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ABSTRACT: This Article describes the method of isotopic distribu-
tion brute force, which can be used to identify ions registered in mass
spectra of inorganic compounds in an automated manner when a library
search cannot be conducted. A detailed description of the isotopic
distribution brute force methodology is presented, including a
discussion of computation-related difficulties. The ability of the
proposed algorithm to identify various inorganic ions is tested on a
small set of real-life low-resolution mass spectra of lead halides and
copper halides. An evaluation of the isotopic distribution brute force
performance is conducted using the low-resolution experimental mass
spectra of natural rhenium sulfide and lead(II) chloride. Based on
identification results and obtained performance measurements, we
formulate the empirical restrictions on the input data, ensuring that the application of isotopic distribution brute force is feasible
from the standpoints of search space reduction and identification time.

■ INTRODUCTION
Identification of registered ions is the final stage of mass
spectrum processing.1,2 Mass spectrometry is predominantly
applied in the analysis of certain organic sample types
(proteins, biologically active substances, drugs, etc.).3 A
significant amount of experimental data has been accumulated
in this area of mass spectrometry application. As the result, the
ions registered in mass spectra of such samples are usually
identified using a library search.4 Library search implies finding
the reference mass spectrum that best matches the
experimental one.4 Signals of some of the experimentally
registered ions may not be observed in the matching library
mass spectrum, and various methods for the identification of
these ions have been developed.2 Many of such identification
methods involve full-exhaustion (or “brute force”) testing of
possible ion compositions subject to certain constraints or a
modification of this approach.

However, the areas of application of mass spectrometry are
not limited to the analysis of organic samples. In particular,
experiments involving mass spectrometry have been conducted
to study inorganic construction materials,5 rocks,6 catalysts,
etc. Nevertheless, the amount of data accumulated in those
fields is relatively small when compared with the analysis of
organic samples. Few libraries comprising mass spectra of
inorganic compounds are known. Such libraries commonly

have a thematic nature and contain a limited amount of data.
Moreover, reference mass spectra of inorganic substances are
often available only for certain ionization conditions (usually
electron ionization and electrospray ionization). All of the
above means that, generally, ions registered in the mass spectra
of inorganic substances cannot be identified by means of a
library search. The use of other identification methods,
including those based on brute force, is required to identify
such ions.

One of fundamentals of mass spectrometry, namely, the
ability to detect various isotopes of elements present in the
formed ion, plays an important role in identification of signals
observed in mass spectra of inorganic compounds.3 This
fundamental provision implies that the formed ions are
registered as a series of several peaks separated from each
other by an approximately integer m/z value. Features that
describe such a series of peaks for an ion with a given

Received: April 16, 2024
Revised: June 23, 2024
Accepted: July 16, 2024
Published: July 23, 2024

Articlepubs.acs.org/jasms

© 2024 American Society for Mass
Spectrometry. Published by American
Chemical Society. All rights reserved. 1806

https://doi.org/10.1021/jasms.4c00153
J. Am. Soc. Mass Spectrom. 2024, 35, 1806−1817

ACS Partner Journal

D
ow

nl
oa

de
d 

vi
a 

V
ia

ch
es

la
v 

L
eb

ed
ev

 o
n 

N
ov

em
be

r 
3,

 2
02

4 
at

 1
7:

36
:4

7 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/page/virtual-collections.html?journal=jamsef&ref=feature
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Viacheslav+V.+Lebedev"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Daniil+I.+Yarykin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Aleksey+K.+Buryak"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/jasms.4c00153&ref=pdf
https://pubs.acs.org/doi/10.1021/jasms.4c00153?ref=pdf
https://pubs.acs.org/doi/10.1021/jasms.4c00153?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/jasms.4c00153?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/jasms.4c00153?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/jasms.4c00153?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jamsef/35/8?ref=pdf
https://pubs.acs.org/toc/jamsef/35/8?ref=pdf
https://pubs.acs.org/toc/jamsef/35/8?ref=pdf
https://pubs.acs.org/toc/jamsef/35/8?ref=pdf
pubs.acs.org/jasms?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/jasms.4c00153?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/jasms?ref=pdf
https://pubs.acs.org/jasms?ref=pdf
https://pubs.acs.org/ACS_partner_journals?ref=pdf


composition, i.e., the number of peaks, their position along the
m/z axis, and relative intensities in series, are together referred
to as the “isotopic distribution” of the ion.

