ПРИКЛАДНАЯ АЛГЕБРА

Лекции для групп 320–328 (III-й поток) 5-й семестр

Лектор — *Гуров Сергей Исаевич*

ассистент — Кропотов Дмитрий Александрович

МГУ имени М.В. Ломоносова Факультет Вычислительной математики и кибернетики

Кафедра Математических методов прогнозирования

комн. 530, 537, 682 e-mail: sgur@cs.msu.ru

Литература

- Воронин В.П. Дополнительные главы дискретной математики. М.: ф-т ВМК МГУ, 2002. http://padabum.com/d.php?id=10281
- **Г**уров С.И. Булевы алгебры, упорядоченные множества, решетки: Определения, свойства, примеры. М.: Либроком, 2013.
- Журавлёв Ю.И., Флёров Ю.А., Вялый М.Н. Дискретный анализ. Основы высшей алгебры. М.: МЗ Пресс, 2007.
- Лидл Р., Нидеррайтер Г. Конечные поля: В 2-х т. М.: Мир, 1988.
- Мак-Вильямс Ф. Дж., Слоэн Н. Дж. А. Теория кодов, исправляющих ошибки. — М.: Связь, 1979.
- Нефедов В.Н., Осипова В.А. Курс дискретной математики. М.: Изд-во МАИ, 1992.
- Питерсон У., Уэлдон Э. Коды, исправляющие ошибки. М.: Мир, 1976.

Часть 0

Группы, кольца, поля (напоминание)

Разделы

1 Группы

2 Кольца и поля

Группы: определение и нотация

Определение

Группой ${\bf G}$ называется пара $\langle\,G,\,*\,
angle$, где G — непустое множество (носитель), а * — бинарная операция на нём такая, что для любых $x,y,z\in G$ выполняются следующие законы или аксиомы группы:

- G1: (x * y) * z = x * (y * z) ассоциативность;
- G2: $\exists ! e \, \forall x \, (e * x = x * e = x)$ существование единицы;
- G3: $\forall x \, \exists ! y \; (y * x = x * y = e \,)$ существование обратного элемента к x, символически $y = x^{-1}$.
- $G0: x * y \in G$ устойчивость носителя.

Если $\mathbf{G}=n$, то группа называется конечной и n — её порядок.

При мультипликативной записи $x \cdot y$ (или xy) единичный элемент называют единицей и обозначают e или 1.

Группы: определение и нотация...

Группы со свойством a*b = b*a —

- называются коммутативными или абелевыми;
- для их обозначения обычно используют аддитивная запись x+y, а единичный элемент называют нулем (0).

В конечной группе операцию * задают *таблицей умножения* (*таблицей Кэли*).

Пример (Таблица умножения группы Клейна V_4)

*	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

(и часто c обозначают ab)

Группы: примеры

1. <u>Числовые группы</u>: \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} — абелевы группы относительно сложения.

Множества ненулевых элементов \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} — группы относительно умножения.

- 2. Бинарные наборы: элементы B^n относительно \oplus .
- 3. Симметрическая группа S_n : все перестановки n-элементного множества относительно композиции перестановок; $|S_n|=n!$.

Симметрическая группа не абелева.

Группа всех преобразований правильного треугольника в себя — симметрическая группа

$$S_3 = \langle t, r \rangle =$$

$$= \{ e, (ABC), (ACB), (A)(BC), (B)(AC), (C)(AB) \}.$$

Группы: примеры...

4. <u>Циклические группы</u>: в них есть *порождающий элемент группы* — такой, что каждый элемент группы может быть получен многократным применением к нему групповой операции.

Обозначения:

$$a^0 \stackrel{\text{def}}{=} e, \quad a^n \stackrel{\text{def}}{=} \underbrace{a \cdot \ldots \cdot a}_{n \, \text{pas}}, \quad na \stackrel{\text{def}}{=} \underbrace{a + \ldots + a}_{n \, \text{pas}},$$

и справедливы все обычные свойства степени.

