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Abstract

The paper focuses on the right and left eigenvectors of a network
matrix that belong to the largest eigenvalue. It is shown that each
of vector entries measures the walk centrality of the corresponding
node’s position in the network’s link structure and of the positions of
the node’s adjacent nodes; as a result, it indicates to which degree the
node can be associated with the structure’s core - the structural core-
ness of the node. Both the entry-position relationship and the vectors’
finding itself are based on an iterative computational scheme known
as the power method. The paper studies the method’s convergence
for networks of different structure. Some possible applications are dis-
cussed. The paper includes also a numerical example dealing with a
real network of 197 nodes and 780 links.

Introduction

In the paper we show that the right and left eigenvectors of a network matrix,
corresponding to the largest eigenvalue, measure the degree of the structural
coreness of the network nodes. Our coreness measure represented by the
vectors’ entries is a function on the network’s node set. The nodes can be
arranged in decreasing order of this function’s value; as we show, such an
ordering is also one of lowering the degree to which a node can be associated
with the core of the network’s link structure. Some nodes from the top of
this ranking are taken as the network’s core; besides, it’s possible to compare
any two nodes of the network with each other by this scale – an opportunity
that’s not less important than the core’s revealing.
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There are two types of (the degree of) coreness in any directed network:
the ith entry of the right eigenvector measures the out-coreness of the po-
sition of the ith node in the link structure, while the ith entry of the left
eigenvector gives the in-coreness of this node’s position in the structure. The
first value reflects the sum of weights of all walks starting at node i, while the
second represents the total weight of the walks terminating there. The inter-
connection between walks and eigenvectors is explained by that the (i, j)th
entry of the k-th power of the matrix of a network is equal to the total
weight (number) of the network’s k-step walks from node i to node j, on the
one hand, and that these matrix powers are involved in the iterations of an
eigenvector-computation scheme called power method, on the other. In an
undirected network both types of coreness merge into one.

Network-node rankings by the out/in-coreness, under different names,
are known in social networks, citation networks, hypertext networks, etc.
The ranking by the in-coreness, in the case of a stochastic network matrix,
turns out the final probability distribution for the Markov chain describing a
random walk on the network. We give examples of using the coreness measure
in models of text comprehension and nonclassical categorization.

We show that the convergence of the computational scheme has a solid
basis. Well-known mathematical works on matrix analysis, upon which we
base, do not include network-related interpretations relevant to our subject.
On the other hand, the dispersed publications in different areas, in which in-
dices computationally equivalent to our measure are described, do not inform
readers on the subject’s mathematical side and on that values they discuss
represent the node coreness measure defined for networks of any nature. The
purpose of our paper is to help to fill in this gap.

We implemented the paper’s theoretical considerations as computer pro-
grams. They were used to obtain results in two numerical examples included
in the paper; in one of them we deal with a real network containing 197 nodes
and 780 links.

1 Notation

Consider a network with nodes labeled 1, 2, . . . , n and links which, in general
case, are directed. The network is represented by an n×n matrix of relation-
ships A, in which the entry A (i, j) is positive and equal to the weight of link
(i, j), in case of the link’s presence, and to zero otherwise (i, j = 1, 2, . . . , n).
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When the network’s links are all of the same weight, we have a standard
adjacency matrix of a graph consisting of zeros and ones. Thus A is a real,
non-negative, square and, in general case, nonsymmetric matrix.

As it’s well known, for any real matrix A, the sets of eigenvalues (spectra)
of A and of A′, its transpose, are the same. If x̄ and ȳ are the column eigen-
vectors of A and A′ with some one and the same eigenvalue λ, i.e. A · x̄ = λ · x̄
and A′ · ȳ = λ · ȳ, then x̄ and ȳ are called the right and left eigenvectors of
A with eigenvalue λ, implying that ȳ′ · A = λ · ȳ′, where ȳ′ is the row vector
[1,2]. The eigenvalues of A and A′ are numbered in order of nonincreasing
absolute value: |λ1| � |λ2| � |λ3| � . . . � |λn| (each λ is present here a
number of times equal to its multiplicity); the eigenvectors, corresponding to
λs, are denoted by x̄s and ȳs (s = 1, 2, 3, . . . , n); the real number r (A) = |λ1|
is called the spectral radius of A (and A′).

