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Dissection of the genetic determinants of the robustness and productivity of the consortia become a hot
research direction, too. Admirable contribution to this topic had been made by high-throughput
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short-read and long-read metagenomics will form a solid foundation for the rational design of
microalgal-bacterial consortia for biotechnology. In this review, we briefly outline the benefits of the
long-read sequencing for structural and functional investigation of algal-bacterial consortia and
summarize recent reports on using this approach for achieving the biotechnology-related goals.

Keywords (separated by '-') HTS - Nanopore - Amplicon sequencing - Microalgae - Metagenome - Metabarcoding - Profiling -
Functional prediction

Footnote Information The online version contains supplementary material available at https://doi.org/10.1007/s10811-024-
03267-1 .



UNCORRECTED PROOF

Journal : Large 10811 Article No : 3267 Pages : 19 MS Code : 3267 Dispatch : 6-5-2024

Vol.:(0123456789)

Journal of Applied Phycology 
https://doi.org/10.1007/s10811-024-03267-1

REVIEW

Advances of high‑throughput sequencing for unraveling 
biotechnological potential of microalgal‑bacterial communities

Petr A. Zaytsev1 · Vladimir A. Rodin2 · Anna A. Zaytseva1 · Maria I. Zvereva2 · Alexei E. Solovchenko1

Received: 31 December 2023 / Revised: 28 April 2024 / Accepted: 1 May 2024 
© The Author(s), under exclusive licence to Springer Nature B.V. 2024

Abstract
Although established biotechnological applications of microalgae e.g., the production of high-value metabolites is based on 
axenic cultures, exploitation of the mutualistic consortia of microalgae and bacteria quickly comes to foreground, especially 
in bioremediation and wastewater treatment. This trend shifts the focus from genomic research of certain microalgal species 
to metagenomic studies of interactions between microalgae and bacteria in natural communities and in artificial consortia. 
Dissection of the genetic determinants of the robustness and productivity of the consortia become a hot research direction, 
too. Admirable contribution to this topic had been made by high-throughput sequencing (HTS), while recent breakthrough 
in this field was entailed by the advent and rapid development of the 3rd generation nanopore sequencing which becomes 
increasingly accurate while providing unprecedented sequencing performance. Recent progress of the Oxford Nanopore 
Technologies (ONT) enabled both classical metagenomic analysis of microalgal-bacterial communities based on whole 
metagenome sequencing as well as taxonomic and genetic profiling based on the amplicon sequencing. The parallel emer-
gence of novel bioinformatic algorithms for processing the metagenomic datasets opened new opportunities for the analysis 
of structure and physiology of microalgal-bacterial communities. From the practical perspective, the new HTS techniques 
became a time- and labor-savers in discovery of new microalgae with a high potential for the accumulation of valuable 
metabolites, biodegradation of hazardous micropollutants, and biosequestration of nutrients from waste streams. Search for 
prokaryotic species boosting the biotechnological potential of eukaryotic microalgae via mutualistic interactions with them 
is another important goal. The insights from the both short-read and long-read metagenomics will form a solid foundation 
for the rational design of microalgal-bacterial consortia for biotechnology. In this review, we briefly outline the benefits of 
the long-read sequencing for structural and functional investigation of algal-bacterial consortia and summarize recent reports 
on using this approach for achieving the biotechnology-related goals.

Keywords  HTS · Nanopore · Amplicon sequencing · Microalgae · Metagenome · Metabarcoding · Profiling · Functional 
prediction

Introduction: Microalgal consortia 
as a promising vehicle for biotechnology

In nature, microalgae exist within microbial communi-
ties with other microbial species including diverse fungi, 
bacteria, and/or archaea. In these communities, microal-
gae become engaged in a complex network of interactions 
with their partner species represented mostly by bacteria, 
implemented as trophic exchange and/or chemical signaling. 
There is ever increasing evidence of the correlation between 
composition and activity of the bacterial component of the 
consortium and the physiological condition of the microal-
gae. This evidence suggests that the interactions between 
the microalgae and the bacteria can be significant for the 
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consortium itself. It can also affect practically relevant char-
acteristics such as cell division rate, its biochemical compo-
sition and excretion of assorted compounds (Danish-Daniel 
et al. 2023; Li et al. 2023b).

There are species and whole taxa of microalgae whose 
microbiomes are of a considerable interest due to their high 
biotechnological potential or even a possible threat to human 
health and economics (Kublanovskaya et al. 2020b; Danish-
Daniel et al. 2023). Among the most conspicuous forms of 
microalgal-bacterial interactions, and hence most studied so 
far, is the formation of complex structures such as floccules 
and biofilms or their biomimetic analogs—photogranules 
(Trebuch et al. 2020, 2023). They frequently include prokar-
yotic oxygenic phototrophs—cyanobacteria (Kublanovskaya 
et al. 2019, 2020a).

A crucial role in the formation and evolution of microal-
gal-bacterial consortia is played by the phycosphere. This 
term was coined to denote a spatial zone in close proximity 
to the microalgal cell surface characterized by the pres-
ence of superficial structures of microalgal cells as well as 

by gradients of chemical and physical parameters making 
the phycosphere especially favorable for other organisms. 
In other words, microalgae acts as ecosystem engineers or, 
in terms of ecology, edificator of the microbial commu-
nity formed around its cells. Eventually, the phycosphere 
becomes inhabited by microorganisms engaged in diverse 
(mostly symbiotic) interactions with the basibiont (the 
microalga) and between themselves (Fig. 1).

These interactions can be significant from the practi-
cal standpoint (Seymour et al. 2017). The most known 
is successful application of mixed cultures of microalgae 
with plant growth-promoting bacteria (PGPB) for soil 
remediation and biofertilization (Gonzalez and Bashan 
2000; de-Bashan et  al. 2021; Gonzalez-Gonzalez and 
de-Bashan 2023). The co-culture improves soil health 
and stimulates crop plants productivity by synthesiz-
ing a broad spectrum of bioactive molecules (de-Bashan 
et al. 2004; 2021) including the phytohormone analogs 
excreted by representatives of Chlorella, Scenedesmus, 
and Chlamydomonas.

Fig. 1   Schematic representation of the phycosphere formed around 
a microalgal cell, its bacterial inhabitants, and the processes within. 
The interactions are divided into three main categories shown in the 
scheme. Thin black arrows show directions of the interactions, dashed 

arrow denote unconfirmed interactions. The “+” and “–” signs denote 
positive and negative interaction types, respectively. The biotechno-
logically relevant processes affected by the microalgal-bacterial inter-
actions are listed inside the microalgal cell silhouette
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Cyanobacteria also fix nitrogen (Llamas et al. 2023) and 
make it, together with phosphorus, more bioavailable to crop 
plants with participation of microorganisms from the genera 
Azospirillum, Azotobacter and other diazotrophic cyanobac-
teria (Scognamiglio et al. 2021; Solomon et al. 2023). Con-
sortia of microalgae and plant growth-promoting bacteria 
(PGPB) boost growth and pathogen resistance of important 
vegetable crops including tomato, onion, and cucumber by 
stimulating their nitrogen uptake and producing bioactive 
polysaccharides (Kang et al. 2021). With cyanobacteria 
added to a microalgae-PGPB consortium, a robust synthetic 
consortium is formed which can serve as efficient bioferti-
lizer (Sadvakasova et al. 2023). A similar result could be 
achieved by co-immobilization of microalgae-PGPB consor-
tia on alginate and/or chitosan beads (Gonzalez and Bashan 
2000).