Some of the existing approaches for the identification of
organic ions make use of the isotopic distribution observed in
mass spectra. Such approaches primarily include approxima-
tion methods, notably the well-developed Averagine model.7,8

Approximation methods allow the estimation of the elemental
composition of a given ion based on certain input data, which
commonly includes the observed isotopic distribution of the
precursor ion. These methods have demonstrated the ability to
identify ions of certain organic compound classes rather
accurately.9 However, approximation methods are essentially
based on pattern matching and can only be used to identify
ions composed of similar structural units.8 Because of this,
identification techniques that approximate the elemental
composition of organic ions based on observed isotopic
distributions are predominantly applied within the framework
of peptide studies.9,10

In general cases, however, the role of isotopic distribution is
“often forgotten”11 when fragments of organic samples are
identified. This is largely a consequence of the fact that
chemical elements often found in organic compounds either
occur in the form of one most-abundant isotope with a molar
fraction approaching 1, like C, H, N, and O, or are
monoisotopic, like, e.g., F and P.12 Thus, the isotopic
distributions of two organic substances with similar masses
but different compositions will differ only slightly. At the same
time, it is known that the measured isotopic ratios are
inevitably influenced by a number of equipment-specific
factors, even when the real content of various isotopes in a
sample is close to average values.13 Combined with low
abundances of heavy isotopes of C, N, O, etc., the dissimilarity
of the observed and theoretical isotopic distributions that
results from such factors often leads to organic fragment being
misidentified.13

As a consequence of the above, organic ions observed in the
mass spectrum cannot be reliably identified based on isotopic
distribution alone. This led to the development of methods
that do not use the data on observed isotopic distribution
during the identification of organic ions. One commonly used
example of such methods is the monoisotopic mass search,
which allows the selection of the true composition of an
observed ion from a list of compounds whose monoisotopic
masses are the closest to the mass of the given experimentally
observed peak.14 Monoisotopic mass search has recently been
used together with a technique called “deisotoping”.15

Deisotoping implies that each ion observed in the mass
spectrum is represented by one peak for identification
purposes. This peak usually corresponds to a combination of
the most abundant isotopes of elements that comprise the ion.
Peaks corresponding to other isotopologues are not involved in
identification and are deliberately neglected.

Unlike the elements that are often present in organic
analytes, many elements found in the studied inorganic
substances have two or more stable isotopes with natural
abundances as high as several dozen percent.12 Note that this
study focuses on only ions composed of elements with known
stable isotopes; however, the provisions presented here can be
extended to purely radioactive elements if the abundances of
their isotopes are defined. Of 118 currently known chemical
elements, 80 elements have at least one stable isotope.12 Per
our calculations presented later, the above number includes 46

chemical elements with “non-trivial” isotopic distributions, i.e.,
those elements for which the abundance of the second most
common isotope amounts to at least several percent. In
particular, several metals that are commonly found in the
Earth’s crust (such as magnesium, iron, copper, and zinc),
most of the noble metals (e.g., silver and ruthenium), some
heavy metals (like rhenium, molybdenum, etc.), and halides
(notably bromine and chlorine) satisfy this condition.12 The
isotopic distribution of ions that contain such elements is
valuable information, which should not be neglected. High
abundances of various isotopes of elements contained in such
inorganic ions imply that the result of identification is
influenced to a much lower extent when compared to organic
compounds.

Even in well-developed fields of mass spectrometry
applications, the registered signals are often identified manually
in cases where the observed ion is expected to contain an
inorganic adduct with a “non-trivial” isotopic distribution.16

Manual identification is excessively time-consuming since it
requires repeating routine, monotonous actions multiple times.
As mentioned earlier, the process of organic ion identification
is automated using the library search and chemoinformatics.
However, the automated identification of ions observed in
mass spectra of inorganic compounds receives significantly less
attention.

An obvious yet apparently rarely used approach to the
automated identification of ions observed in mass spectra of
inorganic compounds is the brute force of all possible
composition options for a given isotopic peak series while
accounting for the distribution of relative intensities in such a
series. For convenience, this approach is later termed “isotopic
distribution brute force”. The underlying concept has a trivial
nature, yet each step of the approach involves making
nontrivial assumptions and the nontrivial selection of
algorithms and their parameter values.

In this Article, we attempt to summarize the information on
the automated identification of ions observed in the mass
spectra of inorganic substances by means of isotopic
distribution brute force. Since any application of brute force
involves testing multiple options and performing a large
number of calculations, we also conducted test identification
runs and carried out performance measurements to formulate
empirical restrictions on input data, subject to which the
application of isotopic distribution brute force is suitable for
the processing of experimental inorganic mass spectrometry
data.