C — циклическая группа:

$$\exists c \ \forall x \ \exists k \ (c^k = x), \quad \langle c \rangle = C.$$

Порядок элемента: $\deg a \stackrel{\mathrm{def}}{=} \arg \min_{n} \{a^n = e\}.$

Изоморфизм групп

Определение

Пусть $\mathbf{G}=\langle\,G,*\,\rangle$ и $\mathbf{G}'=\langle\,G',\circ\,\rangle$ — группы. Отображение $\varphi:G\to G'$ называется *изоморфизмом*, если оно

- взаимно однозначно;
- ② сохраняет операцию: $\forall a,b \in G \ (\varphi(a*b) = \varphi(a) \circ \varphi(b))$, а такие группы изоморфными, символически $\mathbf{G} \cong \mathbf{G}'$.

Свойства изоморфизма φ : $\varphi(e)=e'$ (сохранение единицы), $\varphi(a^{-1})=\varphi(a)^{-1}$ (образ обратного элемента — обратный к его образу)...

Теорема (Кэли)

Любая конечная группа порядка n изоморфна некоторой подгруппе симметрической группы S_n .

Подгруппы и смежные классы

Если $\mathbf{G}=\langle\,G,\,*\,
angle$ — группа, а H — подмножество G, устойчивое относительно групповой операции *, то $\mathbf{H}=\langle\,H,\,*\,
angle$ — подгруппа G, символически $\mathbf{H}\leqslant\mathbf{G}$.

$$H\leqslant G,\,x\in G\,\Rightarrow\,xH\,=\,\{\,xh\mid h\in H\,\}\text{ in }Hx\,=\,\{\,hx\mid h\in H\,\}$$

— соответственно левый и правый смежные классы по подгруппе H (с представителем x).

В абелевой группе всегда xH = Hx.

Утверждение

Смежные классы с разными представителями либо не пересекаются, либо совпадают.

Циклические группы: свойства

- Все циклические группы абелевы.
- Каждая конечная циклическая группа изоморфна группе $\mathbb{Z}_n = \langle \{0,1,\ldots,n-1\}, +_{\text{mod }n} \rangle$, а каждая бесконечная изоморфна $\langle \mathbb{Z}, + \rangle$.
- Каждая подгруппа циклической группы циклична. В применении к единственной бесконечной циклической группе $\mathbb Z$ это даёт, что любая нетривиальная подгруппа H группы $\mathbb Z$ имеет вид $H=\{mn\mid n\in\mathbb Z\}=m\mathbb Z$, где m наименьшее положительное число из H. Например: $H=\{\ldots-6,-3,0,3,6,\ldots\}=3\mathbb Z$.
- У циклической группы порядка n существует ровно $\varphi(n)$ порождающих элементов, где $\varphi(\cdot)$ функция Эйлера. Если p простое число, то любая группа порядка p циклическая и единственна с точностью до изоморфизма.

Индекс подгруппы. Нормальные подгруппы

Количество смежных классов группы G по подгруппе H называется *индексом подгруппы*, символически (G:H).

Пример

Рассмотрим подгруппу $H=\langle (12)\rangle=\{e,(12)\}$ группы $S_3=\{e,(123),(132),(1)(23),(2)(13),(3)(12)\}.$ Разбиение G на левые смежные классы по подгруппе H:

Подгруппа H группы G называется нормальной, если $\forall g \in G \ (gH = Hg)$, символически $H \leqslant G$.

Группы можно факторизовать («делить») по нормальным подгруппам.

Теорема Лагранжа и следствия из неё

Теорема

Если H — подгруппа конечной группы G, то

 $|G| = (G:H) \cdot |H|.$

Следствия

- Порядок любого элемента есть делитель порядка группы.
- Группа простого порядка:
 - циклическая и любой её отличный от единицы элемент порождающий;
 - не имеет нетривиальных подгрупп;
 - не имеет двух подгрупп с равными индексами.

