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Introduction

We consider an autonomous system of ordinary differential equations of the form

do;/dt = i, = 0i(X), i=1,2 . (1)

2
where X = (x1,19) € C” and ©;(X) are polynomials.

A method of the analysis of integrability of system (1) based on
power transformations [Bruno: 1998] and computation of normal
forms near stationary solutions of transformed systems (see [Bruno:
1971] and Ch.II in [Bruno: 1979]) was proposed in [Bruno, Edneral:
2009; Bruno, Edneral: 2013].
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In a neighborhood of the stationary point X = 0 system (1) can be written
in the form

X =AX +¢(X).

Let A, Ay, ..., A, be eigenvalues of the matrix 4. If at least one of them Aj # 0,
then the stationary point X = 0 is called an e/lementary stationary point. In this
case the system (2) has a normal form which 1s equivalent to a system of lower

order [Bruno:1979]. If all eigenvalues vanish, then the stationary point X = 0
is called a nonelementary stationary point. In this case there i1s no normal form
for the system. But by using power transformations, a nonelementary stationary

point X = 0 can be blown up to a set of elementary stationary points.

After that it is possible to compute the normal form and verify that the

condition A [Bruno:1971, 1979] (see later) is satisfied in each elementary
stationary point.
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In this paper we demonstrate how this approach can be appled to study
the local and global integrability in the planar case of the system (1) near the
stationary point X" = 0 of high degeneracy

t=ay’+ B2y + (ap2® + a0y 2%y?) + (ag 2ty + azzy?), (M)
g — *‘*I,-'jjg yz L i+ (bq} :7:4y + by Ty3) T (bj 2" + bs 3 yg + by 314)- -

The integrability problem for a class of planar systems was studied in
[A. Algaba, E. Gamero, C. Garcia: Nonlinearity 22 (2009) 395-420].

There the authors set —a = 0 = 1 and 33 + 2y = 0. Further the authors of
studied the Hamiltonian case of this system with the additional assumption
that the Hamiltonian function 1s expandable into the product of only square-
free factors.
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We are interested in the analytical first integrals and we start from the study the
case when the first quasi-homogeneous approximation of (M) is

T=agt + 83y, g=~igt+6°

where o # 0 and 6 # 0. Using the linear transformation x = ox, y = 7y we can
fix two nonzero parameters in (H)

— —H‘j — bus y, Y=-«c 2 y’j + . (H)

Each autonomous planar quasi-homogeneous system (H) has an integral, but it can

be not an analytic form. We are interested to have the local integrability of (H). It
is necessary for the integrability of (M).
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def .

Theorem 1 y'b2=2/3 or it the case D = (3b+2¢)2 — 24 £ 0, system (H) is
locally integrable if and only if the number (3b—2¢)/vV D is rational.

In this paper we will study simple partial case where D 1s chosen in such way
that c=1/b. In view of Theorem 1, the first quasi-homogeneous approximation
has an analytic integral but it 1s not a Hamiltonian system. We will study the
integrability problem for entire system (S) with the first quasi-homogeneous
approximation (H)

dax/dt = —y3 —bady + agx® + a; 22y°
dy/dt = (1/b) c?y? + 0 + by wty + by y®

()

So we consider the 5 parameters system with b # 0.
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Power Transformation

Let

be a matrix with real elements and det o # 0. Then the power transformation
yi = xprage,
y2 = xjoixge

yﬁm g ;
- B (ﬁn ﬁlz) ’

Xy = yfu}:gu : Bar Baz

has the inverse
x, = yi+

where f = «7'. In fact, transformations above ° are linear with respect to
the logarithms of the coordinates:

{lnyl = oy In % g lnx;

In}}z == thlll'lxl + dzzlnxz 3

{inxx =PiIny, + By,Iny, ,
Inx, =B, Iny, + Bylny, .
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deta ==1,
rule.

q.2,, —q,¢,, =1, The upper elements can be find
by extended Euclid’s algorithm.

o Really we should use conjugated matrix.

