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INTRODUCTION

The European X�Ray Laser (XFEL), emitting at a
wavelength of ~0.1 nm, has undergone intense devel�
opment in recent years [1]. Lasing in XFEL is based on
the self�induced amplification of spontaneous emis�
sion (SASE [2]) of electron bunches of ~17.5 GeV in
energy during their propagation through a system of
superconducting undulators with a total length of
~120 m [1]. According to the calculations in [3–5],
XFEL emission has the form of short pulses τ0 ~ 100 fs
long with an extremely irregular multispike structure,
in which individual subimpulses (spikes) are τs ~ 0.1–
0.2 fs long and divided by time spans of ~0.3–0.4 fs.
The cross dimension of a pulse at the undulator output
is ≈70 µm, and the angular divergence is ≈1 µrad
(in SASE channel 1) [4, 5].

Time resolution experiments and phase�contrast
imaging depend substantially on the coherent proper�
ties of X�ray pulses. XFEL emission is almost totally
spatially coherent and characterized by quite moder�
ate temporal coherence [4, 5]. The length of spatial
(lateral) coherence is comparable to the pulse cross
dimension in the saturation mode, while the coher�
ence time (longitudinal coherence) τc ≈ τs ≈ 0.2 fs� τ0,
producing spectral pulse width ΔE/E ≈ 0.1% [4, 5].

Diffraction reflection from crystals and multilayer
structures (MSes) is widely used for the monochroma�
tization and collimation of X�radiation. The spectral
XFEL pulse width exceeds the spectral width ΔEB/E ≤
0.01% of the Bragg reflection from perfect monocrys�
tals by an order of magnitude and is much less than the
width ΔEB/E ~ 1–5% of the diffraction reflection from
typical periodic MSes. It was shown in [6] that
reflected pulses are widened in time by 1–2 orders of
magnitude during femtosecond pulse diffraction in
crystals in the Bragg and Laue geometries, their shape

differs considerably from the temporal dependence of
an incident pulse, and the peak intensity is equal to
units and fractions of one percent.

It is of interest to analyze the possibilities of pro�
ducing multilayer mirrors with the spectral interregion
reflectance width ΔEB/E ~ 0.05–0.5% for practical
purposes. In this work, we propose that the quasi�for�
bidden second�order Bragg reflection from an MS
with a short period (~2–3 nm) based on light weakly
absorbing elements (Al2O3, B4C, and BN) be used for
these purposes. We have constructed a statistical the�
ory of diffraction reflection and propagation of ran�
dom transient femtosecond XFEL pulses. The MS
parameters were analyzed for use as pulse splitters in
the hard X�ray energy range. We should note that the
use of glancing angles of incidence allows an increase
in the radiation load of powerful XFEL pulses on an
MS by about one order of magnitude, relative to the
Bragg reflection from crystals.

PULSE PROPAGATION IN FREE SPACE

Let us first consider the propagation of an X�ray
pulse from XFEL to arbitrary plane z [6–8]. Let us
represent the pulse field in the source plane z = 0 (the
output window of XFEL undulator) as

(1)

where  = (x, y), ω0 is the mean frequency, and As is a
slowly varying and generally random and complex func�
tion. Let us represent amplitude (1) as an expansion in
plane waves with frequencies ω = ω0 + Ω and wave vec�

tors  satisfying the wave equation, where kz =
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(k2 – q2)1/2, and k = ω/c. Finally, for the pulse field in
the plane z in the quasi�optic approximation,

(2)

where k0 = ω0/c = 2π/λ0, and the slowly varying
amplitude

(3)

Here k = (ω0 + Ω)/c, the spectrum�angular ampli�
tudes of the source radiation field

(4)

In general, pulse (3) is spatially inhomogeneous
and transient, since its correlation function depends
on  and t:

(5)

Let us represent the source filed amplitude as the
product of spatial and temporal functions

 It then follows from Eqs. (3) and
(4) that the pulse amplitude in plane z at k ≈ k0 is also
equal to the product of two functions:

(6a)

 (6b)

where G( , z) = (iλ0z)–1exp(iπξ2/λ0z) is the propaga�

tor,  = (x – x', y – y').
Amplitude representation (6a) by the product of

two functions results in a representation of total corre�
lation function (5) in the form of the product of the
spatial and temporal correlation function

(7)

As can be seen from Eq. (6a), the temporal pulse
structure is invariable during propagation in free space.
A Gaussian pulse in source plane z = 0 with amplitude

Bs( ) = bs( )exp[–( )(1 – α0)] and the Gaussian

spatial coherence function  =

 also remains Gaussian at other distances z
[7, 8]. Here, r0 is the cross dimension of the pulse, ρ0 is
the spatial coherence length, and α0 is the parameter
describing the parabolic curvature of the wave front.
The pulse cross dimension and the spatial coherence
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length increase by M times with r1(z) = r0M, ρ1(z) =
ρ0M, where