The conceptual limitations of the approach and difficulties
that arise at its individual stages will be demonstrated using
mass spectra of two different inorganic compounds, namely,
lead(II) chloride and natural rhenium sulfide. Two mass
spectra of the same compounds were used to conduct
performance measurements. The ability of the proposed
algorithm to identify various ions was tested on the set of
seven experimental mass spectra of lead halides and copper
halides, which were acquired during real-life studies of
construction materials.17 All of the mass spectra used in this
Article were obtained using a low-resolution mass spectrom-
eter under conditions of laser desorption-ionization. Graphical
representations of all the used mass spectra are shown in
Figures S1−S9. We failed to find publicly available libraries
that contained reference mass spectra of lead halides, copper
halides, and ReS2 rhenium sulfide for the given ionization
conditions. Furthermore, it is known that multiple cluster ions
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can be formed when laser desorption-ionization methods, e.g.
matrix-assisted (MALDI) or surface-enhanced laser desorp-
tion-ionization (SELDI), are applied. Such clusters are
commonly characterized by compositions that are not
observed under traditional ionization conditions, i.e., electron
ionization or electrospray ionization. All of the above did not
allow the identification of the ions detected in the presented
mass spectra by means of a library search or by monoisotopic
mass brute force using data from, e.g., the PubChem database.
This stimulated us to search for other approaches to
automated identification.

■ THEORY
Problem Statement. Let B be a set of ion compositions

that could hypothetically be registered in the mass spectrum
(or in certain part of it) of an inorganic compound. Let us
denote the number of molecular formulas in set B as M. For
each hypothetical composition bm,m = 1, ..., M to be tested,
there exists a theoretical isotopic distribution, i.e., the discrete
distribution of mass peak intensities, denoted as T(m). The
intensities of signals observed at m/z values corresponding to
T(m) in the experimental mass spectrum are distributed as X(m).

The isotopic distribution brute force implies solving a
hypothesis testing task for each tested composition, b ∈ B. The
hypothesis testing aims to establish whether the theoretical and
observed intensity distributions T(m) and X(m) are identical.
Thus, the problem solved during isotopic distribution brute
force can be written as follows:

=

=

m M

H X T

H X T

1, ..., :

:

:

m d m

m
d

m
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( ) ( )
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( ) ( )

If the null hypothesis H0 is true, meaning that the theoretical
and observed distributions are identical, then molecular
formula bm can be considered as a candidate composition for
an ion that is represented by the given series of isotopic signals
with a known most intense peak.
Identification Algorithm. Identification of ions by means

of isotopic distribution brute force involves three steps for each
tested composition bm,m = 1, ...,M. First, the theoretical
isotopic distribution T(m) is calculated. Next, each theoretical
peak is matched with a peak observed in the experimental mass
spectrum, meaning that the observed distribution X(m) is set.
Finally, distributions X(m) and T(m) are tested for identity, and
the decision is made.
Input Data. Three types of input data are required to

conduct ion identification using isotopic distribution brute
force, namely, the studied mass spectrum, the set of tested
compositions B, and algorithm parameter values.

The list of algorithm parameters differs depending on which
methods are used to perform each step of the identification.
Generally, such a list includes the following: (1) a value of the
stop criterion for the calculation of theoretical isotopic
distribution, (2) peak detection settings, (3) the allowed
mass tolerance for matching theoretical peaks with observed
ones, and (4) a threshold value (or confidence level) for
measure, which is used to determine whether distributions are
identical. These parameters will be discussed in further
paragraphs.

The only formal requirement of the input mass spectrum is
that the mass spectrum must be presented as two vectors (or,
in terms of informatics, arrays) of equal length. Theoretically,
the studied mass spectrum may have any resolution and may
be presented in either original (profile) or reduced (centroid)
dimensions. However, the values of algorithm parameters need
to be adjusted depending on the mentioned properties of the
mass spectrum. In this study, we assume that the isotopic
distribution brute force is conducted using low-resolution mass
spectra of original dimensions as input data. The mass spectra
are assumed to have undergone baseline correction.