2 The power method

For any real square matrix, eigenvalue λ1 and eigenvectors x̄1 and ȳ1 can
be found by means of the power method, one of the most popular in matrix
computations [1, 2, 3, 4]. In our, “network”, case, this method is not only a
way to obtain the above results, but also an opportunity to see the relation
of x1 (i) and y1 (i), the vectors’ ith entries, to the position of node i within
the network’s link structure.

Suppose that the maximal eigenvalue λ1 of matrix A has the algebraic
multiplicity 1 and is unique, i.e. |λ1| > |λ2|; suppose also that it’s real. Let z̄0

be an n-component vector not orthogonal to x̄1, and νk =
∥∥Akz̄0

∥∥, where ‖.‖
is a vector norm, e.g. Euclidean length. The method is based on that, under
the given assumptions, vector z̄k in the iterations

z̄k = ν−1
k Akz̄0, k = 1, 2, . . . , (1)

tends to vector ‖x̄1‖−1x̄1 as k → ∞, and the ratio νk/νk−1 → λ1. In a form
more convenient for computations,

z̄k+1 = α−1
k Az̄k, k = 0, 1, 2, . . . , (2)

where αk = ‖Az̄k‖ → λ1 (α0α1 . . . αk−1 = νk).
In practical computations, a small number ε, 0 < ε < 1, can be

specified in advance; then the iterations are performed, with computing
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e = 1 − 1
n

n∑
i=1

zk(i)
zk−1(i)

at each step, until |e| > ε. The more the ratio |λ1|
|λ2| ,

the less the required number of iterations [2].
The same computational scheme applied to matrix A′ leads to vector ȳ1.
The method’s convergence is provided by the above assumptions concern-

ing λ1. Their plausibility will be discussed below. At this moment, we want
only to note that in our case λ1 is always positive, i.e. the spectral radius
r = λ1, and all entries of vectors x̄1 and ȳ1 are positive (x̄1 > 0, ȳ1 > 0). As
a result, any non-negative, nonzero vector can be taken as the initial z̄0.

Note also that analogous computations with matrices, obtained by reduc-
ing the original matrix in a definite way, allow to find all next eigenvectors
and eigenvalues (the method of deflation) [3].

3 The coreness measure

If some two nodes i and j occupy symmetric positions in the network’s link
structure, then x1 (i) = x1 (j), y1 (i) = y1 (j) (and the same is true for any
other eigenvector). On the other hand, if entries relating to nodes i and j are
different in some eigenvector, say, x1 (i) �= x1 (j), then i and j are dissimilar
by their position in the structure. Formulas (1) and (2) help us to reveal
two structural aspects of the x̄1’s and ȳ1’s entries. In view of them, we treat
each of the entries as expressing the degree to which the corresponding node
can be associated with the structural core of the network – as measuring the
node’s coreness.

3.1 Coreness as centrality.

Let A(k) (i, q) denote the (i, q)th entry of matrix Ak, k = 1, 2, . . .. This entry
is equal to the total weight of different k-step walks that start at node i
and terminate at node q (the length of each step is one link). This fact is
well known in graph theory; it follows directly from the definition of matrix
multiplication. Recall that a walk from i to q is a sequence of network links,
in which the starting node of the first link is i, the starting node of each next
link is the end node of the preceding link, and the end node of the last link
is q; repetitions and loops are allowed. The weight of a k-step walk is defined
as the product of the weights of the k links forming the walk sequence. When
each link in the network is of weight 1, the entry indicates simply the number
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of such walks.
Let S

(k)
out (i) and S

(k)
in (i) denote the total weights (numbers) of k-step walks

from node i to all nodes of the network and from them to i, respectively:

S
(k)
out (i) =

n∑
q=1

A(k) (i, q), S
(k)
in (i) =

n∑
q=1

A(k) (q, i); when k = 1, these values

indicate dout (i) and din (i), the out-degree and in-degree of node i, that is,
weights (numbers) of outgoing and incoming links.