Another major application field for microalgal-bacterial 
consortia is the biotreatment of wastewater by bioseques-
tration of nutrients, decomposition of bulk pollutants, and 
biodegradation of hazardous micropollutants. Common 
issues of the microalgae-based solutions for environmental 
applications including their stability and sustained efficiency 
under fluctuating environmental conditions and wastewater 
composition, as well as economic viability can be, in princi-
ple, addressed by appropriate microalgal-bacteria consortia 
(Saravanan et al. 2021).

Bacteria from certain taxa, frequently belonging to PGPB 
as well, also exert stimulatory effects on microalgal growth 
and productivity. In analogy with PGPB, those bacteria were 
named microalgal growth-promoting bacteria (MGPB). Sup-
plementation of MGPB to axenic cultures of microalgae 
from the genera Chlorella, Chlamydomonas, and Euglena 
frequently used in wastewater treatment increase biomass 
accumulation and the treatment efficiency (Toyama et al. 
2018).

The most robust form of the algal-bacterial consortia in 
the wastewater treatment systems are algal-bacteria biofilms 
(Clagnan et al. 2023). Tehes biofilms can be formed with 
participation of quorum-sensing mechanisms orchestrating 
the microalgal-bacterial interactions to attract the MGPB 
to populate the niches formed around the photoautotrophic 
cells (Qixin et al. 2022). The MGPB can either stimulate 
the growth of microalga by supplying them with essen-
tial co-factors and vitamins (Shetty et al. 2019; Iqbal et al. 
2022) or perform enzymatic hydrolysis of the microalgal 
cell wall increasing the product yield in case of valuable 
metabolite production (Carrillo-Reyes et al. 2016). Increas-
ing the bioavailability of nitrogen by bacteria in wastewater 
sludge communities facilitates accumulation of microalgal 
biomass (Leong et al. 2020) and, in certain cases, lipid pro-
ductivity of species from the genera Chlorella, Chlorococ-
cum, Scenedesmus, and Nannochloropsis (Koreivienė et al. 
2014; Arutselvan et al. 2021; Upadhyay et al. 2021). Future 

breakthroughs in wastewater treatment are expected from 
application of multi-omics approach and high-throughput 
methods for screening for selection and/or design of even 
more robust and productive consortia (Patel et al. 2017; Pad-
maperuma et al. 2018; Nagarajan et al. 2022).

Clearly, the environmental and agricultural applications 
of microalgae are about “xenic” cultures and consortia. 
Moreover, the advent of molecular methods of culture purity 
control revealed that many microalgal cultures that passed 
conventional axenicity tests appeared to be not really axenic 
and harbored other (non-cultivable) microorganisms. Inter-
estingly, using strictly axenic cultures in microalgal biotech-
nology was frequently complicated by deterioration of cul-
ture vigor and productivity, let alone the costs of axenicity 
maintenance at large scale (Patel et al. 2017; Padmaperuma 
et al. 2018).

These circumstances have focused interest to the consor-
tia themselves and methods of their investigation and engi-
neering. It became clear that engineering of the phycosphere 
aimed at to populating it with desirable MGPB would ensure 
a kind of division of labor between the components of the 
consortium for avoiding metabolic overload, enhanced bio-
mass accumulation, balancing the growth by quorum sensing 
mechanisms, and increase of nutrient availability for micro-
algae (Park et al. 2017; Patel et al. 2017; González-González 
and de-Bashan 2021). Specific examples include significant 
increase of chlorophyll, lipid, and carotenoid content in co-
cultures of microalga with the bacteria that are frequently 
found in microalgal core microbiome such as Paracoccus 
haeundaensis – Lactobacillus fermentum, Characium sp. 
– Pseudomonas composti, Tetradesmus obliquus and Coe-
lastrella sp. – Variovorax paradoxus (Berthold et al. 2019; 
Choi et al. 2021; Perera et al. 2021).

Of special interest is boosting the productivity of the bio-
technologically important microalgae such as Haematococ-
cus lacustris without resorting to their genome modification. 
Solving this problem would make the natural astaxanthin 
from microalgae much more competitive than it is now. 
Thus, H. lacustris has shown more than two-fold increase 
in its major secondary carotenoid astaxanthin yield in co-
culture with the bacteria Sphingomonas hankookensis or 
Paenarthrobacter ureafaciens, or the fungus Simplicillium 
lanosoniveum (Lee et al. 2022). Co-culturing of microalgae 
with certain yeast species results in beneficial cross-feeding 
that either increases the rate of carbon dioxide assimila-
tion or enables the utilization of organic carbon sources for 
higher biomass accumulation (Cheirsilp et al. 2012; Wang 
et al. 2016; Gao et al. 2023b). Such co-cultures are designed 
by high-throughput screening of suitable auxotrophs among 
microalga, bacteria, and fungi to arrange the most efficient 
trophic interactions (Saleski et al. 2019).

Taking a closer look on the publication landscape 
related with microalgal genomics, one might notice that 
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molecular biology methods have become widespread 
within that field (Fig. 2, see also online Supplementary). 
However, the topic of high-throughput sequencing (HTS) 
is still underrepresented for microalgal biotechnology. But 
even then, the initial focus of sequencing techniques on 
microalgal metabolism and culturing has been gradually 
shifting towards the genomics approach of microalgal-bac-
terial community investigation. As a result, HTS methods 
are becoming tightly related to environmental research, 
such as ecological monitoring of phytoplankton (including 
notorious algal blooms and eutrophication), aquaculture, 
and wastewater treatment. Today we see the emerging 
understanding of the importance of HTS for monitoring of 
microbial and microalgal diversity, as well as for estima-
tion of microalga-bacterial consortia functional potential. 
At the same time, it became clear that solving these prob-
lems demands new experimental methods and data pro-
cessing algorithms in metagenomics. Below, we attempt to 
outline the importance of long-read sequencing for getting 

insights into the structure, functioning, and biotechnologi-
cal potential of algal-bacterial consortia. Pro et contra of 
the mainstream sequencing technologies will be discussed 
with an emphasis of nanopore sequencing represented by 
Oxford Nanopore Technology (ONT). Special attention 
will be given to novel algorithms developed for gaining 
actionable insights from the data output of ONT sequenc-
ing platform. The review covers the reports (Fig. 2, see 
also online Supplementary) on the successful applications 
of HTS in the field of microalgal ecology and microalgal-
bacterial interactions in the context of biotechnology. 
Additionally, the amount and specificity of the long read-
based metagenomics is considered.