The set of compositions B to be tested during brute force
can be filled manually. However, this contradicts the general
idea of automating the identification process. We believe that
the generation of tested compositions using additional input
data is a preferred option. A common technique, which is
commonly used by equipment manufacturers,18 implies
generating the elemental compositions based on the set of
allowed chemical elements A = {a1,a2, ...,aL} and vectors
containing minimum and maximum numbers of atoms of each
element, C(min) = (c1(min), c2(min), ...,cL(min))T and C(max) = (c1(max),
c2(max), ...,cL(max))T, respectively. The generation of compositions
itself could be implemented using one of the algorithms that
allow the formation of all the combinations of factor variable
values.19 Within the scope of task solved, the numbers of
atoms of each element are factor variables, and their values lie
in the [c(min), c(max)] range.

The set of allowed chemical elements can be formed based
on various additional data. Some of the data sources are listed
in the Supporting Information, section “Input data. Forming
the set of compositions to be tested”.20 However, preliminary
information about the sample and expert judgment of the
researcher play a decisive role in the formation of a set of
allowed chemical elements A.

The minimum and maximum numbers of atoms of each
element in tested compositions can also be set manually or
calculated automatically. In the performance assessment part of
this study, respective numbers are calculated automatically
based on user-defined lower and upped bounds (rmin and rmax
parameters, respectively) of the m/z range where identification
is carried out. The detailed description of calculation
procedure is given in the Supporting Information (same
section mentioned previously).14 Note that at the end of
generation, any compositions that satisfy or do not satisfy
certain conditions can be deleted from the resulting set using
array indexing options.

Calculation of Theoretical Isotopic Distribution. The
check for the presence of an ion with certain composition in
the mass spectrum starts with the generation of a theoretical
isotopic distribution.

The vast majority of programs and software packages
designed for calculating theoretical isotope distributions
implement algorithms that are based on one of two
approaches. The first approach involves the expansion of
polynomials describing the isotope abundances of elements
that form the ion. The second approach implies the usage of
convolution, namely, the Fourier transform. A detailed
overview of the mathematics and history of both approaches
is given in ref 21.

The advantages and limitations of the two named
approaches are well-known. Polynomial expansion allows the
preservation of information about the exact isotopic
composition of each peak. However, since calculations have
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to be performed sequentially, the expansion of polynomials is
time- and memory-expensive for compositions containing a
large number of atoms.22,23 In contrast, Fourier transform
allows the memory usage and calculation time to be
minimized; however, the information on the isotopic
composition of peaks is lost.

Since late 2000s, a new concept has been developed to
calculate the isotopic distribution while preserving the exact
isotopic compositions of peaks and reducing the computation
time.22 This concept utilizes a polynomial-like description of
isotopic abundances and a “hierarchical” calculation scheme.
Hierarchical calculations imply that the most probable
isotopologues are computed first. This allows the calculation
of isotopic distribution to be stopped once a user-defined
cumulative relative intensity of peaks is reached and avoids the
computation of “rare” isotopologues.

In this study, all the theoretical distributions were calculated
using IsoSpec algorithm version 2 (IsoSpec2), which is based
on the previously mentioned hierarchical concept.23,24 The
selection of IsoSpec2 in particular is based on the linear
asymptotic complexity of this algorithm, which means that the
calculation time grows at a rate no greater than the linear one
as the total number of isotopologues for a given molecule
increases. Furthermore, IsoSpec2 is implemented in the C++
programming language, which also allows us to expect a low
absolute calculation time. Version 2 was selected due to the
better reported performance compared to the original IsoSpec
algorithm.24

Two difficulties of computational nature can be manifested
at the theoretical distribution calculation step, and both of
those difficulties can seriously impact identification results.
Handling the Rare Isotopologues. The first difficulty is

related to the processing of isotopologues with a low
probability of occurrence. As mentioned in previous
studies,13,14 the peaks corresponding to such isotopologues
may have background intensities or may not be registered in
the experimental mass spectrum at all for various reasons.
Thus, retaining “too rare” isotopologues in the theoretical
distribution is impractical.

In many implementations of polynomial and convolution
algorithms, the above problem is solved by discarding
theoretical peaks with a relative intensity lower than the
threshold. However, as highlighted in ref 22, the choice of such
a threshold value is not obvious. Furthermore, a simple
removal of theoretical peaks with lower-than-threshold
intensity does not allow for controlling the cumulative
probability of occurrence of discarded isotopologues.

In contrast, hierarchical algorithms, where the most probable
isotopologues are computed first, allow the coverage of the
theoretical distribution to be controlled. Instead of the relative
intensity threshold, hierarchical algorithms require the
specification of the minimum cumulative relative intensity of
the peaks in the resulting distribution. Such cumulative
intensity can be interpreted as the cumulative probability of
observing all the computed isotopologues in the experimental
mass spectrum and, therefore, shows the share of the complete
distribution covered by the calculation. Because of that, such a
parameter is used as a calculation stop criterion in hierarchical
algorithms.