Theorem 1 Let a network matrix A have the eigenvalue λ1 = r > |λ2| and
eigenvectors x̄1 > 0 and ȳ1 > 0. Then, for any two nodes i, j of the network
and any sufficiently large k: (a) if x1 (i) > x1 (j), then S

(k)
out (i) > S

(k)
out (j); (b)

if y1 (i) > y1 (j), then S
(k)
in (i) > S

(k)
in (j).

Proof. Consider the iterations according to formula (1), with the initial

vector z̄0, whose entries are all equal to 1. We have νkzk (i) = S
(k)
out (i) and

lim
k→∞

zk (i) = x1(i)
‖x̄1‖ , for i = 1, 2, . . . , n. Therefore

lim
k→∞

S
(k)
out (i)

S
(k)
out (j)

= lim
k→∞

zk (i)

zk (j)
=

x1 (i)

x1 (j)
,

whence the validity of (a) follows. Applying the iteration formula to matrix
A′, we have

lim
k→∞

S
(k)
in (i)

S
(k)
in (j)

=
y1 (i)

y1 (j)
,

whence it follows that (b) holds. This proves the theorem.
By this theorem, the greater the entry x1 (i) the higher the rank of node i

as the starting point of the network’s walks, and the greater y1 (i) the higher
this node’s rank as their terminating point. Ordering nodes by the values of
dout (i) or din (i) gives the ranks in the first approximation.

Thus one structural aspect of the vector entries is as follows: a node’s x1

and y1 show themselves as values characterizing the structural centrality of
the node, the importance of its role in the structure, the load it bears there.
These are qualities commonly associated with the core of structure of any
nature, material or mental.
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3.2 Core as a compact zone.

Suppose that in a network the fraction of nodes with x1 values greater than
a given number is a rapidly decreasing function of this number, for exam-
ple, a negative power of it (this power-law form of the function appears
to be typical for large real networks). Then, to retain the basic relation

λ1x1 (i) =
n∑

q=1

A (i, q)x1 (q), i = 1, 2, . . . , n, those nodes i, which are of high

rank by x1, should have A (i, q) > 0, i.e. be adjacent in the network, to those
nodes q, which themselves are of high rank. Therefore these nodes form a
dense, compact zone in the network; the corresponding subgraph is close to
a complete graph to the extent to which specific structural conditions allow
this. An analogous picture takes place for nodes of high rank by y1.

Thus another structural aspect of the vector entries consists in that, for
each vector, nodes of high rank by this vector are distinguished in the network
by their compactness – a property which is also characteristic of core in
structures of any nature.

Because of this and the preceding aspect of the value x1 (i), we call it the
out-coreness of node i; this value’s denoted by cout (i). The value y1 = cin (i)
is called the in-coreness . In case of an undirected network, the matrix is
symmetric (A′ = A), the right and left eigenvectors coincide with each other,
and the coreness is denoted simply by c (i).

Note that the second aspect isn’t an attribute of other measures of node
centrality, such as ordinary node degree and average or maximal distance
between a specific node and the rest of nodes: there is no “interest” in mutual
adjacency among nodes of high degree or of small distance.

3.3 Some applications.

The coreness measure has often appeared under other names. Its first ap-
plications are probably those related to networks of the kind of sociograms
and tournaments (“the leader problem”) [5, 6]. The value cout (i) was called
there “the real strength” of player i. The measure c is known under the name
“coreness” in social networks [7].