Fig. 2   Co-occurrence map of the keywords in publications related to 
microalga genomics. The largest number of edges are within ‘molec-
ular methods’ cluster (brown) and to ‘symbiosis’ node of ‘metagen-
omics’ cluster (yellow), stating the increasing attention to microalga-
bacteria interactions in molecular systems biology field. At the same 
time, the nodes ‘metagenomics’ and ‘microbiome’ have few and 
thin edges with ‘bioproduction’ and ‘microalga technology’ clusters 

(purple and blue, consequently), which highlights future potential of 
metagenomic studies for practical application of alga. The initial set 
of titles, abstracts, and keywords of 767 research articles was col-
lected from PubMed and analyzed in VOSviewer 1.6.20 (only the 
keywords which occurred 10 times and more were taken, clustering 
resolution = 1.3, min. strength = 8)
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Metagenomics in microalgal research

Metagenomics is a key to knowledge 
of the microbial universe

Metagenomic approach to investigation of microbial com-
munities evolved in the last two decades. It became a pow-
erful tool for studies of the microbiomes of soil, marine 
and freshwater sediments, and planktonic communities, as 
well as microbiomes of animals and plants. This approach 
also proliferated into diverse practical applications such 
as environmental monitoring, control of food quality and 
fermentation, medical research, and wastewater treatment. 
Recently, researchers started to use metagenomics to dis-
sect microalgae-based communities from various biotopes 
from active sludge of wastewater treatment plants to pho-
tobioreactors. An illustrious example is comprised by cul-
ture crash “forensics” (Lane et al. 2013).

Metagenomic approach becomes increasingly wide-
spread in the studies of microbial communities while the 
classical methods that are based on isolation and culti-
vation are giving up their positions since the latter are 
(i) labour- and time-intensive and (ii) suffer from a high 
organism-dependent bias. An important advantage of 
metagenomics is its potential to reveal hidden microbial 
diversity represented by uncultured species. This is espe-
cially relevant to bacterial symbionts of microalgae in 
natural and artificial systems.

Generally, metagenomic studies of alga-bacterial com-
munities aim to answer three practical questions:

1.	 What organisms form the community (which taxa do 
they belong to)?

This question is solved using molecular identifiers 
or barcodes uniquely identifying organisms at different 
levels of taxonomy. According to the principle of DNA 
barcoding, sets of genomic loci are selected to ensure the 
desired level of identification accuracy for bacterial and 
microalgal strains. While the 16S rRNA gene locus is 
usually sufficient for identification of the most of hetero-
trophic bacterial species in the microalgal phycosphere 
(Lebonah et al. 2014), reliable identification of oxygenic 
phototrophs requires a more extended set of loci. Thus, for 
eukaryotic microalgal nuclear genes (18S rRNA, nuITS1, 
and nuITS2), chloroplastic genes (rbcL, tufA, and cp23S), 
as well as mitochondrial cytochrome c oxidase subunit I 
(COI) gene are used in most situations (Hadi et al. 2016; 
Zou et al. 2016; Ballesteros et al. 2021). Among those, the 
tufA gene encoding a plastidial elongation factor currently 
is the most promising marker capable of resolving lower 
taxa within the class Chlorophyceae (Vieira et al. 2016). 

For identification of Cyanophyta, the 16S rRNA gene and 
ITS between 16S and 23S rRNA genes, functional rbcL 
or nif genes, and a subunit of RNA polymerase (rpoB/C/D 
genes) are commonly used (Mishra 2020; Ballesteros et al. 
2021). The CBOL (Consortium for the Barcoding of Life) 
recommends the consequent application of at least two 
markers for reliable identification of microalgal taxa (Paw-
lowski et al. 2012).

2.	 What is the potential functional profile (ecological func-
tion) of the community?

The possible physiological and other features of a com-
munity are defined by list of functional orthologs repre-
sented in the genomes of species forming this community. A 
more or less specific set of genetic determinants can be com-
piled for any major phenotypical trait expressed at the level 
of community. Typical examples include (but not limited 
to) nitrification (amo, nxr, hao, etc.), denitrification (nap, 
nar, and nirS, etc.), and uptake of phosphate with its subse-
quent accumulation in form of polyphosphate (pho genes, 
PSR1, PTC1, ppk, ppk2, etc.) (Wang et al. 2023; Xiong et al. 
2023). Following the concept of reverse ecology, such gene 
sets might be the basis of metabolic reconstruction of an 
entire microalga-bacterial community (Cao et al. 2016). This 
approach might also reveal a lot of information about the 
biotechnological potential of a community which might be 
useful e.g. for in silico pre-screening.

3.	 What are the possible interactions between the organ-
isms forming the community?

Answering this question requires study of the genes 
responsible for different modes of communication between 
microalga and bacteria in the phycosphere, from trophic 
interactions to chemical signaling based on specific mol-
ecules (see e.g., Fig. 1). Excellent examples of the latter 
are quorum sensing substances, phytohormones, algicides, 
growth inhibitors, and extracellular enzymes that modulate 
their activity in the medium (Dow 2021; Astafyeva et al. 
2022; Santo et  al. 2022). Another route of interactions 
within the community is horizontal gene transfer between 
species—the phenomenon noticed in natural microalga-
microbial communities under selective pressure of hazard-
ous micropollutants (Liu et al. 2022; Li et al. 2023a).

HTS in microbial community research: pro et contra

Since the advent of the first method for sequencing nucleic 
acids, this approach has evolved dramatically yielding three 
generations of sequencing with distinct advantages and 
drawbacks (Table 1; Sanger and Coulson 1975; Slatko et al. 
2018). Each method has its own unique characteristics and 
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the method of choice depends on specific goals and require-
ments of the study. Instead of reviewing technical details 
of each method (for those, we refer the reader to recent 
overviews: (Mardis 2017; Slatko et al. 2018)), here we will 
highlight their scope and applicability for investigation of 
microalgal-bacterial communities with emphasis on the most 
recent long read-based technologies.

The third-generation sequencing is distinguished by the 
ability to read long DNA sequences. This method is repre-
sented on the market by single-molecule real-time sequenc-
ing technology (SMRT) from PacBio and by solutions from 
Oxford Nanopore Technology (ONT) company. Admittedly, 
PacBio has proven itself as the most powerful sequenc-
ing method existing up to now, due to the optimal ratio of 
potential read length to sequencing precision. Still, it has 
not become a mainstream technology, particularly due to its 
high cost (almost twice as much compared to other TGS) 
that leads to lower availability (Athanasopoulou et al. 2022). 
However, the second technology is becoming more wide-
spread due to the opposite trends. In the process of nano-
pore sequencing, individual single-stranded DNA or RNA 
molecules pass through the nanopore causing changes in 
electrical conductivity in the nanopore unit. The correspond-
ing changes in the electrical signal are recorded, and the 
nucleotide sequence is inferred from these records. Further 
details on the principles and technical implementation of this 
method can be found in (Kasianowicz et al. 1996; Stoddart 
et al. 2009).

