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Abstract. The derived series of the d-dimensional analogue J (d)(k) of the Jennings

group (d = 1) of substitutions of mappings of formal power series with coe�cients in an
arbitrary �eld k is calculated. More precisely, we �nd the commutators of some subgroups
in the group J (d)(k) for d ≥ 2.

1. Introduction

In 1954, Jennings introduced [1] the group J (k) of formal power series in one variable

f(x) = x+ α2x
2 + . . .+ αnz

n + . . . , αn ∈ k, (1)

with coe�cients in an abelian ring with identity k. This set becomes a group if we
use substitution as a group operation: f ◦ g(x) = f

(
g(x)

)
. The group J (k) is non

commutative. But Jennings group has some eliments of commutativity and compactness
� she is amenable [2]. Commutators of subgroups of Jennings group has a di�erent
character depending on the characteristics p of the coe�cient �eld k. A description of
the commutators subgroups of the Jennings group in di�erent cases (p = 0, p is odd, and
p is even) is contained in the papers [1, Theorem 2.1.3], [3, Lemma 1.2.9], [4, Theorem
2], [2, Theorem 1.1, Propositions 2.1 and 2.9], and [5]. A brief overview of these results is
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presented in [6]. The article [6] considers the commutators of some special subgroups of
the multidimensional Jennings group. Below we use the symbolism of article [6] and for
the convenience of the reader we repeat word for word the notation from it. In addition,
we considered it possible to repeat the formulation of the computational Proposition 2.3.
For a commutative ring k with unit, the d-dimensional Jenning's group J (d)(k) means

the group of formal power self mappings of kd with �xed point zero and the linear part
equal to identity. That is

J (d)(k) = {F = (f1, ..., fd) : fr(x1, ..., xd) = xr +
∑

i1+...+id≥2

a
(r)
i1,...,id

xi1
1 · ...xid

d ,

a
(r)
i1,...,id

∈ k, r = 1, ..., d }.

For a �xed, clearly indicated value of d, we will simply write J (k). If it is necessary to take
two elements F,G ∈ J (k), the coe�cients of the second element are denoted by letters of
the Greek alphabet. The coe�cients of the commutator [F,G] = FGF−1G−1 are denoted
with capital Latin letters. In further calculations, we use the equality [F,G](GF ) =
FG, which avoids the calculation of inverse elements. For two subgroups H1, H2, the
reciprocal commutator [H1, H2] is a subgroup generated by commutators of elements from
H1 and H2, respectively. Since (ab)−1 = b−1a−1, [a, b]−1 = [b, a] and the reciprocal
commutator [H1, H2] consists of �nite products of commutators of elements from H1 and
H2, respectively, but taken in an arbitrary order.
Introduce the subgroup

Jm =
{
F ∈ J (k) : a

(r)
i1,...,id

= 0 for 2 ≤ i1 + i2 + ...+ id ≤ m, r = 1, ..., d
}
.

In the group J (2)(k) for even m the following subgroups are important for us

J=
m =

{
F ∈ Jm : a2r+1,m−2r = b2r,m+1−2r for every r = 0, 1, . . . ,

m

2

}
,

J=,0
m =

{
F ∈ J=

m : a2r,m+1−2r = bm+1−2r,2r = 0 for every r = 0, 1, . . . ,
m

2

}
.

A natural ultrametric is de�ned in the group J (k). For the elements F ̸= G, take the
maximum m such that

a
(r)
i1,...,id

= α
(r)
i1,...,id

for i1 + . . .+ id ≤ m, 1 ≤ r ≤ d.

The number m is determined by the condition FG−1 ∈ Jm\Jm+1. The function ϱ(F,G) =
2−m sets an ultra metric on Jenning's group and Jm is a normal closed subgroup for anym.
In the multidimensional case, the description of commutators is simpler. The results [6,
Theorem 2.11, Theorems 2.7, 2.8, and 2.13] can be combined into the following compact
formula.