A significant role in applications belongs to the case of stochastic net-

work matrix, when
n∑

j=1

A (i, j) = 1, i = 1, 2, . . . , n. The matrix defines here

a finite Markov chain with transition probabilities A (i, j), for example, a
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random walk on the network performed by a particle, which is at a node
at each discrete moment k and moves to an adjacent node “between” mo-
ments k and k + 1 (k = 0, 1, 2, . . .). Consider iterations (2) with matrix

A′ and a nonnegative z̄0, such that
n∑

i=1

z0 (i) = 1 (the initial probability dis-

tribution). Let α be a norm defined for a nonnegative vector as the sum
of its entries. Thus, for k = 0, 1, 2, ..., αk = 1 and (2) takes the form

zk+1 (i) =
n∑

j=1

A′ (i, j) zk (j) =
n∑

j=1

zk (j)A (j, i), that is, zk+1 (i) is equal

to the absolute (unconditional) probability of that the particle is at node
i at moment k + 1. Under the conditions of convergence of (1) and (2),
lim
k→∞

z̄k = c̄in > 0, that is, vector c̄in gives the final (stationary) probability

distribution for the Markov chain determined by matrix A; like other results
of (2), this distribution is independent of z̄0 – in this case, the initial dis-
tribution. Thus the in-core nodes form the most probable place where the
particle can be found after a sufficiently large time, in a stationary regime
(cout values are all equal to each other in this case).

The random-walk model proves effective when applying to the behavior
of a user traveling by links in a hypertext network. It underlies the Web-page
ranking algorithm used by popular search engine Google [8, 9]. Nodes (Web
pages) of high cin value act as ‘authorities’ to which the network eventually
gets a user most often [8].

Node rankings by c are used in cognitive psychology. According to a text
comprehension model, a text is represented in the reader’s memory as a
network of clauses (text units of meaning), interconnected by semantic links.
Nodes with high c values represent macrounits of the text, i.e. units bearing
the heaviest semantic load in it – forming its summary. Experiments confirm
this, for they show that units with high c values are recalled faster than units
with lower c values [10].

One more example relates to cognitive linguistics. Nonclassical categories
(groupings of similar things), studied in this discipline, are distinct from
classical categories in that they have core-periphery structure, caused by
category items’ varying degrees of membership, or of representativity, or of
prototypicality. Items of a category can be weighted, for example, in the fol-
lowing way. Each item is characterized with a set of attributes taken from a
common attribute list, which results in an item-by-attribute bipartite graph.
Each attribute receives a weight equal to the number of items linked up
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to it. Finally, a weight is calculated for each item by summing the weights
of attributes associated with the item [11]. Clearly, this weighting scheme
represents the first two iteration cycles of the coreness computing. An im-
provement would consist in the replacement of these weights with values of
c.

4 The computational scheme convergence

The interpretation of vectors x̄1 and ȳ1 as coreness measures is based on
the supposition that iterations (1) and (2) converge, i.e. that the above-
mentioned properties of the eigenvalue λ1 take place, on the supposed posi-
tivity of vectors x̄1 and ȳ1, and on some aspects of these vectors and their ap-
proximations, resulting from formulas (1) and (2). That the suppositions are
justified follows from Perron and Frobenius classical results for non-negative
matrices [1, 6, 12].

4.1 Perron-Frobenius theorem.

As it was established by Perron, if a real matrix A is positive, i.e. all entries
in it are positive, then: (a) r, the spectral radius of A, is positive; (b) r is an
eigenvalue of A, i.e. r = λ1; (c) this eigenvalue belongs to a positive eigenvec-
tor; (d) this eigenvalue has algebraic multiplicity 1; whence the eigenvector
is unique (up to scalar multiplication); and (e) |λ| < r, for every eigenvalue
λ of A, such that λ �= r.