A key advantage of TGS is the length of reading, which 
can reach 100 thousand b.p. which is unattainable for other 
sequencing platforms. Another decisive advantage of TGS 
is its ability to perform single-molecule sequencing without 
the need to average signals from a group of molecules mak-
ing the results more accurate. Combination of these advan-
tages makes the sequencers capable of precise analyzing 
of long repeats and GC-rich regions of the genome, unlike 
the alternative technologies (Jain et al. 2018). Furthermore, 
nanopore sequencing, provided that a sufficient amount of 
genomic DNA (above 200 fmol) was extracted from the bio-
logical sample, makes it possible to omit the amplification 
step in the sample preparation routine, while PacBio requires 
pre-amplification for some purposes (Athanasopoulou et al. 
2022). The lack of the PCR amplification step lowers the risk 
of a bias due to selective enrichment of certain parts of the 
genome and shortens the sample preparation time, saving 
reagents and making the whole process more portable. These 
circumstances and the small size of nanopore sequencers 
makes them extremely mobile, so the whole sequencing can 
be carried out as a kitchen-table effort (Edwards et al. 2016).

At the same time, this technique from the very beginning 
suffered from a greater (relative to other modern sequenc-
ing approaches) number of reading errors (determining spe-
cific nucleotides in particular position with thin the nucleic 

acid sequence). Admittedly, this problem is increasingly 
mitigated every year. Thus, although almost 40% of reading 
errors were reported in 2015 (Laver et al. 2015), in 2018 the 
error rate has been reduced to 0-10% thanks to improved 
data processing and sample preparation (Jain et al. 2018), 
and in 2022 a solution was announced to increase the read-
ing accuracy to 99.9%. Using the last modification ONT a 
systematic study of de novo genome assembly with control 
the quality of assembled genomes as well as reads by the 
ability to reproduce SNVs and deletion of gene found in 
alternative experiments for the same samples the applica-
tion only ONT technology for de novo genome assembly 
was proved (Khrenova et al. 2022). As a result, nanopore 
sequencing now has a broad range of applications including 
genomics, epigenomics, metagenomics, and RNA research. 
It is widely used in life sciences research, medicine, agricul-
ture, and other fields where genome sequencing or nucleo-
tide sequence analysis is required (Zhang et al. 2022; Badger 
et al. 2023; Mastrorosa et al. 2023).

One of the distinguishing features of ONT is the direct 
nucleic acids sequencing ability, which opens new oppor-
tunities for high accuracy transcriptomics, including iden-
tification of novel isoforms and detection of full-length 
RNA (Athanasopoulou et al. 2022). On the other hand, the 
accurate differential analysis based on long-read sequencing 
data may require higher throughput via generation of cDNA 
library, which in case of nanopore sequencing still provides 
an advantage over existing methods by reading full-length 
isoforms and avoiding (or at least reducing) additional bio-
informatics step to assemble reads into transcripts. However, 
this potential has not been fully leveraged due to the limita-
tions of current long-read assembly methods and underde-
veloped short-read data integration approaches. Unevenly 
low coverage when using short-read technologies leads 
to the splitting of one transcript into several transcripts or 
incorrect definition of ends and, as a result, to errors in the 
assessment of differential gene expression. Conversely, long-
read sequencing libraries lack depth of coverage and suffer 
from artifacts in cDNA-based methods, leading to errone-
ous assembly and quantification of transcripts. To overcome 
these problems, a hybrid assembly approach (short and long 
reads together) is used, which dramatically increases the sen-
sitivity and accuracy of full-length transcript assembly on 
the correct strand and improves the detection of biological 
features of the transcriptome (Kainth et al. 2023). When 
alternative splicing has a significant contribution to tran-
scriptomic variation, ONT protocols have been shown to 
be superior to short-read sequencing protocols in terms of 
transcriptome assembly and the risk of false positives due 
to unambiguous mapping of reads to transcripts (Engelhard 
et al. 2023).

Both PacBio and ONT are suitable for implementa-
tion of two main strategies of metagenomic studies: whole 
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metagenome sequencing and amplicon sequencing of a 
specific loci either for identification of the microbes and/or 
revealing their functional potential (Athanasopoulou et al. 
2022; Kim et al. 2022). Thus, in 16S-based studies, PacBio 
and ONT allow the creation of primers covering the entire 
16S10 gene or even entire ribosomal operons, increasing 
dramatically the resolution of the taxonomic assignment 
i.e., the number of precisely distinguishable species (Kerk-
hof et al. 2017; Tedersoo et al. 2018). Reading the whole 
metagenome leads to minimal bias in species composi-
tion and amount. At the same time, amplicon sequencing 
of DNA-barcodes (or metabarcoding), e.g., 16S rRNA, its 
internal transcribed spacer (ITS), rbcL etc., offers a cheaper 
alternative which features a higher throughput but is poten-
tially prone to bias due to the presence of amplification step 
(see above).

It is well known that “traditional” short-read sequenc-
ing technologies cannot reliably resolve repeats and dupli-
cated regions of the genome, so their using for taxonomical 
assignment and genome assembling of closely related spe-
cies is complicated (Ashton et al. 2015), while heterogeneity 
inherent in the metagenome might lead to incorrect assembly 
between species. In case of metabarcoding, the 16S rRNA 
gene sequence harboring a combination of conservative and 
highly variable regions allows for precise species identifica-
tion, but limitations of the short-read technologies (NGS, 
Table 1) prevent them from covering a sufficiently long part 
of this gene to provide species-level resolution (Shin et al. 
2016).

Nowadays, TGS (mostly nanopore sequencing) has 
secured its place in the array of methods for studies of 
microbial communities offering distinct advantages for 
metagenomics. Despite some admirable results produced by 
PacBio technology in assembling whole genomes of micro-
organisms, including microalgae (Luo et al. 2018; Maeda 
et al. 2019; Gao et al. 2023a), there are few works dedicated 
to PacBio evaluation of microbial communities (Tedersoo 
et al. 2018; Gueidan et al. 2019; Kim et al. 2022). There-
fore, we shall consider below the specific applications of the 
nanopore technology (solely or in combination with short-
read methods) for scrutinizing the microalgal community 
structure and functional profile.

Studying the whole metagenome of microalgal 
communities with HTS technologies

The whole metagenome sequencing (WMS) approach stands 
as the golden standard for metagenomic studies of various 
sample types harboring microalgal-bacterial consortia, 
mostly due to the large amount of sequence data enabling 
thorough analysis of the consortia. That includes precise 
taxonomical identification of eukaryotic and prokaryotic 
species forming a community, confirming the presence 

of diverse functional genes sets, search for new efficient 
and stable enzymes and reconstruction of metagenome-
scale metabolic models (Belcour et al. 2020; Zorrilla et al. 
2021; Kuppa Baskaran et al. 2023). Further insights can be 
obtained by investigating raw metagenome reads or scaf-
folds, for example from phylotyping based on straightfor-
ward count in alignment-free algorithms (Inskeep et al. 
2013; Patil and McHardy 2013), more precise taxonomical 
identification by BLAST or another sequence comparison 
tool such as implemented in MEGAN or TAXAssign algo-
rithm (Huson et al. 2007; Inskeep et al. 2013), or classifica-
tion based on the species-level genome bins e.g., with Met-
aPhlan 4 algorithm (Ljaz and Quince 2013; Blanco-Míguez 
et al. 2023).