(8)

and D =  W =  are the wave param�
eters. The amplitude quadratic phase parameter at dis�

tance z is α1(z) = α0 + (1 + )D + 2W. The pulse

angular spectrum width  =

 is defined by relationship [7]

(9)

The pulse angular divergence Δθ0 = Δq0/k0 ≤ 1–
3 μrad for radiation with wavelength λ0 ~ 0.1 nm at the
typical XFEL parameters (r0 ≈ 40 μm, ρ0 ∼ r0, and
α0 ≤ 1) [4], which is much less than the width of the
diffraction reflection from an MS and even perfect crys�
tals. Therefore, after reflecting from an MS, there is a
further diffraction increase in the pulse cross dimen�
sion. At distance z1 from an MS, r2(z + z1) = r1(z)M(z1).
If, e.g., z ≈ z1 ≈ 500 m, then r1 ≈ 0.5 mm and r2 ≈ 1 mm.

Equations (6)–(9) are true at distances z � zc,

where zc ≈ 2(E/ΔE)/  is the distance at which
incomplete temporal coherence of the pulse begins to
affect the spatial coherence and vice versa, as follows
from Eq. (3). Condition z  zc is fulfilled in all cases of
practical interest (zc ≥ 1000 m) at pulse nonmono�
chromaticity ΔE/E ∼ 10–3 and angular divergence
Δθ0 ~ 1–5 μrad.

DIFFRACTION OF PULSES 
WITH RANDOM TIME STRUCTURE

Let us consider the effect of temporal incoherence
and X�ray pulse nonstationarity on its diffraction
reflection. Let us represent the random pulse ampli�
tude A(t) in Eq. (6a) in the form of Fourier integral
over plane waves:

where spectral amplitude

Amplitude A(t) is random; therefore, A(Ω) is also
a random function. Each plane wave with amplitude
A(Ω), incident on an MS, is reflected and propagates
with the amplitude coefficients of reflection R(Ω)
and propagation T(Ω); therefore, the slowly varying
amplitudes of R� and T�pulses are defined by the
integral

(10)
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where j = R, T; CR = R, CT = T, ϕ(Ω, t) = Ω(t – z/c),
and z is the distance between the pulse and the MS.

The statistical properties of the reflected and prop�
agating pulses are defined by the time correlation
function

(11)

According to definition (11), pulse intensities
Ij(t) = Γj(t, 0). Let us substitute Eq. (10) into Eq. (11)
and perform statistical averaging:

(12)

where the spectral correlation function of incident
pulse is defined as

(13)

and Φ is a regular function of frequency and time:

(14)

It follows from Eq. (13) that incident pulse spec�
trum S(Ω) = 〈|A(Ω)|2〉 = g(Ω, Ω). Eqs. (12)–(14) gen�
erally solve the problem of detecting intensities Ij(t)
and the temporal coherence functions γj(t, τ) of
reflected and propagating pulses:

 (15)

The following simple model of transient XFEL
pulses with random substructure can be suggested
from an analysis of the data in [3–5]: A(t) = F(t)a(t),
where F(t) describes the pulse envelope and is a regular
time function; a(t) is a random stationary process with
mean 〈a(t)〉 = 0, intensity 〈a(t)a*(t)〉 = 1, and correlation
function γ(τ) = 〈a(t)a*(t + τ)〉 independent of time. For
such a random signal, 〈a(Ω)a*(Ω')〉 = G(Ω)δ(Ω–Ω'),
where, according to the Wiener–Khintchine theorem,
the spectral density (power spectrum) of the signal

(16)

The presence of a δ�shaped correlator allows con�
version from the once�repeated integral in Eq. (13) to
a simple integral and provides the following equation
for the spectral correlation function:

 (17)

Let us assume below that incident pulse envelope
F(t) and the temporal coherence function of random
stationary process a(t) are Gaussian functions

(18)
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where τ0 is the pulse length and τc is the coherence
time. The value of τ0 is associated with total width Δt0
of pulse intensity Iin(t) = 〈|A(t)|2〉 = F2(t) at half height
by relation τ0 = Δt0/(2ln1/22) = 0.6Δt0. In addition to
time τc in Eq. (18), the integral coherence time

(19)

introduced by Mandel in [9], is used.
If coherence function γ(τ) is Gaussian in form