Taken together, (a), (b), (d) and (e) mean that r = λ1 > |λ2|.
This theorem was extended to non-negative irreducible matrices – those

whose networks are strongly connected (simply connected, if links are undi-
rected). For such a matrix, as Frobenius proved, parts (a)-(d) of Perron’s
theorem hold; the truth of (e), however, is not guaranteed ([1], theorem 8.4.4).

Note that if matrix A is irreducible, then the transpose, A′, is irreducible,
too, since the only difference between their networks consists in that one of
them has links going in the opposite direction by comparison with the other.

The eigenvalue r of an irreducible matrix A is called the Perron root [1]
or the dominant eigenvalue [2] of matrix A (and A′).

Our network matrices are merely non-negative, and it’s very important
for us to retain part (e), for if a network matrix has an eigenvalue λ, such
that λ �= r and |λ| = r, then iterations (1) and (2) don’t converge.
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We focus therefore on a matrix class introduced by Frobenius: a non-
negative, irreducible matrix is called primitive, if it has exactly one eigenvalue
equal in modulus to r [1, 12].

4.2 The case of an undirected, connected network.

In this case, we have a symmetric, irreducible network matrix. Each net-
work is either unipartite or bipartite; a bipartite network is characterized
by that its node set can be divided into two parts in such a way, that each
link connects nodes from different parts (a “multipartite” network remains
bipartite). Bipartite networks are often used as data representation schemes.

Theorem 2 The matrix of an undirected, connected network is not primi-
tive, if and only if the network is bipartite.

Proof. A network matrix A is primitive, if and only if Ak > 0 for any,
sufficiently large integer k ([1], theorem 8.5.2). Take a bipartite network. Let
1, 2, . . . , np be nodes of some one of its parts (“p-nodes”), and np+1, np+2,
. . . , np+nt = n be nodes of the other part (“t-nodes”). Then the structure of
the network’s matrix A is such that matrix A2k+1, k = 0, 1, 2, . . ., has positive
entries only in the np × nt submatrix in the upper right corner and in the
nt × np submatrix in the lower left corner, while matrix A2k, k = 1, 2, . . .,
has them only in the square submatrix of order np in the upper left corner
and in the square submatrix of order nt in the lower right corner. Thus all
powers of A contain zero submatrices, whence A is not primitive.

Now suppose that a network matrix A is not primitive. Let M denote
the adjacency matrix of the network’s graph, which differs from the network
associated with A only in that each link in it is of weight 1. Clearly, walks in
the graph are the same as in the network, whence, for any given k, Ak > 0,
if and only if Mk > 0, that is, either A and M both are primitive, or they
both aren’t primitive. Therefore M is not primitive, that is, in addition to
eigenvalue r (M), it has an eigenvalue not equal to r (M), but equal to it
in modulus. The only possibility for this is −r (M), since M is symmetric
and hence all eigenvalues of M are real. But that the adjacency matrix of a
connected graph has an eigenvalue pair of this kind is equivalent to that the
graph is bipartite ([6], theorem 3.4). Clearly, the “partiteness” of the graph
is the same as of the network. Therefore the network is bipartite.

The theorem’s proof is completed.
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Note that a nonsymmetric, irreducible matrix isn’t necessarily primitive,
even if its network isn’t bipartite. Take, for example, the adjacency matrix
of a 3-node directed cycle. All three eigenvalues of it are of modulus 1 (two
of them are complex numbers forming a conjugate pair).

Note also that, in the theorem’s proof, the square submatrices in the
corners of matrix A2k, k = 1, 2, . . ., are of the form P k and T k, where P and T
are primitive matrices. The reasoning behind their primitiveness is as follows.
Take matrix P . It’s primitive, because the network it determines on the set
of p-nodes is connected and non-bipartite (unipartite). The first follows from
that the whole bipartite network is connected. The second is equivalent to
that the graph of this “p-network” is unipartite, and that is so, because
none of the eigenvalues of the graph’s matrix can be negative (for they are
squares of the eigenvalues of the matrix of the whole network’s graph). When
taking matrix T and its “t-network”, we obtain the same situation. The
eigenvalues of P and T are equal to the squares of the eigenvalues of A,
and their eigenvectors’ entries form a bipartite division of entries of each
eigenvector of A.