It is convenient but a not necessary

Blow-Up procedure

a |

Fig. 1
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This Is the simplest nontrivial quasi-homogeneous

5 parametric example

We consider the system

dx/dt = —y
dy/dt =

—bz? y—l—ag z° + aq 2292,
(l/b)s:z'y + 25 + by z* y+b1$y,

with arbitrary complex parameters a;, b; and b # 0.

dx/dt=x(—x"'y’ —bx’y+ a0x4 =+ alxyz)

dy | dt

oo-eHH3)

3)

Pa =(0,0),

(1 2)(logx
a = ,
1 3)\logy

(2
0>=
( ] It is convenient that det o==1,

(1 2)(logu
13 logv

=y(1/b)x’y+x’y~ + b(_,x4 +bxy?)

(18)
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At the first step we should rewrite (S) in a non-degenerate form. It can be
realized by the power transformation [ Bruno: 1998, BrunoEdneral:2009]

X=uv, y=umr.
- 1 3 T 2
{u [t] == Eu[t] v[t] {-3b+u[t] {-2-3b ~2bu[t] +b (3a1-2bl+ (3a@-2bo) u[t]}v[t]]},

u[t]®v[t]® (b+ult] (1+b* +bu[t] +b (-al+bl+ (-a0 + be) u[t]}w[t]}}]
b

With time rescaling u2 v7 d t = d t we obtain the system (S) in the form

v [t] ==

du/dr = —3u—[3b+ (Qlff_;r)]ug —2ud +(3a; —2by)u?v+ (3ag — 2bg)udv
dv/dr = v+ [b+ (1/b)]uv + u?v + (b — aq1)uv? + (bg — ag)uv? . (T1)

Under the power transformation above the point x = y = 0 blows up into
two straight invariant lines: u = 0 and v = 0. Along the line u = 0 the
system has two stationary point u = v =0 and u = 0, v = 0. Along the
second line v = 0 this system has four elementary stationary points

1 30

u=0 u=-—-—  u= .
b 2
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The rationality of the ratio A,/A, and the condition A (see [Bruno:1971,1979])

are necessary and sucient conditions for local analytical integrability of a planar
system near an elementary stationary point.

The condition A is a strong algebraic condition on coefficients of the normal
form. Really it 1s an infinite system of equation in the system parameters. For a
local integrability of original system (1) near a degenerate (nonelementary)
stationary point, it 1S necessary to have local integrability near each of
elementary stationary points, which are produced by the blowing up process
described below.

In my opinion it is a very important step from local to global analysis.

The algorithm for calculation of the normal form, and of the normalizing

transformation together with the corresponding computer program are briefly
described in [Edneral:2007].
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Lemma 1 Near the pointsu =v =0, u=0,v=0and u = o, v =0 system (T1)
is locally integrable.

Thus we must find conditions of local integrability at two other stationary points
1 3b
“:_ﬂ. 55.2—3.
then we will have the conditions of local integrability of the system (T1) near the
origin point.

Let us consider the stationary point u = -1/b; v = 0. Firstly we restrict ourselves to
the case b?> # 2/3 when the linear part of system (T1), after the shift u = w — 1/b,
has non-vanish eigenvalues. At the subcase b?> = 2/3 the matrix of the linear part
of the shifted system in new variables w and v has Jordan cell with both zero
eigenvalues (see T2 later). This case will be studied by means of one more power
transformation below.
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We computed the condition A with program [Edneral:2007]. There are 2
solutions of a corresponding subset of equations from the condition A at b # 0

ap =0, a; =—bygb, by =0, b*#£ 2/3

and
ag =ar b, bg=0b0, b? #+2/3 .

The consideration of the stationary point u = -3 b/2, v = 0 under the last
condition from above gives tree more two-parameters (a, and b) solutions

1) by ag = a1b. by =b1b, b*#£2/3 .
2) by = (. = aib. bg=0bib, b*#£2/3 .
3) by =(8/3)a1, ap=a1b. bg=bib, b*>#2/3 .

|
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Theorem 2. Conditions belov form a set of necessary conditions of a local
integrability of the system (T1) in all its stationary points and a local
integrability of system (S) at stationary point x =y = 0.

ap =0, a3 =—bgb, by =0. b +2/3

I.

2. b =—2a. agp = a1b, by =bb, b*#£2/3
3. by =(3/2)a1, ag=aib. byg=0bb, bV*#£2/3 .
4. by = (8/3)ay, ag=a1b. by =0bb, b*>#£2/3 .
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Sufficient conditions of global integrability

The conditions presented in theorem 2 are necessary and sucient for local
integrability of system (S) in the zero stationary point. They can be considered
as good candidates for sucient conditions of the global integrability. However it
1S necessary to prove the sufficiency of these conditions by independent
methods. It 1s necessary to do it for each of four conditions above.