The choice of an appropriate cumulative probability value is
also not obvious. However, unlike the simple discarding of
peaks with intensity lower than a threshold, the calculation of
theoretical distribution until the specified cumulative proba-

bility is reached ensures that the coverage of the calculation is
the same for all tested compositions. Additionally, such
coverage does not depend on the number of atoms in the
tested composition.

Formally, the minimum cumulative probability can be set
equal to any value in the range [0; 1]. Confidence levels of 0.9,
0.95, 0.99, and, rarely, 0.999 are commonly used in
mathematical statistics when hypothesis testing is conducted.
The minimum cumulative probability for the isotopic
distribution calculation can be set to one of these values as
well.

Note that lower values of the calculation stop criterion imply
greater loss of information regarding the theoretical distribu-
tion. This is especially relevant when the inorganic ion being
identified contains many atoms of elements that have the one
most abundant isotope and several additional isotopes with
low (up to ∼1%) abundances. The probability of observing the
rare isotopologues in the experimental mass spectrum increases
as the number of atoms of such elements grows. At a certain
point, peaks corresponding to such rare isotopologues will
become clearly visible in the experimental mass spectrum.
However, those isotopologues may be missing from the
theoretical distribution if the calculation is stopped early.

An illustration of relatively large information loss can be
found in Figure 1, which depicts the theoretical isotopic

distribution of Re5S8
+ ions calculated up to a cumulative

probability of 0.9. As can be seen in Figure 1, isotopologues
corresponding to four peaks that are clearly distinguishable in
the experimental mass spectrum were not computed at such a
calculation stop criterion value. These four isotopologues
together accounted for 0.0409 probability of occurrence.

Further in this study, all theoretical isotopic distributions are
calculated up to cumulative probability of 0.99, unless
otherwise stated explicitly. Such a value was chosen to
minimize the loss of information incurred due to stopping
the calculation early and to reduce the effect of information
loss on the comparison of distributions.

Adjusting the Resolution of the Theoretical Isotopic
Distribution. The second difficulty that arises from the
calculation of the theoretical isotopic distribution involves the
adjustment of the resolution of theoretical distribution. Some
of the calculated peaks can be separated from each other by
very low m/z values, e.g., <0.01 Da. Peaks with such an m/z
difference cannot be resolved if the experimental mass
spectrum is acquired on low-resolution equipment. This

Figure 1. Comparison of observed (blue line) and aggregated
theoretical (red line) isotopic distributions of the Re5S8

+ ion.
Theoretical isotopic distribution was calculated up to a cumulative
probability of 0.9. Note that information on four “odd” theoretical
peaks is lost.
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phenomenon can be illustrated with the example of PbCl3−.
The complete theoretical isotopic distribution of this ion
contains 16 isotopologues (see Table S1 in the Supporting
Information for the peak list). However, when the PbCl3− ion
was registered on the used mass spectrometer, 6 out of 16
theoretical peaks were not resolved, as depicted in Figure 2.

In order for theoretical and experimental isotopic distribu-
tions to be compared correctly, the “resolution” of the
theoretical distribution must match the resolution of the
experimental mass spectrum. This can be achieved by merging
those calculated peaks that are separated by an m/z distance
less than the specified threshold. In this study, the merger of
the neighboring calculated peaks was conducted using the
same approach as in IsoPro software,25 which is an
implementation of the J. Yergey polynomial algorithm.26

Such an approach implies that all consecutive peaks separated
by an m/z value less than a threshold are merged into one
aggregated peak. The aggregated peak is assigned an m/z value
of the most intense peak among the merged ones and a
cumulative intensity of all merged peaks.