Theorem 1.1. If d ≥ 2 and k is a �eld of characteristic p then for any natural numbers
m and n the following equality holds

[Jm, Jn] =

{
J=
m+n if d = 2, p = 2, and m ≡ n ≡ 0 mod 2;

Jm+n otherwise.
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To every topological group G there are associated two series of commutators subgroups
� the lower central series and derived series. The lower central series of a topological
group G is de�ned as follows:

G1 = G, Gn+1 = [Gn, G].

The derived series of a topological group G is de�ned as follows:

G(0) = G, G(n) = [G(n−1), G(n−1)].

Theorem 1.1 allows us to describe the lower central series of the multidimensional
Jennings group and the derived series is described always except for the case d = 2,
p = 2. Theorems 1.1, 3.4, and 3.3 allow to describe the derived series in the remaining
case d = 2, p = 2.

2. Calculations

Everywhere below, it is assumed that d = 2 and the coe�cient �eld has characteristic
p = 2. It is also assumed that F = (f1, f2) ∈ Jm and G = (g1, g2) ∈ Jn. We need to
calculate the composition F ◦G. Since J1 = J (k), the resulting formulas can be applied
in the most general case. Let

f1 = x+ f̃1 = x+
∑

i1+i2≥m+1

ai1,i2x
i1yi2 ,

f2 = y + f̃2 = y +
∑

i1+i2≥m+1

bi1,i2x
i1yi2 ;

g1 = x+ g̃1 = x+
∑

j1+j2≥n+1

αj1,j2x
j1yj2 ,

g2 = y + g̃2 = y +
∑

j1+j2≥n+1

βj1,j2x
j1yj2 .

Let F ◦G = {q1, q2}, then

q1 = x+ g̃1 +
∑

i1+i2≥m+1

ai1,i2(x+ g̃1)
i1(y + g̃2)

i2 = x+ g̃1+

∑
i1+i2≥m+1

ai1,i2

(
xi1 +

i1∑
k=1

(
i1
k

)
xi1−kg̃k1

)(
yi2 +

i2∑
l=1

(
i2
l

)
yi2−lg̃l2

)
= x+ g̃1 + f̃1+

∑
i1+i2≥m+1

ai1,i2

(
xi1

i2∑
l=1

(
i2
l

)
yi2−lg̃l2+yi2

i1∑
k=1

(
i1
k

)
xi1−kg̃k1+

i1∑
k=1

i2∑
l=1

(
i1
k

)(
i2
l

)
xi1−kyi2−lg̃k1 g̃

l
2

)
.

Here
(
i
k

)
is the binomial coe�cient.

The formula for q2 is obtained by replacing ai1,i2 with bi1,i2 . Accordingly, the coe�cients
of the composition G ◦ F are obtained by replacing Latin letters with Greek ones, the
numbers m ↔ n, and the summation indices i1 ↔ j1 and i2 ↔ j2. However, later for the
summation indices, you can take other designations.
From the formulas written out we obtain
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Proposition 2.1. (A partial case for d = 2 in [6, Proposition 2.1]) If 2 ≤ k1+k2 ≤ m+n,
then

ak1,k2(F ◦G) = ak1,k2(F ) + αk1,k2(G).

Corollary 2.2. ([6, Proposition 2.2]) For any commutative ring k the following inclusion
is true

[Jm, Jn] ⊂ Jm+n.

The smaller terms of the composition can be written out more speci�cally. The smallest
possible �non-additive� degree of the composition F ◦G is m+ n+ 1.

Proposition 2.3. ([6, Proposition 2.4]) If k1 + k2 = m+ n+ 1, then

ak1,k2(F ◦G) = ak1,k2 + αk1,k2 +
∑

i1+i2=m+1,
j1+j2=n+1,
i1+j1=k1+1,
i2+j2=k2

i1ai1,i2αj1,j2 +
∑

i1+i2=m+1,
j1+j2=n+1,
i1+j1=k1,

i2+j2=k2+1

i2ai1,i2βj1,j2

= ak1,k2 + αk1,k2 +

min{k1+1,m+1}∑
i=max{0,k1−n}

iai,m+1−iαk1+1−i,n−k1+i

+

min{k1,m+1}∑
i=max{0,k1−n−1}

(m+ 1− i)ai,m+1−iβk1−i,n+1−k1+i .