(18), then τM ≈ 1.253 τc.
The diffraction intensity of a random pulse

depends substantially on the relations between τ0 and
τc, or, which is the same, on the relationships between
spectrum width ΔΩ0 = 1/τ0 of incident pulse envelope
F(t), spectral width ΔΩc = 2/τc of temporal coherence
function γ(τ), and characteristic width ΔΩB of diffrac�
tion reflection curve PR(Ω) = |R(Ω)|2. Since τc � τ0 for
an XFEL pulse, such a pulse is quasi�stationary. In this
case, it follows from Eqs. (17) and (18) that pulse spec�
trum S(Ω) ≈ (τ0/2π1/2)G(Ω), and its spectral width
ΔΩ ≈ ΔΩc depends only on coherence time τc. A con�
venient equation for the relative width of the XFEL
pulse spectrum can thus be derived: (ΔE/E)[%] =
0.221 × λ[nm]/τM[fs].

It follows from Eqs. (12) and (17) that in the quasi�
stationary case the temporal coherence function of
reflected pulses is independent of time t:

(20)

A similar result is observed for the spatial coher�
ence function of a MS�reflected cross�section random
plane wave [8].

QUASI�FORBIDDEN 
BRAGG REFLECTION FROM AN MS 
FOR THE MONOCHROMATIZATION 

OF XFEL PULSES

The spectral width of a first�order reflection from a
typical MS is about 1–5%, while the reflection from
perfect monocrystals yields ΔEB/E ~ 0.01%. It is inter�
esting to discuss the possibility of producing MS with
an intermediate reflection width, i.e., within the 0.05–
0.5% range.

Coefficients R(Ω) and T(Ω) in Eq. (12) were calcu�
lated using both the Paratt recurrent formulae [10] and
the analytical formulae of the dynamic diffraction the�
ory in periodic structures of arbitrary thickness l [11]:

 (21)

where ϕ = k0lS/4sinθB, ψ = k0lα/4sinθB,
α = 2sin2θB[Δθ + (Ω/ω0)tanθB], and 
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Here α1 = α + 2χ0, χ0, ±h are the Fourier compo�
nents of the periodic MS polarizability function χ(z),
Δθ = θ – θB is the offset of glancing angle θ relative to
the Bragg angle θB, l = Nd, d is the MS period, and N is
the number of periods. If the MS period consists of two
layers with thicknesses d1 and d2 and polarizabilities χ1
and χ2, then χ0 = (χ1d1 + χ2d2)/d,

(22)

where F(m, ξ) is the MS structure factor, ξ = d1/d, and
m = 1, 2, … is the reflection order. The effect of inter�
layer roughness was considered in the Debye–Waller
approximation [12]: fDW = exp[–2(k0sinθBσ)2]. It is
assumed that the rms roughness heights are σ for all
layers. Layer polarizability χ = 2(n – 1) was calcu�
lated from the data in [13] for refractive indices n =
1 – δ + iβ.

1 2

1

( 2 )( ) ( , ),

( , ) [1 ( 2 )],

h DWi f F m

F m m i m−

χ = π χ − χ ξ

ξ = − π ξexp

It follows from Eq. (21) that the relative spectral
width of Bragg reflection ΔEB/E ≈ |χh|/sin2θB at a suf�
ficiently large number of periods N ≥ Nex, where
Nex ≈ 2Λ/d, Λ = λ0sinθB/π|χh| is the extinction depth.
To reduce width ΔEB/E, we use an MS with short
period d, which increases Bragg angle θB, and weakly
absorbing substances with low contrast χ1–χ2. In this
case, however, the number of periods must be
increased to N ~ 200–800 [14, 15].

Structural factor F(m, ξ) (22) for a first�order reflec�
tion is maximal at ξ = 0.5 and equal to 2; it follows that
Nex ≈ 2sin2θB/(|δ1–δ2|fDW). If we consider the most
promising MS Al2O3/B4C [14, 15] with d = 2.5 nm and
σ = 0.3 nm, then Bragg angle θВ = 1.16°, (δ1–δ2) =
2.08 × 10–6, and number of periods Nex ≈ 510 at λ0 =
0.1 nm. At such N, Bragg reflection curve maximum
PR(Ω = 0) = 88.3% and spectral width ΔEB/E = 0.34%
(here and below, the spectral width is defined as the
total width at a half of height). Raising the number of
periods does not increase the intensity of reflection or
reduce the spectral width. At best, we can attain
ΔEB/E ~ 0.2–0.4% at N ∼ 103 and σ ≤ 0.3 nm in the
case of a first�order reflection from an Al2O3/B4C MS
with period of d ∼ 1.5–3 nm; this sets high require�
ments on the degree of MS perfection.