In [EdneralRomanovski:2010] we found first integrals for all these cases mainly
by the Darboux factor method for the system (S).
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1. At L) :El., a; = —bnb, bl = ()

Nyw = u2(3b+ 2u)® |
I]:ry :EIS +3E“y? .

2. At E'-*[ = —Eﬂ]._ g = 1111!5'., E"U =1131E'-*I

Isyy = u? v® (3b+u(2—6a,bv)) ,
I:rry=9.r3—ﬂa]b.r?y-l—3&yz .

3. At Iy =3ﬂ1l.-'r2, iy =ﬂ]b,bq}=b|_b]

Inuw = [4 — day uv + 3%/ %ay x2 4 (2/3,1/6;5/3; —2u/(3b))
uv(3+ Eu;"b}]-m]j[ul.mv (3b+ Qu}l_.-'ﬂ] ?

Iapy = [ara?(—4 4 3%/° 3 Fy (2/3,1/6;5/3; —22°/(3by?)) x
{3 -I—E.ralf{by"z}}”ﬁ} —I—aly]f[y"-’“{.'?.b 1 EI:EIII.'yE}],"E] 1

4. At by =E~ﬂ1l.l'r3, g =ﬂ]b,bﬂ=blb]
L = [u(3 4 2a7bu) + 6a, bv]/
[Bu[u®(6 4 afbu) + 6atbu’v + 9bv*]/%—
B 1..-"—5.,.’35_."336_'_&1 JEbutaw m{ﬂg’lﬁ, Gfﬂjl .

where the B (a,b) is the incomplete beta function and ,F(a,b;c;z)1s a
hypergeometric function [Bateman:1953].
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Darboux’s method
i = —1u(9b + 6u + Ta,buv)
v =v(3b+3u + 5a,buv).

The sense of the integrating factor M is that consequence of equations (U)

C)

M (u, v)u(% + 6u + 7a1buv)dv /du+ M (u, v)v(3b +3u + Salbuv) =0

will be an equation in full differentials. It means that there is the function
F(u,v) which has the continuous partial derivatives. It means that

F (u,v)=M (u, v)v(3b +3u + Salbuv), M= !

F,(u,v) = M (u,v)u(9b + 6u + 7a,buv) w261+ b3+ auv) |
And solutions of (U) will have the form v = (1), for which
F(u,p(u)) = const.

So, F(u,v) 1s the first integral of motion.
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The integrals (and solutions) do not have any singularities
near the points b*> = 2/3, but the approach in which these
solutions were found has the limitation b* # 2/3, so there are
possible additional solutions at this point. Thus we need to
study this case separately.
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Case b? = 2/3,
Subcase 3a, - 2b, = b(3a, - 2b,)

At values b?= 2/3 the both stationary points u = -3b/2, v=0and u =-1/b, v
=0 are collapsing and after the shift u — w -1/b we have instead of (T1) the

nilpotent degenerated system

% = —3v/(2b)[(3ap — 2bp) — B(3a; — 2by )]+ (T2)
wt-'lf%? ap — 3v6a; — Dby + 246 b1 )+

VB w? + wztrlf—ﬂ\/% ag + 3a; +3v6by — 2by)—

2w + wiv(3ag — 2bo) .

dv — VB +v?(—2ag -I\—/_\/%a] + 2 by — \/g by )+

w?v + wv((vV6ag —a; — V6by + by )+

+w v (—ap + bo) .

So we should apply a power transformation once again.
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P=(1,2), <}3 ,0>=0.

(] logs) (1 1) logw
a = :
logv 1 2\ logr

S=Wr,v=Wwr It glVGS a trivial result.

"t (1 0)(logs) (1 0)logw
a )
logv 1 2\ logr

w=w,v=wr.