Proposition 2.4. If p = 2 and k1 + k2 = m+ n+ 1, then

ak1,k2(F ◦G) = ak1,k2 + αk1,k2 +

min
{[

k1
2

]
,
[

m
2

]}∑
l=max

{
0,
[

k1−n
2

]} a2l+1,m−2lαk1−2l,n+1−k1+2l

+

min
{[

m+n+1−k1
2

]
,
[

m
2

]}∑
l=max

{
0,
[

m−k1+1
2

]} am−2t,2t+1βk1−m+2t,m+n+1−k1−2t . (ak1,k2(F ◦G))

Proof. In the Proposition 2.3 only the terms with odd indices i1 and i2 remain. □
The formula for bk1,k2(F ◦ G) is obtained from (ak1,k2(F ◦ G)) by replacing ai1,i2 with

bi1,i2 . In this case, the summation indices can be denoted for reasons of convenience.

Proposition 2.5. If p = 2, m ≡ 0 mod 2 and k1 + k2 = m+ n+ 1, then

ak1,k2(F ◦G) = ak1,k2 + αk1,k2 +

min
{[

k1
2

]
,m
2

}∑
l=max

{
0,
[

k1−n
2

]} a2l+1,m−2lαk1−2l,n+1−k1+2l

+

min
{[

k1
2

]
,m
2

}∑
l=max

{
0,
[

k1−n
2

]} a2l,m+1−2lβk1−2l,n+1−k1+2l .

Proof. In the second sum of the Proposition 2.4 we denote m− 2t by 2l. □
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Proposition 2.6. If p = 2, m ≡ n ≡ 0 mod 2 and k1 + k2 = m + n + 1, then
Ak1,k2([F,G]) =

min
{[

k1
2

]
,m
2

}∑
l=max

{
0,
[

k1−n
2

]} a2l+1,m−2lαk1−2l,n+1−k1+2l +

min
{[

k1
2

]
,m
2

}∑
l=max

{
0,
[

k1−n
2

]} a2l,m+1−2lβk1−2l,m+1−k1+2l

+

min
{[

k1
2

]
,n
2

}∑
l=max

{
0,
[

k1−m
2

]}α2l+1,n−2lak1−2l,n+1−k1+2l +

min
{[

k1
2

]
,n
2

}∑
l=max

{
0,
[

k1−m
2

]}α2l,n+1−2lbk1−2l,m+1−k1+2l.

Proof. According to the Corollary 2.2 [F,G] ∈ Jm+n. Since [F,G] ◦ (G ◦ F ) = (F ◦G),
then according to Proposition 2.1 Ak1,k2([F,G]) = ak1,k2(F ◦G) + ak1,k2(G ◦ F ). □

Corollary 2.7. If p = 2, m ≡ n ≡ 0 mod 2, then

A2r+1,m+n−2r([F,G]) = B2r,m+n+1−2r([F,G]) =

min
{
r,m

2

}∑
l=max

{
0,r−n

2

} a2l,m+1−2lβ2r+1−2l,n−2r+2l +

min
{
r,n

2

}∑
l=max

{
0,r−m

2

}α2l,n+1−2lb2r+1−2l,m−2r+2l

for every r = 0, . . . , m+n
2

.

Proof. Change r − l on the t in the third sum in the Proposition 2.6. It turns out
that the �rst sum is the same as the third, so they are reduced. Similarly, two sums
are reduced in the representation B2r,m+n+1−2r([F,G]) and the same expressions remain.
□

Corollary 2.8. If d = 2, p = 2, and m ≡ n ≡ 0 mod 2, then the following inclusion
holds

[Jm, Jn] ⊆ J=
m+n.

This corollary is contained in Theorem 1.1 (and is in [6]), but we present it as an
important illustration of the previous formulas.