Let us now consider a second�order reflection.
Structural factor F(m, ξ) is zero (a forbidden reflec�
tion) at m = 2 and previous value ξ = 0.5. To reduce
width ΔEB/E further, we propose using MSes with
quasi�forbidden reflections, i.e., structures with ξ ≠
0.5, for which F(2, ξ) ≠ 0. Figure 1 and Table 1 show
that a sufficiently high reflection intensity (PR ≈ 60%)
with the very narrow spectral width ΔEB/E ≈ 0.04%
can be implemented for a second�order reflection at
ξ ≈ 0.25 and 0.75. Table 1 shows that the intensity of
the Bragg maximum increases with the number of
periods while the reflection spectral width decreases,
as would be expected. An increase in the height of
roughness naturally results in a reduction in the inten�
sity of reflection. The narrowing of the spectral width
(at fixed N) with increasing height of roughness σ is a
rather interesting effect. The narrowing of reflection
curve PR(Ω)) is due to the roughness suppressing the
edges of the function more strongly.

In Fig. 2., the spectrum of an incident XFEL pulse,
normalized to unity G(Ω) and with coherence time
τM = 0.22 fs, is compared to the spectral intensity of a
second�order Bragg reflection PR(Ω) from an
Al2O3/B4C MS. It can be seen that reflection spectrum
width ΔEB/E is almost half the spectral width of the
incident pulse.

As in the case of perfect crystals [6], a reflection
from an MS with a narrow reflection coefficient results
in the distortion of temporal dependence IR(t) of the
reflected pulse intensity, relative to the profile Iin(t) of
an incident pulse (Fig. 3), and in a change in the shape
and width of the temporal coherence function (Fig. 4).
Intensity IR(t) = ΓR(t, 0) was calculated by Eq. (12),

60

40

20

0.60.40.20 0.8

0.06

0.04

0.02

0

ξ, abs. units
1.0

PR, % ΔEB/E, %

1

2

Fig. 1. Maximum second�order reflection intensity PR =

|R|2 (curve 1) and spectral width of Bragg reflection ΔEB/E
(curve 2) as functions of relative layer thickness ξ = d1/d.
The parameters of the Al2O3/B4C MS are d = 2.6 nm, σ =
0.2 nm, N = 1200, λ0 = 0.1 nm. Angle of incidence with
respect to the MS surface θ = θB = 2.21°.

Intensities of second�order Bragg reflection PR and spec�
tral widths ΔEB/E when reflecting pulses with wavelength
λ0 = 0.1 nm from an Al2O3/B4C MS with period d = 2.6 nm
and ξ = 0.25 at different numbers of periods N and rms
heights of interlayer roughness σ. Bragg angle θB = 2.21°

N σ = 0 σ = 0.1 nm σ = 0.2 nm

PR, % 800 63.3 56.0 35.5

1200 83.8 78.5 58.4

1600 91.8 88.7 74.1

ΔEB/E, % 800 0.078 0.073 0.065

1200 0.065 0.061 0.050

1600 0.060 0.055 0.044
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and the temporal coherence function of a reflected
pulse γR(τ), according to Eq. (20).

The pulse amplitudes in Fig. 3 were specified by the

equation A1exp( ) and A2exp[–(t – t12)
2/ ]

(where τs = 0.125 fs and t12 = 0.4 fs) and considered
independent, i.e. incoherent in time. The relative
width of the pulse spectrum is 0.1% at pulse length τs,
which agrees with the calculations of the random time
structure and the XFEL pulse spectrum width in [4, 5].
As can be seen from Fig. 3, the two short incoherent
pulses that in this case represent the model of random
spikes in XFEL pulses overlap strongly and widen after
reflection [6, 16]. The reflected pulse intensity falls by
about a factor of almost 11 after the first reflection in a
twofold monochromator (curve 2). The second reflec�
tion results in a lower reduction in intensity (by a fac�
tor of 2.7), which is explained by the narrowing of
pulse spectrum IR1(t). The lengths of the reflected
pulses considerably exceed spike lengths τs and the
time span between them.

Reflection from an MS also results in a widening of
the temporal coherence function by a factor of almost
2.5 and in symmetrical damped oscillations at the tails
of the function γR(τ) (see Fig. 4). A similar result was
earlier obtained for the spatial coherence function
during reflection of spatially partly coherent and tem�
porally stationary X�ray beams from MS [8].

CONCLUSIONS

A statistical diffraction theory of X�ray pulses with
random time structure has been developed. We have
shown that a quasi�forbidden reflection of femtosec�
ond XFEL pulses from MS results in certain mono�

2 2
st− τ

2
sτ

chromatization, or, in other words, in a widening of
the temporal coherence function. To a certain degree,
interlayer roughness with reasonable limits on height
even facilitates the production of MSes with a Bragg
reflection width in the range between conventional
MSes and perfect monocrystals.
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