attainable practically everywhere
in .

Theorem 4.1. Let  and  be the solution of the inverse problem for (11) and let the inequality (24)
be fulfilled. Then we can find sufficiently large  such that  almost everywhere in . Similarly,
let ,  be the solution of the inverse problem for (15) and let the inequality (25) be fulfilled. Then at a
sufficiently large  inequalities  are fulfilled almost everywhere in .

Proof. By virtue of Parseval equality, inequality (24) is equivalent to inequality

(26)

which holds true for any real continuous function  -periodic in  and such that
.

Let us assume that there is a point  such that . Then for any  there is a
sufficiently large  such that as  a cup function can be selected, which oscillates with respect to

 and can be represented as a finite Fourier series such that

where  is the vicinity of the point  of the nonzero Lebesgue measure, in which .
The contradiction in (26) proves that  in  almost everywhere.
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Since the inverse problem (15) is solvable, then except (25), for any matrix , , the
following inequality is also fulfilled:

At the same time, thanks to the Parseval equality, for any real continuous functions 
from , which are -periodic in , the following inequalities are fulfilled:

Further we repeat the above-presented considerations selecting cup functions as .
Now we study which physical parameters can be obtained from the scattering data. It should be

recalled that in the inverse scattering problem for (15) density  is uniquely defined. However, this
function is not defined in the observation coordinates  but in the semigeodesic frame of reference .

It will be shown that when  is known, we can find the relationship between the initial Cartesian
coordinates  and coordinates , and also reconstruct the density  and kinematic velocity

 in the medium.
Theorem 4.2. Let  be the solution of inverse scattering problems for (3) and (4) in , and let

functions  be specified. Then we have defined the one-to-one mapping
 determined by system (1). In addition, uniquely defined on  are the density

 and velocity  such that  and 
Proof. Since curvilinear coordinates  are orthogonal, the tangent vectors  and  to the

coordinate curves are orthogonal, i.e.,

(27)

hence for the Jacobian , we have

On the other hand, since by construction

for Jacobian  we have

This implies that . Recalling that , from (27), we obtain a system of equations
in , i.e.,

(28)

where the function  is still unknown.
In order to define , we use function  which is known when . Thus, we have

hence , where  is a function inverse to . Thereby, in system (28) we define the functions

 and .
Thanks to the initial assumption about the possibility of constructing semigeodesic coordinates, the

solution of (28) exists, and by the Cauchy-Kovalevskaya theorem, the solution of the initial problem for

�

2[0, ]L TαΨ ∈ � 0Ψ ≠

� �

2[0, ], ( ) > 0.
L T

Z x α〈Ψ Ψ〉

�( , ), ( , ) 0x y x yψ ψ ≠
2( )TL D 2L y

�

22 2( , ) ( , ) ( , ) > 0,  ( , ) ( , )) > 0.
T TD D

c x y z x y x y dxdy z x y x y dxdyψ ψ∫∫ ∫∫

�,Ψ Ψ

.( , )x yρ
,ξ η ,x y

.( , )G x y
,ξ η ,x y ( , )ρ ξ η

( , )a ξ η
.( , ) > 0G x y TD

0 0( ), ( ) > 0a η ρ η
( , ) = { ( , ), ( , )}x y x y x yξ ηr ( )TDr
( , )ρ ξ η ( , )a ξ η 0(0, ) = ( )ρ η ρ η 0(0, ) = ( )a aη η

,x y { , }x xξ η { , }y yξ η

= , = ,y x y xA Aξ − η η ξ

= ( , ) ( , )J D D x yξ η

2 2 2det = = ( ) = .x y
x x

x y
J A Aa

ξ ξ
ξ + η

η η

= , = ,y Gx y Gxξ η η ξ−
1 = ( , ) ( , )J D x y D− ξ η

1 2 2 2det = = ( ) = .
x x

J G x x G a
y y
ξ η−

ξ η
ξ η

+

= 1A G 0 0 0( ) ( ) = ( )a η ρ η σ η
( , ), ( , )x y x yξ η

0

0

( .) ( . ) = 0, (0, ) = 0, (0, ) = ( ( )),
( .) ( . ) = 0, (0, ) = 0, (0, ) = ( ( )),

x x y y x

x x y y x y

G G y y a y
G G y y y

ξ + ξ ξ ξ η
η + η η η σ η

( )yη
( )yη 0( )σ η = = 0xξ

=0
0 0=0 0

1= , ( ) = = ( ),
( ) ( )x

x

dy d
y g

d

η
ν

η η
η σ η σ ν∫

1
=0 = ( )x g y−η 1g − g

1
0 0( ( )) = ( ( ))a y a g y−η 1

0 0( ( )) = ( ( ))y g y−ρ η ρ



MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 8  No. 6  2016

IMAGING OF LAYERED MEDIA IN INVERSE SCATTERING PROBLEMS 699

this system is unique. Knowing the transformation  and, consequently, the
inverse to it , we finally get  and .