Corollary 2.9. If p = 2, m ≡ n ≡ 0 mod 2, then A2r,m+n+1−2r([F,G]) =

min
{
r,m

2

}∑
l=max

{
0,r−n

2

} a2l+1,m−2lα2r−2l,n+1−2r+2l +

min
{
r,m

2

}∑
l=max

{
0,r−n

2

} a2l,m+1−2lβ2r−2l,n+1−2r+2l

+

min
{
r,m

2

}∑
l=max

{
0,r−n

2

} a2l,m+1−2lα2r−2l+1,n−2r+2l +

min
{
r,m

2

}∑
l=max

{
0,r−n

2

} b2l,m+1−2lα2r−2l,n+1−2r+2l.

Proof. Change r− l on the t in the third and fourth sums in the Proposition 2.6. Next,
we rename t to l. □
Now let's create all the �bricks�, the product of which approximates any element of the

subgroup Jm+n as accurately as we want.
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Proposition 2.10. Let F and G have an elementary form:

f1 = x+ axiym+1−i, f2 = y + bxvym+1−v; g1 = x+ αxjyn+1−j, g2 = y + βxwyn+1−w.

Then their commutator H = [F,G] has the form

h1 = x+ (i− j)aαxi+j−1ym+n+2−i−j

+(m+ 1− i)aβxi+wym+n+1−i−w + (n+ 1− j)bαxv+jym+n+2−v−j + . . . ,

h2 = y + (m+ n+ v + w)bβxv+wym+n+1−v−w

+vbαxv+j−1ym+n+2−v−j + waβxi+w−1ym+n+2−i−w + . . . .

Proof. The �rst non-additive coe�cients can be calculated using Proposition 2.3, but
in this simple case it is easy to repeat the calculations. So,

q1 = x+ αxjyn+1−j + a(x+ αxjyn+1−j)i(y + βxwyn+1−w)m+1−i.

Then for the smallest nonlinear degree the following equality holds

q̂
(m+n+1)
1 (F ◦G) = iaαxi+j−1ym+n+2−i−j + (m+ 1− i)aβxi+wym+n+1−i−w.

For another order we get

q̂
(m+n+1)
1 (G ◦ F ) = jαaxj+i−1ym+n+2−i−j + (n+ 1− j)αbxj+vym+n+1−j−v.

From the equality for the commutator h
(n+m+1)
1 + q

(n+m+1)
1 (G ◦ F ) = q

(n+m+1)
1 (F ◦ G)

(Proposition 2.1) we obtain the equality

h
(n+m+1)
1 + jαaxj+i−1ym+n+2−i−j + (n+ 1− j)αbxj+vym+n+1−j−v

= iaαxi+j−1ym+n+2−i−j + (m+ 1− i)aβxi+wym+n+1−i−w.

Thence h
(n+m+1)
1 =

(i− j)aαxi+j−1ym+n+2−i−j+(m+1− i)aβxi+wym+n+1−i−w− (n+1− j)αbxj+vym+n+1−j−v.

For i = j = 0 one should assume that the corresponding monomial is absent. □

Corollary 2.11. Let F and G are as in Propisition 2.10, m ≡ 0 mod 2, i = 2r, w =
2l + 1, and b = α = 0. Then their commutator H = [F,G] has the form

h1 = x+ (m+ 1− i)aβxi+wym+n+1−i−w + . . . , h2 = y + waβxi+w−1ym+n+2−i−w + . . . .

Corollary 2.12. Let F and G are as in Propisition 2.10, m ≡ 0 mod 2, i = 2r + 1,
v = 2r, and a = b. Then their commutator H = [F,G] has the form

h1 = x+ naαx2r+jym+n+1−2r−j + . . . , h2 = y + naβx2r+wym+n+1−2r−w + . . . .
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3. Main results

Theorem 3.1. If d = 2, p = 2, m ≡ 0 mod 2, and n ≡ 1 mod 2, then the following
equality holds

[J=,0
m , Jn] = Jm+n.

Proof. Inclusion [J=,0
m , Jn] ⊆ [Jm, Jn] ⊆ Jm+n follows from the Corollary 2.2.