Замечание. Обращение теоремы Лагранжа неверно.

Разделы

1 Группы

2 Кольца и поля

Определение

Кольцом ${\bf R}$ называется тройка $\langle\,R,\,+,\,\cdot\,\,
angle$, где R — непустое множество (носитель), а + (сложение) и \cdot (умножение) — бинарные операции на нём такие, что для любых $x,y,z\in R$ выполняются следующие законы или аксиомы кольца:

- R1: относительно сложения R коммутативная группа (аддитивная группа кольца);
- $\mathrm{R2:}\ (x\cdot y)\cdot z\,=\,x\cdot (y\cdot z)$ ассоциативность умножения;
- R3: $a \cdot (b+c) = a \cdot b + a \cdot c$; $(b+c) \cdot a = b \cdot a + c \cdot a$ дистрибутивность умножения относительно сложения слева и справа.

Если R имеется единичный элемент для умножения (1), то оно называется кольцом c единицей (унитальным).

Если $x \cdot y = y \cdot x$, то такое кольцо называется коммутативным.

- Обратного элемента по умножению в кольце может и не быть.
 - В любом кольце $a \cdot 0 = 0$.
- Если $\forall r_1, r_2 \ (r_1 \cdot r_2 = 0 \Rightarrow r_1 = 0 \lor r_2 = 0)$ то это кольцо *без делителей нуля*.
- Ассоциативно-коммутативное кольцо без делителей нуля целостное кольцо.

Примеры колец:

- 1. Классический пример множество целых чисел $\mathbb Z$ с операциями сложения и умножения. Здесь обратный элемента по умножению есть только для ± 1 .
- 2. $\mathbb{Z}_n\stackrel{\mathrm{def}}{=} \langle \{0,1,\dots,n-1\},\,+_{\mathrm{mod}\,n},\,\cdot_{\mathrm{mod}\,n} \rangle$ кольцо вычетов по модулю n.
- 3. Кольца многочленов будет рассматривается далее.

Определение

Пусть $\mathbf{R} = \langle R, +, \cdot \rangle$ и $\mathbf{R}' = \langle R', \oplus, \otimes \rangle$ — кольца.

Отображение $\varphi: R \to R'$ называется *гомоморфизмом*, если оно сохраняет обе операции: $\forall r_1, r_2 \in R$ имеем

$$\varphi(r_1+r_2) = \varphi(r_1) \oplus \varphi(r_2), \quad \varphi(r_1 \cdot r_2) = \varphi(r_1) \otimes \varphi(r_2).$$

Взаимно однозначный гомоморфизм колец есть *изоморфизм*, символически $R\cong R'$.

Утверждение

Гомоморфная область кольца есть кольцо.

Если подмножество $S \subseteq R$ кольца $\langle R, +, \cdot \rangle$, устойчивое относительно операций + и \cdot называется подкольцом.

Идеалы колец

Определение

Подкольцо I коммутативного кольца $\langle R, +, \cdot \rangle$ называется его идеалом, символически $I \lhd R$, если

$$\forall r \forall x ((a \cdot x \in I) \& (x \cdot a \in I)).$$

Определение

Идеал I кольца $\langle\,R,\,+,\,\cdot\,
angle$ называется *главным*, если найдётся элемент $a\in R$ такой, что

$$I = \{ a \cdot r \mid r \in R \},\$$

символически I = (a).

Пример: $(n) = n\mathbb{Z} \triangleleft \mathbb{Z}$.

Целостные кольца, в которых все идеалы, отличные от самого кольца, главные, называются *кольцами главных идеалов* (*КГИ*).