The most popular approach relies on pre-assembled 
genomes from the metagenome (MAG) for prokaryotic 
and eukaryotic species, which however might be limited by 
insufficient coverage of taxa and quality of the assemblies 
(Yang et al. 2021). Though application of both mentioned 
approaches is better adopted for prokaryotic species, there 
is an emerging trend in algorithm development for eukary-
otic microorganisms, including microalgae. Such tools as 
EukRep and Tiara utilize machine learning and deep learn-
ing methods to classify read subsets that are related to a 
microalga (or even its plastids and mitochondria) in a whole 
metagenome, then extract and assemble them (West et al. 
2018; Karlicki et al. 2021). Completeness and contamination 
are two main characteristics of MAGs, which are estimated 
by single-copy marker gene analysis (SCMG). For prokary-
otic MAGs, the CheckM algorithm is widely used and shows 
good performance, while quality check of eukaryotic MAGs 
is a challenge, it is however reached by using a defined set 
of eukaryotic SCMG (BUSCO and CEGMA algorithms) or 
dynamic selection of an appropriate SCMG set for improved 
evaluation e.g., with EukCC algorithm (Saary et al. 2020).

Though the short-read WMS inherently provides exces-
sive metagenome coverage, its results are still limited by 
the read length. Confident assignment of the metagenomic 
reads to a specific taxon by comparison with known DNA 
barcodes or reference genomes requires longer sequences 
than obtainable with currently available NGS platforms 
(Table 1). The robustness of genus or species identification 
within the WMS data can be improved either by assembly of 
short reads or by application of longer reads (Tran and Phan 
2020; Pessi et al. 2023). In some cases, workable DNA-
barcode loci can be difficult to assemble from short reads 
due to their highly conserved sequences making the taxo-
nomical assignment of MAGs challenging. As an example of 
such case, Pessi et al. (2023) reported that among 37 MAGs, 
obtained from 17 cyanobacterial mats from polar regions, 
only one included a complete sequence of 16S rRNA gene, 
therefore it was impossible to map most of the MAGs to a 
16S rRNA sequences database. Since the step of assembly 
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is not required for processing of the output of long-read 
sequencing by ONT, it can be directly used for easy on-site 
taxonomical classification. The efficiency of this approach 
is additionally boosted by developing frameworks for rapid 
classification, like System for Mobile Analysis in Real-Time 
of Environment (SMARTEn), which is implemented in Cori-
olis – a mobile metagenomic classification tool (Mikalsen 
and Zola 2023).

WMS allows investigation of the microbial species in dif-
ferent natural and artificially created biotopes, from natural 
habitats to laboratory and industrial cultures. One of the 
most valuable outputs of WMS of natural communities is 
the information about the genetic diversity of microalgae and 
evaluation of their physiological potential. This direction 
is highly contributed by large international projects aiming 
at collecting metagenomic samples from wide geographical 
area covering a lot of diverse habitats. These are represented 
by Tara Oceans Expedition, Microbial Atlas, etc. which have 
produced a large amount of data for metagenomic mining 
(Delmont et al. 2022). More advanced sample collection 
techniques, like targeting the layers of water column with 
the maximum chlorophyll a concentration or filtering the 
cells by their size, help to narrow the microbial diversity of 
a sample and thus further improve metagenomic algorithms 
output (Yergeau et al. 2017; Delmont et al. 2022; Duncan 
et al. 2022). This enables study the genetic variability of a 
particular microalgal species, such as the chlorophyte Bathy-
coccus prasinos—a dominating member of marine eukary-
otic picoplankton.

On the practical side, functional analysis of the MAGs 
showed amino acids content shift among polar populations 
of microalgae, which explains adaptation to the changes 
in temperatures (Duncan et al. 2022). Studying the func-
tional landscape of eukaryotic and prokaryotic MAGs in 
picoplankton also allows prediction of microbiome suc-
cession, including such crucial events such as microalgal 
blooms (Kavagutti et al. 2023). The same approach can be 
used for revealing the functional potential of microalgal spe-
cies discovered within metagenomes for the destruction of 
hazardous micropollutants by search for the relevant meta-
bolic pathways. Examples include plastic biodegradation by 
adhesion on cell surface with following enzymatic hydrol-
ysis; this process is extensively studied with the focus on 
the enzymes polyethylene hydrolase (PETase) and mono(2-
hydroxyethyl) terephthalic acid hydrolase (MHETase) (Chia 
et al. 2020). Other examples include heavy metal phycore-
mediation by their uptake by and enzymatic reduction (e.g., 
by chromium reductase) in the microalgal cells (Priya et al. 
2022), and xenobiotics degradation (Cheng et al. 2021; 
Ovis-Sánchez et al. 2023; Vasilieva et al. 2023) e.g., by 
nitrilase (Vingiani et al. 2019).

Though known sets of genes in metagenome can be 
detected by targeted PCR-analysis with degenerative primers 

(Gulvik et al. 2012), the results of this approach might be 
compromised. One of the reasons is functional redun-
dancy—presence of alternative pathways of similar func-
tion in the community (Graham et al. 2015), another one is 
the functional divergence of orthologs within a species (Ma 
et al. 2021). Therefore, WMS remains a powerful approach 
for estimating the efficiency and stability of microalgal 
communities under particular conditions as well as for bio-
prospecting of promising strains from e.g., wastewater stabi-
lization/oxidation ponds or other polluted areas (Chia et al. 
2020; Jankowski et al. 2022; Nagarajan et al. 2022). The 
investigation of the genetic variation landscape for microal-
gal and cyanobacterial species is a promising way to mine 
new homologs of biotechnologically valuable enzymes or 
alterations in biosynthetic pathways. A pangenomic analy-
sis of databases-retrieved Nannochloropsis species genomes 
revealed length and sequence variations between photosys-
tems I and II genes (psaB, J, L, and psbH, Y, N, I, T), energy 
conservation genes (atpH, G, E), as well as loss of the ace-
tohydroxyacid synthase negative feedback regulation gene 
(ilvH) in branched chain amino acids pathway, that indicated 
its alternative regulation (Starkenburg et al. 2014).