Since J=,0
m ⊇ Jm+1, then [J=,0

m , Jn] ⊇ [Jm+1, Jn]. According to Theorem 1.1 the last set
is equal to Jm+n+1.
It remains to realize in the form of a commutator the beginning of a common element

from Jm+n \ Jm+n+1. According to the Proposition 2.1 it is necessary (enough) to imple-
ment as a commutator an element with a unique monomial of degree m+ n+ 1, that is,
single coe�cient ai,m+n+1−i.
It is easy to see that the conditions from Corollary 2.12 are satis�ed for any element F ∈

J=,0
m . For β = 0 and odd n the commutator has the form h1 = x+ aαx2r+jym+n+1−2r−j +

. . . , h2 = y+ . . . . Combinations 2r = 0, . . . ,m è j = 0, 1, . . . , n+1 implement all �bricks�
ak1,m+n+1−k1 . □

Corollary 3.2. If d = 2, p = 2, m ≡ 0 mod 2, and n ≡ 1 mod 2, then the following
equality holds

[J=
m, Jn] = Jm+n.

Theorem 3.3. If d = 2, p = 2, and m ≡ n ≡ 0 mod 2, then the following equality holds

[J=,0
m , J=,0

n ] = Jm+n+1.

Proof. We substitute in the formula of Corollary 2.7 the conditions a2l,m+1−2l =
bm+1−2l,2l = 0 and α2l,n+1−2l = βn+1−2l,2l = 0: A2r+1,m+n−2r([F,G]) = B2r,m+n+1−2r([F,G]) =

min
{
r,m

2

}∑
l=max

{
0,r−n

2

} a2l,m+1−2lβ2r+1−2l,n−2r+2l +

min
{
r,n

2

}∑
l=max

{
0,r−m

2

} b2r+1−2l,m−2r+2lα2l,n+1−2l = 0.

Inclusion [J=,0
m , J=,0

n ] ⊇ [J=,0
m , Jn+1] = Jm+n+1 follows from the Theorem 3.1. □

Theorem 3.4. If d = 2, p = 2, and m ≡ n ≡ 0 mod 2, then the following equality holds

[J=
m, J

=
n ] = J=,0

m+n.

Proof. Inclusion [J=
m, J

=
n ] ⊆ [Jm, Jn] ⊆ J=

m+n retrieved from Corollary 2.8.
Substitute in the formula of Corollary 2.9 the conditions b2l,m+1−2l = a2l+1,m−2l and

β2l,n+1−2l = a2l+1,n−2l: A2r,m+n+1−2r([F,G]) =

min
{
r,m

2

}∑
l=max

{
0,r−n

2

} a2l+1,m−2lα2r−2l,n+1−2r+2l +

min
{
r,m

2

}∑
l=max

{
0,r−n

2

} a2l,m+1−2lα2r−2l+1,n−2r+2l

+

min
{
r,m

2

}∑
l=max

{
0,r−n

2

} a2l,m+1−2lα2r−2l+1,n−2r+2l +

min
{
r,m

2

}∑
l=max

{
0,r−n

2

} a2l+1,m−2lα2r−2l,n+1−2r+2l = 0.
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Similarly, it is proved that B2r+1,m+n−2r([F,G]) = 0.

Inclusion [J=
m, J

=
n ] ⊇ [J=

m, Jn+1] = Jm+n+1 follows from the Corollary 3.2.
It remains to realize in the form of a commutator the beginning of a common ele-

ment from J=,0
m+n \ Jm+n+1. According to the Proposition 2.1 it is necessary (enough) to

implement as a commutator an element with a pair of equal coe�cients a2r+1,m+n−2r =
b2r,m+n+1−2r.
It is easy to see that the elements F and G from Corollary 2.11 for b = α = 0, i = 2l,

and w = 2t + 1 lie in the subgroup J=
m. In this case, the commutator has the form h1 =

x+aβx2r+2t+1ym+n−2r−2t+ . . . , h2 = y+aβx2r+2tym+n+1−2r−2t+ . . . . Combinations 2l =
0, . . . ,m and 2t + 1 = 1, 3, . . . , n + 1 implement all �bricks� a2r+1,m+n−2r = b2r,m+n+1−2r,
2r + 1 = 1, 3, . . . ,m+ n+ 1. □
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