Идеалы колец: свойства

- Само кольцо ${f R}$ и его нуль идеалы ${f R}$, они называются собственными, остальные идеалы несобственные.
- Если ${f R}$ произвольное кольцо, и $n\in{\Bbb Z}$, то $nR=\{\,n\cdot x\mid x\in R\,\}\,\lhd\,{f R}.$
- ullet Если ${f R}$ коммутативное кольцо, и $a_1,\,\ldots,\,a_n\in R$, то $(a_1,\,\ldots,\,a_n)=\{\,x_1a_1+\ldots+x_na_n\mid x_1,\ldots,x_n\in R\}\lhd {f R}$ идеал, порождённый элементами $a_1,\,\ldots,\,a_n.$
- В некоммутативных кольцах различают левые и правые идеалы.
- Если $I_1,I_2\lhd {\bf R}$, то пересечение идеалов $I_1\cap I_2$, сумма идеалов $I_1+I_2\stackrel{\mathrm{def}}{=} \{x+y\mid x\in I_1,\,y\in I_2\}$, произведение идеалов $I_1\cdot I_2\stackrel{\mathrm{def}}{=} \{x_1\cdot y_1+\ldots+x_n\cdot y_n\mid x_1\in I_1,\,y_1\in I_2,\,i=\overline{1,n}\}$ $(n\in \mathbb{N})$,
 - идеалы \mathbf{R} .

Классом вычетов по модулю идеала I кольца $\langle R, +, \cdot \rangle$ называется смежный класс по нормальной подгруппе $\langle I, + \rangle$ аддитивной группы кольца с некоторым представителем r:

$$\{r+x\mid r\in R,\,x\in I\}$$
,

символически $[r]_I$.

Множество классов вычетов — кольцо (вместо операндов можно брать любые элементы соответствующих классов), оно называется фактор-кольцом кольца R по модулю идеала I, символически R/I.

Пример:
$$I = 2\mathbb{Z} \triangleleft \mathbb{Z}$$
, $\mathbb{Z}/2\mathbb{Z} = \{ [0]_I, [1]_I \}$.

Определение

Идеал I называется максимальным в кольце R, если не существует такого идеала I', что $I\subset I'\subset R$.

Евклидовы кольца

Определение

Коммутативное кольцо $\langle R, +, \cdot \rangle$ называется *евклидовым*, если для него выполнены следующие свойства:

- E1: R целостное кольцо;
- E2: для каждого ненулевого элемента $r \in R$ определена его норма $N(r) \in \mathbb{N}_0$;
- E3: для любых элементов a и $b \neq 0$ кольца R существуют такие элементы q и r, что $a = q \cdot b + r$ и либо r = 0, либо N(r) < N(b). (возможность деления с остатком).
- E4: норма произведения двух ненулевых сомножителей больше либо равна норме любого из сомножителей: $a,b \in R$, $a \neq 0, b \neq 0$ выполнено $\max \{N(a), N(b)\} \leq N(a \cdot b)$.

- Возможность деления с остатком (ЕЗ) основное свойство нормы.
- Евклидово кольцо унитально.
- Кольцо $\mathbb Z$ целых чисел евклидово. Здесь норма это модуль числа.
- Евклидовы кольца это кольца главных идеалов (обратное, вообще говоря, неверно).

Поле: определение

Определение

Полем ${\bf K}$ называется тройка $\langle K, +, \cdot \rangle$, где K — непустое множество (носитель), а + (сложение) и \cdot (умножение) — бинарные операции на нём такие, что выполняются следующие законы или аксиомы поля:

- $\mathrm{K}1$: относительно сложения \mathbf{K} абелева группа;
- К2: относительно умножения $\mathbf{K} \setminus \{0\}$ абелева группа (мультипликативная группа поля);
- К3: $a \cdot (b+c) = a \cdot b + a \cdot c$ для любых $x,y,z \in K$ дистрибутивность умножения относительно сложения.
- Т.о. поле кольцо, ненулевые элементы которого образуют группу относительно умножения.
- Примеры бесконечных полей: числовые поля \mathbb{Q} , \mathbb{R} , \mathbb{C} .