Pangenomic studies have demonstrate that transpos-
able elements are as important for the phenotype of algae 
as single nucleotide polymorphism (SNP), indicating the 
importance of sequencing method precision (Carrier et al. 
2024). While deep shotgun NGS sequencing provides good 
nucleotide resolution, the accuracy of the assembly can be 
greatly enhanced by joint application of the genome-wide 
chromosome conformation capture (Hi-C) method with 
nanopore sequencing of long reads (Pan et al. 2023; Carrier 
et al. 2024). Being originally developed for chromatin-DNA 
interaction studies within a given eukaryotic species, Hi-C 
showed great potential in reconstruction of high-quality 
MAGs from microbial communities (called metaHi-C), as 
the capturing technique artificially gathers DNA molecules 
within each organism and thus improves metagenomic 
binning procedure (Beitel et al. 2014). The combination 
of short-read NGS, long-read nanopore sequencing and 
metaHi-C opens up the opportunity for pangenomic analy-
sis within a certain microalga-bacterial community and the 
development of metapangenomic approach (Delmont and 
Eren 2018).

Getting insights into interactions 
within microalgal‑bacterial communities with HTS

The WMS is also a powerful tool for studying the inter-
actions within microalga-bacteria communities. On one 
hand, it relies on search for a specific set of genes encoding 
pathways for molecular signaling and/or trophic substrate 
exchange. Trophic relationships can be revealed starting 
already from elemental metabolism level, by classification 
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of the relevant genes found in the MAGs as related, e.g., 
to phosphorus, nitrogen, or sulfur fluxes between microal-
gae and bacteria in a community (Saini et al. 2023). The 
keen attention to this kind of studies is due to importance of 
microalga-bacterial consortia for nutrient biosequestration 
from wastewater ponds, marine sediments, and biofertilizer-
treated soils (Vučić and Müller 2021), where both sides can 
affect phosphorus accessibility for each other by enzymatic 
solubilization by bacteria (Dong et al. 2022) or pH modula-
tion by the microalgae. The balance in flux between carbon, 
oxygen and nitrogen is crucial for the aerobic enhanced bio-
logical phosphorus removal (EBPR) process in microalga-
bacteria biofilms during wastewater treatment (Mohamed 
et al. 2021).

Another well-known mode of interaction between micro-
algae and bacteria is syntrophy, where bacterial organ-
isms produce the vitamins biotin, cobalamin and thiamin, 
for which most of microalgae are auxotrophic and require 
them for e.g., lipid biosynthesis (Wirth et al. 2020). Com-
parison of metabolic potential and substrate spectrum can 
also reveal the spatial interaction within the cyanosphere 
(cyanobacterial analogue of phycosphere), where filamen-
tous cyanobacteria (representatives of Lyngbya, Planktothri-
coides, Pseudochroococcus and other genera) are able to 
build extracellular polymeric substance (EPS) of polysac-
charide mucilage, which is then inhabited by heterotrophic 
bacteria capable of its partial degradation and utilization in 
catabolic reactions (Halary et al. 2022). Besides that, a more 
specific interaction way exists in a form of signaling mol-
ecules exchange within such consortia: phytohormones are 
produced by bacteria with either stimulating or suppressing 
mode for microalgae (for example most known L-amino oxi-
dase manages conversion of L-tryptophan to indole-3-acetic 
acid) (Wang et al. 2021; Mars Brisbin et al. 2022), algicides 
that cause microalgal cell damage (Jia et al. 2023), and other 
quorum sensing agents with wide spectrum of impacts on 
photosynthetic cells (Dow 2021). One can do WMS data 
mining not only for the biosynthetic pathways for these oper-
ating molecules, but also for the related molecular transport-
ers, like ABC-transporters (Krohn-Molt et al. 2017; Li et al. 
2022). While solid evidence of chemical interaction between 
microalgae and bacteria usually requires integration with 
other omics (ideally proteomics and metabolomics meth-
ods), WMS provides firm background for genome-centric 
approach in such studies (Krohn-Molt et al. 2017).

An interesting and promising approach to investigate 
microalgal-bacterial interactions is one based on hologe-
nome concept. The phycosphere can be considered as a clas-
sical holobiont—metaorganism, where certain bacteria per-
sist and co-evolve with microalgae acting as the ecosystem 
engineer (edificator). That co-evolution might be revealed 
by comparative genomics through searching for phylosymbi-
otic signals (correlation in divergence) in phylogeny of both 

host and symbiont, codivergence of dominant microbiome 
groups with a host, and metabolic complementary (Cooke 
et al. 2019). The phycosphere is known to be highly dynamic 
system responding to biotic and abiotic factors and featur-
ing the hologenome evolution mechanisms: amplification 
or reduction of bacterial partners, acquisition of new bac-
teria, and horizontal gene transfer (HGT) (Rosenberg and 
Zilber-Rosenberg 2018). Though HGT between eukaryotic 
and prokaryotic species faces many obstacles based on dif-
ference in genome structure and mechanisms, it has been 
shown that the gene flow from bacteria to microalga does 
exist (Li et al. 2023a). It is most evident for the antibiotic 
resistance genes (ARG) transfer in environments with high 
evolutionary pressure, such as anthropogenically polluted 
sites, making it resonable to propose a concept of ‘Pollut-
antBiome’ as a special case of hologenome (Ashraf et al. 
2023; Li et al. 2023a).

Investigation of the hologenome structure via compara-
tive genomics requires low contamination values of MAGs, 
since presence of heterogenous reads in the final sequence 
leads to severe misinterpretation. Thus, long-read nanopore 
sequencing with the following polishing by NGS short reads 
is the best technique for revealing the status quo for holobi-
ont and symbiont, as nanopore-produced long contigs reduce 
the probability of interspecies read contamination, while 
short reads increase consensus accuracy and enable analy-
sis of SNP variants (Sauvage et al. 2019). In addition, long 
reads can be efficiently sorted not only by species of origin, 
but also by assignment to specific compartments within 
cells. The heteroplasmy and genetic variation of organellar 
genomes (nuclear, plastid, mitochondrial) of cellular endo-
symbionts can provide proof of gene transfer and metabolic 
complementarity between the microalgae holobiont and the 
symbionts (Sauvage et al. 2019).

Hologenome studies can be greatly enhanced by nanop-
ore long-reads supported metaHi-C approach and opens new 
horizons for HGT studies, by making it possible to capture 
DNA–DNA interaction between host genome and mobile 
genetic elements (plasmids, viral loci, etc.) (Bickhart et al. 
2022). The recently developed MetaCC algorithm has been 
shown to be a powerful tool for MAG reconstruction and 
plasmids search in complex microbial communities hybrid 
assembly of long and short reads (Du and Sun 2023). How-
ever, the holistic approach for investigation of microalga-
bacteria communities currently remains underrepresented 
and still needs to be developed and critically reviewed.