In the paper [BrunoEdneral:2013] we used the sqcond transformation

and got the systems with resonances of 19th and 27th orders. We calculated
the corresponding normal form with 4 free parameters till 19th order but for
finding new solutions of the condition A we need to calculate normal form

till 27th order. The last resonance exists if b> = 2/3, 3a, - 2b, # b(3a, - 2b,)
only and its calculation 1s very hard. We postpone this investigation and

consider here the other partial subcase when 3¢, - 2b, = b(3a, - 2b,), b* =
2/3.
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We see that in the system above, the coefficient of v in the
linear part of the first equation 1s zero if 3a, - 2b, = b(3a, -
2b,). So we have the special subcase.

~ 0 1 -1

coa )
P=(1,1),< P,0>=0. \
" (1 0)(logw) (1 1) logw | \
a_-l 1)\ logv o1 logr )

W=Ww,V=Wwr.

So, for this subcase we use the transformation

u=w-—1/b,v=wr.
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We then have from (T1)

ﬁ p— —Tf — (gf'.’.l — :E-E}D — Sbl '.F'Z + 3 \/g'f'ff"'_
dT1 2

(7v/6a; — 2bg — 13 \/ghl}rguf — (8a; — \/gh{'_] — %f_}l)rzu‘z . (T3)
(‘%‘1 = 6w + 3(3a; — 2by)rw — 2v6w? — 2v/6(3a; — 2by )rw?+
2(3a, — 2by )rw?

This 1s a three parameters system with a resonance of the 13th order at the
stationary point » = 0, w = 0 on the invariant line w = 0. At this it 1s also
another stationary point and one more point in infinity but they have non-
rational quotient of eigenvalues, so they are integrable under condition A.

We calculated the normal form for (T3) at » = 0, w = 0 till the 26th order
and got two equations for the condition A. They are al3 = 0 and a26 = 0
where al3 and a26 are homogeneous polynomials in parameters a,, b,, b, of
system (S) sixth and twelfth orders correspondingly.
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For example al3 is

al3 =

77591416320*a176*s6+65110407552*a1"5*b0-
343384549344*al1"5*b1*s6-
214574033664*a1"4*b0"2*s6-1084658542848*al1"4*b0*b1+
495240044652*a1”4*b1"2*s6-618953467392*a1"3*b0"3+
59995851552*a1"3*b0"2*b1*s6+1782026653968*a1"3*b0*b1"2-
325584668628*a1"3*b1"3*s6-8037029376*al1"2*b0"4*s6+
642627782784*al1"2*b0"3*b1+230489977896*al1"2*b02*b1"2*s6-
1080958485096*a1"2*b0*b173+105084809187*al1"2*b1"4*s6-
29504936448*al1*b0"5+95627128896*al *b0"4*b1*s6-
130189857408*al1*b0"3*b172-155744503512*al1*b0"2*b1"3*s6+
270984738720*al*b0*b174-15802409798*al*b1"5*s6+
19669957632*b0"5*b1-20179406208*b0"4*b1"2*s6-
15425489664*b0"3*b173+25998124528*b0"2*b1"4*s6-
22559067296*b0*b175+882415736*b176*s6,

where s6 = 1/(6). Both al3 and a26 are equal to zero at the founded before

solutions.
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Homogeneous algebraic equations in three variables can be
rewritten as inhomogeneous equations in two variables.

If we suppose that a, = 0, we get only one and zero
dimensional solutions in the parametric cospace. Let us postpone
the consideration of these cases and suppose that a, # 0. In this
case, we substitute b, = ¢, a;; b, = ¢, a, and obtain the system of
two equations in two variables al3(c0; cl) = 0; a26(c0; cl) = 0.
The resultant of two corresponding polynomials in each of two
variables 1s 1dentically equal to zero. So it 1s enough to solve
equation al3(c0; cl) = 0 and check higher orders.

It 1s interesting that the condition A of the 19th order from
[Bruno,Edneral:2013, A19] 1s identically equal to al3 up to
multiplication by a constant at the subcase b? = 2/3,
Subcase 3a, - 2b,= b(3a, - 2b,).
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Equation al3 = 0 can be factorized as the product of four factors

including a,°:

al3 = 48(c; — 3/2) %
(co — 1/12v/6¢1 + 1/2v/6)%x
[409790784¢3 — 10463 (—9152256 + 3385633¢1 ) —
208¢0(—10917702 + ¢1(—360720 + 3319927¢;) )+
V6(—T718439040 + ¢1 (24610475284
c1(—1944898681 + 441207868¢1 )))] %

al .
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From the first two factors we get two of two-parametric solutions

b =3/2, ao = (2bo + b(3al — 2b1))/3. b=+/2/3 . (NP)
b1 = 6ay +2v/6bg.  ag = (2bg + b(3al —2b1))/3, b= +/2/3

For these solutions we calculate the normal form of (T3) till the 36th
order. And for each solution it 1s a diagonal linear system.