4.3 The addition of loops.

Any non-negative, irreducible matrix, in which all entries on the main di-
agonal are positive, is primitive ([1], lemma 8.5.5). This fact is useful for
practical computations. Thanks to it, when having a strongly connected net-
work (simply connected, if links are undirected), we can be sure of the iter-
ation convergence, using, for example, matrix A + I instead of A, where I
is a square matrix of order n, in which I (i, i) = 1 for i = 1, 2, . . . , n, and
I (i, j) = 0 for i �= j. This would result in the increasing of each eigenvalue
by 1 and remaining the eigenvectors unchanged. Formula (2) then takes the
form:

zk+1 (i) = α−1
k

[
zk (i) +

n∑
q=1

A (i, q) zk (q)

]
, αk = ‖z̄k + Az̄k‖ → r + 1. (3)

The transition from A to A+ I is equivalent to the supplying each node with
a loop (a link to itself), which makes the network certainly non-bipartite.
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5 Two numerical examples

E x a m p l e 1. We took the network of cross-references of Linear Algebra
Glossary from Google’s Directory. The glossary’s terms were taken as nodes,
their complete number was 201. The cross-references were taken as links,
and we made them, for simplicity, undirected. They all were of weight 1.
The computer extracted a graph, forming the network’s maximal connected
component, and that’s the graph, for which main results were obtained. It
had the number of nodes n = 197, the number of links m = 780 and the
average node degree 2m/n = 7.9; its maximal and minimal node degrees
were 54 and 1, the maximal distance between two nodes (diameter) 6, and
the average distance between a node pair 2.9.

The computer program, used for obtaining the coreness vector c̄ and the
dominant eigenvalue r = λ1, was based on formula (3). With ε = 10−5 (see
Section 2), it took 16 iterations to obtain the results. It was found that
r = 14.3196 (λ2 = 8.43). Table 1 gives the ranking of nodes by coreness
value (d (i) is the degree of node i).

Table 1:

Row no. i c(i)/cmax d(i) Term

1 46 1 54 Eigenvalues
2 185 0.76 40 Symmetrix Matrix
3 84 0.64 31 Inverse Matrix
4 47 0.56 26 Eigenvectors
5 146 0.55 28 Positive Definite Matrix
6 134 0.54 24 Orthogonal Matrix
7 190 0.52 20 Transpose
8 168 0.49 22 Singular Matrix
... ... ... ... ...........................
197 3 0.003 1 Adjoint Matrix

It’s noteworthy that the coreness measure demonstrates on this network
the highest level of discriminating power: there are no equals among all the
197 values of c (while the node degree has only 26 distinct values)1 .

1The complete data can be obtained from the authors.
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Suppose that nodes with c values not less than 50% of the maximum are
taken as the network’s core. Then the subgraph at the core has the form
shown in Fig.1.

Figure 1: The core structure of the given 197-node graph – a connected,
compact 7-node subgraph with 14 interlinks (there can be, at most, 21 links
in a 7-node graph)

Figures 2 and 3 show, in log-log coordinates, the cumulative distributions
of the node coreness and the node degree in the given 197-node graph. The
two plots are similar to each other. Each has an approximately linear tail
making up more than the curve’s half – a part, that is well fit by a power
law J (x) ∼ x−a, where a = const > 1. As a whole, the curves are well
approximated by a function of the form J (x) ∼ (b + x)−a, where b = const >
0. Each curve reflects the presence of a small group of nodes being in sharp
contrast to the rest of the graph’s nodes. For example, a node subset of size
more than 55% (99/197) of the graph’s total number of nodes have coreness
values not greater than 11% of the maximum, whereas a group of nodes,
making up only 3.5% (7/197) of the total number, has values above 50% of
the maximum. Similarly, a 3.5%-group of nodes has degrees greater than 44%
(24/54) of the maximum, whereas a subset, containing 53% (105/197) of all
nodes, has degrees below 11% (6/54) of the maximum.