Advantages of long‑read HTS for taxonomical 
profiling of microalgal‑bacterial communities

Opposite to the WMS, taxonomic profiling of microbial 
communities is based on amplicon sequencing of genetic 
barcodes, specifically determining taxonomical assignment 
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of microorganisms. The variety of metabarcoding meth-
ods mainly depend on loci that are used for each particular 
group of organisms, with the main criteria of conservativ-
ity within the taxon and variability between taxa. Thus, the 
ribosomal operon is widely used for bacteria identification, 
since 16S and 23S rRNA genes, combined with ITS provides 
strain-level resolution. Recently Pushpakumara et al. (2023) 
have demonstrated the high potential of the 16S rRNA gene 
metabarcoding for analysis of microalgal-bacterial commu-
nities revealing previously unknown associations between 
microorganisms. The identification of eukaryotic micro-
algae usually requires other genetic barcodes, such as 18S 
rRNA gene, its ITS regions, or more specific rbcL and tufA. 
Metabarcoding based on functional rbcL and tufa genes has 
several advantages over ribosomal loci, which are increased 
richness of a studied communities, and identification of hap-
lotypes presence and microevolution via population genetic 
approach (Sauvage et al. 2016; Turk Dermastia et al. 2023). 
The second becomes available due to high resolution of 
identification provided by such barcodes, though it requires 
accurately considering possible errors and correction strate-
gies. 16S and 23S rRNA genes are also applied for micro-
algae identification as plastid and mitochondrial ribosomal 
loci, which can be applied simultaneously to identify both 
components of microalgal-bacterial communities (Kezlya 
et al. 2023). At the same time, the presence of the plastid or 
mitochondrial ribosomal loci reads reduces community sam-
ple richness and affects diversity index estimation, and there-
fore is considered as unwelcomed contamination (Thomas 
et al. 2020). Both experimental techniques, such as physical 
removal of eukaryotic DNA (Demkina et al. 2023) and opti-
mization of bacteria-specific primers for ribosomal operons, 
have been evaluated recently to obtain pure prokaryotic pro-
files (Thomas et al. 2020) as well as training bioinformatic 
classifiers on chloroplast-derived datasets, such as QIIME2 
naïve Bayes tool trained on PhytoREF database (Bonfantine 
et al. 2021).

Until recently, the DNA metabarcoding method was 
firmly based on short-read sequencing on the NGS plat-
forms. Though widely spread and routine, it possesses 
severe drawbacks for studying the microbial communities 
of microalgae cultures and natural samples. The main and 
crucial drawback is that short read length limits taxonomi-
cal resolution. While the general rule states that ribosome 
small subunit rRNA gene and its ITS is required for strain 
identification, the NGS platforms of sequence-by-synthesis 
method has a limitation of maximum 300–500 b.p. (in case 
of pyrosequencing) and 150–300 b.p. (in case of Illumina), 
which allows reading of only part of the barcode. The V3-V4 
regions of 16S rRNA gene is the most popular variant for 
microbiome profiling, though other regions, such as V2-V3 
are shown to be more specific and provide higher taxa reso-
lution (Bukin et al. 2019). Even then, the drawback lies in 

the interplay between resolution and richness of the com-
munity, as the increased specificity leads to the loss of par-
ticular groups of organisms. The rapid recent development 
of long read TGS technology enables full length barcode 
reading and thus removes the taxonomical resolution issues 
(Fig. 3) (Kerkhof et al. 2017; Portik et al. 2022). However, 
a one should carefully consider choice of sequencing plat-
form for such purpose. Despite obvious advantages of long 
over short reads for barcode sequencing, either throughput 
or accuracy of sequencing itself can suffer in such race, 
which affects taxa identification. While PacBio can provide 
very accurate results at a low throughput, Oxford Nanopore 
products have increased throughput (especially with Pro-
methION) but it is notorious for low accuracy of basecall-
ing. Comparison of simulation results for different platforms 
showed that 50% exceed of sequencing launch capacity for 
Illumina over Oxford Nanopore can provide maximum accu-
racy of read classification and taxa identification (Pearman 
et al. 2020). Currently, there are many research directions of 
how to improve the accuracy of nanopore sequencing base-
calling: by improving the technology itself through cross 
membrane voltage varying, by implementing other amplifi-
cation strategies (such as The Rolling Circle Amplification 
to Concatemeric Consensus (R2C2) method), or by training 
basecaller models on specific datasets (Volden et al. 2018; 
Noakes et al. 2019; Ferguson et al. 2022). The last can be 
performed on species-specific datasets to improve minor 
taxa identification in environmental samples (Ciuffreda et al. 
2021). It should be mentioned, that PacBio is considered as 
a useful and robust sequencing method for metabarcoding 
of relatively species-poor communities while targeting large 
regions of SSU (around 2500–3000 b.p.) of microeukaryotes 
(Tedersoo et al. 2018; Gueidan et al. 2019).

Both experimental data and bioinformatics simulations 
prove that long read barcode sequences also contribute to 
greater richness of a studied community (Jamy et al. 2020; 
Lemoinne et al. 2023). Nanopore sequencing showed high 
potential of finding up to twice more hidden species com-
pared to Illumina short read (Huggins et al. 2022; Lemoinne 
et al. 2023; Szoboszlay et al. 2023). This was shown to be 
especially useful for marine ecosystems, which usually pos-
sesses high richness, such as marine biofilms (Wang et al. 
2022). Long read taxonomic profiling research on algal-bac-
terial communities of Ulva species has shown the decrease 
of microbiome richness but increase of relative abundance 
of MGPB Sulfitobacter and Roseobacter when passing from 
marine environmental samples to laboratory cultures (van 
der Loos et al. 2021). Nanopore sequencing has been dem-
onstrated as a useful tool for investigation of the interac-
tions within microalgal natural communities, such as harm-
ful blooms of dinoflagellates. Sequencing of long ribosomal 
genes cluster cassette more than 3 kb long harboring 18S, 
ITS and partial 28S rRNA genes enabled identification of 
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a nearly complete list of species, including the toxic micro-
algae Alexandrium, Gonyaulax, Prorocentrum, and Lingu-
lodinium (Hatfield et al. 2020). Studying the prokaryotic 
components of natural dinoflagellate communities by nano-
pore sequencing revealed associations between particular 
microalgal species and bacteria clades, such as Alexandrium 
tamarense and Roseobacter bacteria (Shin et al. 2018). The 
research authors propose that growth of A. tamarense can be 
promoted by sulfonate, which is produced by Roseovarius 
genus bacteria with Sox multienzyme complex (Shin et al. 
2018).

Another issue to be kept in sight for metabarcoding is 
quantitative bias as a result of uneven amplification occur-
ring for different barcode sequences (Pawluczyk et al. 2015). 
Though targeting amplicons with conserved priming sites or 
application of degenerate primers slightly improves in that 
situation, they still cannot overcome another bias coming 
from various gene copy number in genomes (Krehenwinkel 
et al. 2017). In case of nanopore sequencing, lack of a DNA 
synthesis step during the sequencing step improves ampli-
fication bias for species abundance but does not remove it 
completely (Fig. 3) (Huggins et al. 2022). Application of 

optimized primers set for target barcode amplification can 
drastically improves PCR bias, as well as new possible selec-
tion and amplification strategies to create barcode libraries 
(Matsuo et al. 2021).