The following note appears useful for the practical solution of the problem.
Remark 1. The solution of inverse scattering problems is invariant with respect to the choice of the ini-

tial condition  in the Cauchy problem for the transport equation. In particular, it can be assumed
that .

This remark under certain conditions makes it possible to solve the problems of reconstructing the
function  using the obtained  and . As is known, the initial-boundary-value problem

-periodic in 

where  and , is ill posed both because the solution is unbounded and
due to its unstable initial data. It is especially important because the function  is unknown a priori and
obtaining it from the equality  by differentiating the trace of solution  is also
unstable. It will be shown that within the natural assumptions, function  can be found even when

 is unknown.
We assume that the sought function  is bounded under each . Then it will be sought as a

solution of the boundary-value problem for Eq. (5) with the boundedness condition for  at
.

We also assume that the solution , corresponding to coefficients  and  is such that
at  its Laplace transform  is determined. Then we obtain from (4) at  that

which coincides with Eq. (5). Therefore, the bounded solution of the boundary-value problem for (5) can
be constructed by solving the problem for the Klein-Gordon equation (4) with the conditions

(29)
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Fig. 1. The acoustic impedance section in the inline 1270 direction.
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Fig. 2. Section of reflection coefficients in the crossline 1304 direction.
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where function  satisfies the equality .

It is necessary that the numerical solution of problem (5) and (29) could be algorithmically organized
parallel to solving problem (11).

Example 1. Let , , , , , and . We

assume

where  is the Bessel function of the th order. In this case, as the solution of the initial problem for (4)
with the boundary conditions (29), we obtain a generalized function

Hence, we find

and, accordingly, when it is necessary,

Remark 2. Clearly, the particular choice of  does not affect the ultimate result when the equality

 is satisfied and is only determined by considerations of convenience.

CONCLUSIONS

In conclusion, we consider some of the results of mathematical modeling in the studied class of envi-
ronments. As an example of real geological structures and the results of their imaging based on processing
the geophysical survey data, we present the geological sections of uncovered wells in one of the areas of
Western Siberia. The seismic data processing results were taken from [24–26].

In our short explanations to the presented images of the environment, we retain the conventional terms

of geophysical exploration. Figure 1 shows an acoustic impedance section, i.e., functions , along
the inline 1270 layout of the seismic receivers. The vertical line  represents the time (eikonal) in ms, and
the horizontal line  shows the distance in m.

Figure 2 presents the stacked seismic data (time section) for the coefficients of the reflection, i.e., func-

tions , in the direction transverse to the inline 1270 profile along the crossline 1304. These

sections give an idea of the structure of the boundaries of the geological layers. They are used as a basis for
the construction of the acoustic impedance sections.

Finally, Fig. 3 presents a detailed fragment of the crossline 470 impedance section. This section demon-
strates the results of the geological interpretation aimed at the identification of the promising layers of the
hydrocarbon content. In addition to the logging well LW and the production well PW, well number 7 in
Fig. 3 designates a well recommended for drilling.

All the presented sections are related to the wells, thus making it possible to coordinate the results
obtained by the solution of inverse problems, with the measurement data based on techniques of produc-
tion well logging (PWL) and acoustic logging (AL). The presented illustrations show the relevance of the
model of the layered geological environment adopted in this paper with the properties weakly changing
horizontally, and demonstrate the possibility of constructing an image of such a medium by mathematical
modeling.

It should be noted that the sections in Figs. 1–3 are constructed in the semigeodesic coordinates .
In order to represent these sections in real depths, the quantity inverse to the velocity is integrated over the
depth at constant , thereby obtaining the respective value of the eikonal. In this case, the velocity itself
is taken from the data obtained by PWL and AL or from the a priori velocity model. Typically, these mod-
els are very approximate, since they either only correspond to the borehole environment or are described
by parameters of the thick-layer medium model. Nevertheless, this method for the construction of the
depth profiles is common for the existing software packages for the processing of seismic data. Obviously,
the resulting depth profiles inevitably contain artefacts.
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