E x a m p l e 2. In the first example, the core subgraph was characterized
by an increased link density (closeness to a complete graph), in comparison
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Figure 2: J(x) is the number of
nodes of coreness value c, such that
c/cmax � x

Figure 3: J(x) is the number of
nodes of degree d � x

to other parts of the graph. Such a case is frequent, but not necessary. It’s
possible that a network doesn’t include any compact zone associated with its
core, but nevertheless the core nodes are clearly indicated by the network’s
vector c̄. They then exceed the rest of the network’s nodes by their walk
centrality (see Section 3.1). Note also that, in any case, the core subgraph
“tends” to be connected (see Section 3.2).

As an illustration, take a rectangular lattice of size 10×7 – an undirected
graph with n = 70 nodes and m = 123 links. Clearly, in this case, one
cannot speak of any zone distinguished by its link density. As to coreness
measure c, it assumes here 20 different values; equal c values correspond to
symmetrical nodes. In Fig.4, the lattice nodes are labeled with ranks, from
1 to 20, indicating their positions in ordering by c value (nodes, having one
and the same value, occupy the same position). The figure includes also a
plot of the cumulative distribution of c.
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Figure 4: A rectangular lattice with nodes labeled according to their ranking
by the coreness value. J(x) is the number of nodes of coreness value c, such
that c/cmax � x

Conclusion

The value, assumed by the coreness measure at a node, characterizes the
node’s position within the network’s link structure. Nodes ranked highest
by this measure, i.e. forming the core, are neighboring in the structure and
make up a central part of it. Being adjacent or close to each other, the core
nodes tend to form a dense nucleus, approaching to a complete subgraph as
closely as it’s possible with the specific link structure. The sparse part of
a network is marked with decreased values of the measure and thus makes
up the network’s periphery. The core nodes are considered to form a central
zone, for they surpass all other nodes of the network in the total weight of
walks starting/terminating at them.

Walk-like pathways correspond to the kind of traveling characterized by
a tendency to explore all associative possibilities, and not subordinated to
the purpose of reaching a specific place by a route optimal in a formal sense.
This kind of traveling happens, for example, when a user follows links of
a hypertext network, in particular, WWW, searching for information on a
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theme outlined only generally. The search engine Google ranks the Web nodes
(pages), basing on the final probability distribution for a random walk, or
Markov chain, on the Web. The final probabilities for a random walk coincide
with the in-coreness values for the network, represented by the stochastic
matrix of transition probabilities, determining this random walk.

In a network of information nodes and semantic links, the coreness value
at a node correlates with the significance of the node as a macrounit of the
semantic content of the network. In this case, coreness values, in combination
with a depth-first search of the network graph, allow to compose, from the
network nodes, coherent summaries on multiple themes [13, 14], and this may
be used in an automatic summarization system.

Walks are also suitable to represent things different from chains of men-
tal associations. For example, walks are plausible pathways for news, rumor
and contagious disease propagation in social-contact networks [15]. Power-
ful computer models for simulating epidemics in communities of size up to
million have been constructed [16, 17]. In these network models, a central
role is attributed to hubs, nodes with extraordinary high degrees (numbers
of links). It would be interesting to consider, instead of hubs, nodes ranked
highest by the coreness value: when the degree distribution in a network fol-
lows a power law, these nodes most likely coincide with hubs, but cases are
numerous when a network doesn’t contain hubs at all, while these core nodes
are well discernible (a simple example is rectangular lattice).
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