Despite difficulties faced by the research community in 
application of long reads in metabarcoding method, nanop-
ore sequencing is shown to be an extremely useful tool for 
quick (within 24 hours), cost-efficient and research-friendly 
technology for taxonomical identification in microalgal com-
munities and in revealing microalgal-bacterial interactions 
(van der Loos et al. 2021). This is highly supported by devel-
opment of new bioinformatic analysis pipelines enabling 
real-time identification and richness analysis of nanopore 
sequenced 16S rRNA gene long reads – such as the NanoR-
Tax pipeline (Rodríguez-Pérez et al. 2022).

Augmenting functional annotation of microalgal 
communities with advantageous HTS

The biology of microalgal-bacterial consortia has a severe 
lack of understanding of the functional genetic landscape 
underlying interactions between these organisms. Even 

Fig. 3   Comparison of short read NGS and long read nanopore 
sequencing in application for taxonomic profiling of microbial com-
munities. The genetic barcodes molecules from different species 
colored in green, orange, and blue. Nanopore sequencing technology 

enables reading whole unfragmented loci of genetic barcodes, also 
with only one PCR procedure during library preparation, thus con-
tributing to lower amplification bias
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though an emerging trend towards microalgal metagenom-
ics enriches us with MAGs and other genomic information, 
we are far from its complete functional annotation and thus 
prediction of a role of a particular organism in a community. 
Classical workaround is complementing the genomic data 
with transcriptome—the approach successfully tested for 
microbial communities, including those sampled from the 
environment (Wang et al. 2020). This can be implemented 
within integrative omics pipelines and algorithms (like 
Galaxy) to create fully annotated metabolic networks of a 
particular MAG from a community (Schiml et al. 2023). 
Integration of metagenomics with metatranscriptomics (and 
full way down to other omics methods) enables investiga-
tion of complex interplay between abiotic factors (illumi-
nation, biogenic elements, etc.) and microalgal response 
in aquatic biomes, as well as microbial interactions within 
microalgal biofilms (Krohn-Molt et al. 2017; Trench-Fiol 
and Fink 2020). Recent advances in nanopore sequencing 
of both RT-PCR amplicons and direct RNA opened a way 
for unbiased and full-length transcripts reading for complex 
environmental communities, such as soil (Salzberg 2019; 
Poursalavati et al. 2023). Although this approach requires 
particular caution when handling RNA from samples of 
complex chemical mixtures and thus is hardly feasible in 
the field, it holds promise for simultaneous taxonomical 
identification and functional profiling of microbial commu-
nities with defined pipelines (Poursalavati et al. 2023). By 
accumulating a sufficient amount of accurate and complete 
metatranscriptomic data from known conditions the further 
reverse predictions of functional profile of a community can 
be made from similar environmental contexts and taxonomic 
profile only (Krinos et al. 2023).

The golden dream of microalgal communities’ research-
ers is an implementation of prediction algorithms based on 
taxonomical profile data to reveal functional potential of a 
community. Among the most popular are PICRUST(2) and 
Tax4Fun(2) whose main principle is comparison of OTU/
ASV against the reference databases consisted of assembled 
metagenomes with functional annotation (Liu et al. 2020). 
Though highly reference-depended, not taking into account 
the true physiological state of the cell as well as genome 
context, these algorithms were welcomed in studies of spe-
cies interactions within a microalgal consortium including 
searches for potential N and/or P recovery bacteria for soil 
health mitigation or waste treatment (Zarezadeh et al. 2019). 
Besides the trophic interactions, this approach can reveal 
signaling cross-talk between algicidal bacteria species and 
microphototrophs (Le et al. 2022). Though not yet adjusted 
for these algorithms, the long read metabarcoding data pro-
duced by nanopore sequencing can dramatically improve the 
accuracy of such functional prediction, as species or strain-
level information narrows down the functional landscape 
even within one taxon.

Increasing accuracy of species identification together 
with capability of capturing the community richness can 
greatly contribute development of Microbial Genome-Wide 
Association Studies (mGWAS) – an approach aiming for 
detection of genetic variants and genes responsible for spe-
cific phenotypic features (Power et al. 2017; San et al. 2020). 
Nanopore sequencing can provide post-GWAS fine-mapping 
of determined candidate loci for their further investigation 
and application (Magdy et al. 2020). For microalgal-bacte-
rial consortia studies these can be genes encoding antimi-
crobial or algicidal agents, growth-promoting factors, phy-
tohormones, or members of biogenic element conversion 
cycles. At the end of the day, such “environmental GWAS” 
(“eGWAS”) can serve the great deal for microalga biotech-
nology by highlighting those genetic variants (strains) that 
might be useful for target process as a part of bioengineered 
consortia.

Concluding remarks and outlook

Admittedly, short-read NGS/SGS is now a mainstream 
platform for sequencing of genomes and transcriptomes as 
well as for providing support to other “omics” studies in 
microalgae. As such, the short-read sequencing has provided 
a plethora of invaluable insights into different aspects of 
microalgal biology, also crucial for microalgal biotechnol-
ogy applications. Now we see that long-read sequencing 
platforms, especially nanopore-based sequencing technol-
ogy, confidently enters the stage of algal research. This is 
especially true for metagenomic studies of microbial com-
munities harboring microalgae as the edificator and other 
microorganisms contributing to the robustness, productivity, 
and biotechnological versatility of the whole community.

At the current level of sequencing technology evolution, 
both metagenomic strategies can by implemented with either 
short-read NGS or long-read nanopore sequencing. Still, it 
becomes increasingly obvious that the latter has distinct 
advantages that warrant its increasing application in this 
field (although the most fruitful approach is that employing 
both platforms). The number of publications dedicated to 
microalgal communities studied with well-established short 
read sequencing exponentially increased over last 15 years, 
as the number of the papers on microalgal genomics (Fig. 4).

The most promising directions of the metagenomic studies 
of microalgae include: 1) ecological monitoring of harmful 
microalgal blooms that cause economical and health treats to 
human activities; 2) mining of microalgal and/or associated 
bacterial strains for bioprospecting of biosynthetic pathways 
of valuable molecules (carotenoids, fatty acids, bioactive 
compounds); 3) strategies development for rational design 
of microalga-bacteria consortia for wastewater treatment, 
micropollutants biodegradation and enhanced bioproduct 
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production. None of these is reachable without the informa-
tion about taxonomical structure and functional potential of 
communities, which can be easily obtained from HTS data, 
especially with rapid development of nanopore sequencing.

Systematic reports on nanopore-based studies of microalga 
metagenomes have started to emerge only recently, so one can 
anticipate a boom in this field in the next few years. To keep 
up with this trend, one should realize the tremendous potential 
of the long-read sequencing technologies for studies of the 
biology of microalgae. Therefore, it is important to highlight 
the benefits of the long-read sequencing for revealing taxo-
nomic structure, genetic diversity, and functional potential of 
microalgae-based communities for biotechnological applica-
tions. We hope that the present review makes a good step in 
this direction.
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