The research of the cubic factor above is very hard. But fortunately the
resultant of this cubic factor with A26 is a polynomial in ¢, or ¢,. It has
a finit numbers of solution. The cubic factor will have a finit numbers
corresponding zeroes too. So it can not give any additional two-
dimension solutions.
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New integrals of motion

For each set of parameters (NP) one can find Darbouxs integration factor
u=f2- £,4- f;, see [Romanovski,Shafer:2009]. In both cases system (T3) has invariant

lines f, =1, f,=W, f3 =1 —+/2/3w.

In the first case (when by = 3/2a;)
[t = 1" Ef‘d‘fg :

where
13 4
—_— N 11" : —_——

6 " 3

In the second case (when by = 6a; + 2\/@'}0)

a=—2. d=

fo =1 wdf:_.f :
where

3aq1 + 2+/6bg , 8aq + 51/6bg —aq
1 = 1l = . = .
6ay + 2v/6bg 3a; + V/6bg

3a1 + V6by
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The corresponding first integrals of equations (T3) are

11w 'if_{-‘_?'fﬁ(l — \/gw)_lﬂ[—gul + 31/6by — % — (\/Eu,l + Hbg )w+
2(9a; + il\/gbg)wz — 2”6(9\/5{1.1 — Sﬁﬂ'ﬁﬂ)-EEJWB(—\/E + 2'{1!)”3.
2F1(-1/2, 1/3 1/2 1!2/3/1!1)] .
3aq T/]3+ Thp —aq
Iopyy = 7 321 VB0 . 8vBai+6bo . (1 — /2 /3w )3e1+VEbo .
{ —6+2/ 6w

=By (34 9u(—v/6 4 w)]) |
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In the origin variables x; y corresponding integrals of equations (S) have
the form accurate to numerical factor

jr1:a:1,r = ('U/f ) \/g—l— ‘}13/'&; _WG(:;_‘a/ijzﬁ . {:42\/ﬁ+
1/(zy3)[—36a12° — 164/6bgx® + 842%y24/6a123y? — 36bgx3y? +
21,’3(.__3/{; 1/3, 2 \/__|_ 3/U )2;3
(2(9a1 + 4\/_;{]) 3\/@11 + 8_}0)_”2) )

o F1(=1/2,1/3:1/2; 3y2i3|—ux/—:c )N} .

21

Doay = y(/2]3 + 23 Jy2) "/ *F Toar-57mg (52 [y) " Tar+ vmg
{3+ («2/y?)[V6x + 3(2a1 + V6 zjﬂ Jyl} .
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Analytical Properties of the Integrals

We should check analyticity of the obtained first integrals near the originx =y = 0.
We note that by Theorem 4.13 of [Christopher, Mardesic, Rousseau: 2003] if a
system has a Darboux integrating factor of the form

(L= 131 {;ﬁg(l + 11.{;:'.‘[-)'5f

then 1t has an analytic rst integral except of the case when both f, and f, are
integer numbers greater than 1. In the both cases above orders a and b of the
integrating factor u,, are not integer simultaneously in general position. It
appears integrals are not analytic, but by the theorem mentioned above the

system has also local analytic first integrals, which may be difficult to obtain in
a closed form.
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Conclusions

For a five-parameter non-Hamiltonian planar system, we have found for the
case b*> # 2/3 four sets of two-parametric necessary conditions on parameters
under which the system is locally integrable near the degenerate point x =y =
0. These sets of conditions are also sucient for local and global integrability of
system (6). For the subcase b*> = 2/3 and 3a,-2b, = b(3a,-2b,), we have found
two more first integrals. For the further search of additional first integrals, we
need to calculate the condition A at the point with the resonance of the 27th
order for the subcase b* = 2/3, 3a, - 2b, # b(3a, - 2b,) [Bruno,Edneral:2013].

We have used Standard Lisp for the normal forms calculations. The integrating
factors and integrals were calculated using the computer algebra system
Mathematica.
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