We failed to find recommendations on the selection of the
m/z threshold for merging neighboring calculated peaks in the
literature. In our opinion, the value of this parameter can be set
to 10−k, k ∈ N for simplicity purposes. The value of the
exponent k should be selected based on the characteristics of
the equipment used and should reflect the last decimal place
up to which the mass of the registered ion can be accurately
measured using the given equipment. The merger of
neighboring theoretical peaks inevitably undermines the
performance of brute force. However, if the resolution of the
theoretical distribution is not adjusted, meaningless identi-
fication results may be obtained. In this study, the k value was
set to 1, i.e., the threshold distance for peak merge amounted
to 0.1 m/z. As shown in Figure 2, merging peaks from the
theoretical distribution of the PbCl3− ion resulted in good
agreement of observed and aggregated theoretical data when
the threshold distance was set to 0.1 m/z. This indicates that
the chosen threshold value for the m/z distance is sufficient for
use under the described conditions.
Matching the Theoretical and Observed Peaks. Once

the theoretical isotopic distribution is calculated, theoretical
peaks have to be matched with signals observed in the
experimental mass spectrum. A very simple concept is used to
perform peak matching in various mass spectrum processing
techniques that involve such matching. This concept implies

that the search for observed peak that matches a theoretical
peak with m/z value of ti (I = 1, ..., nm) is conducted in the
range [ti − ε, ti + ε] of the experimental mass spectrum, where
ε is the used-defined mass tolerance.27−29

The value of mass tolerance ε can be selected in a manner
similar to the one described earlier for the peak merge m/z
threshold value, i.e., as 10−k, k ∈ N. However, in practice, a
multiplication of the mass tolerance by a scalar equation is
commonly applied in order to account for small calibration
errors. Thus, the mass tolerance can be set to a × 10−k, k ∈ N,
a > 0. In particular, the value of ε = 2 × 10−2 Da was earlier
proposed for high-resolution data.30 Additionally, a peak
binning method for the dynamic adjustment of the ε value
was described in the literature.27 However, we believe that the
application of dynamic peak binning as part of isotopic
distribution brute force is excessive and may influence
identification results in an unexpected way.

The observed peaks that match theoretical ones can be
selected either from the list of profile or centroid mass
spectrum signals or from a list of peaks detected using some
method. It is evident that the amount of arithmetic operations
will decrease as the dimensions of the searched array decrease.
Thus, the preliminary dimensionality reduction and peak
detection will reduce the time required for execution of the
isotopic distribution brute force.

Depending on the dimensionality of the array that is used to
select the matching observed peaks, two special cases are
possible. If the match is selected from a “short” peak list, there
is a possibility that relatively low-intensity signals correspond-
ing to rare isotopologues of the detected ion will not be
included in the above list after the peak detection algorithm
finishes its work. In this case, the search range [ti - ε,ti + ε ]
may contain no experimental signals that could be matched
with the given theoretical peak. The second case is directly
opposite and implies that the search range [ti − ε, ti + ε ]
contains several experimentally observed signals.

The introduction of fictitious zero-intensity peaks27 and the
application of highly sensitive peak detection algorithms based
on the calculation of the signal-to-noise ratio29,31 were
previously proposed in the literature as the solutions to the
first case problem. The problem arising from the second case
apparently received little attention in previous studies. In order
to minimize the influence of both mentioned difficulties, in this
study each theoretical peak is matched with the experimental
signal characterized by maximum intensity in the [ti − ε, ti + ε
] search range, and the searched array is taken from profile
mass spectrum. A more detailed theoretical discussion of this
aspect can be found in the Supporting Information, section
“Matching the theoretical and observed peaks”.

Comparison of Theoretical and Observed Isotopic
Distributions: Goodness-of-Fit Criteria. In the course of
isotopic distribution brute force, the evaluation of each tested
composition is concluded by comparing the theoretical
isotopic distribution with the corresponding observed
distribution.

Earlier we formulated the task solved during the
identification of ions by means of brute force as testing the
hypothesis of whether the theoretical and observed isotopic
distributions are identical. This type of task can technically be
solved using the goodness-of-fit tests defined in mathematical
statistics. Nevertheless, with few exceptions,32 goodness-of-fit
criteria are not used to test the identity of two isotopic
distributions in practice.

Figure 2. Comparison of observed (blue line) and aggregated
theoretical (red line) isotopic distributions of the PbCl3− ion. The
threshold for merging neighboring theoretical peaks was 0.1 m/z.
Note that resolutions of observed and theoretical distributions agree
well following the merger of calculated peaks.
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The calculation of goodness-of-fit test statistics involves
operations with frequencies and sample size.33−37 Within the
scope of task solved, absolute intensities of observed peaks that
match the peaks from the theoretical distribution can be
naturally interpreted as frequencies. Respectively, the sample
size is given by the cumulative intensity of peaks in the
observed distribution. Such cumulative intensity may vary from
several dozen to several hundred thousand absolute units for
various ions. Meanwhile, at least the most commonly used
goodness-of-fit criteria are known to have low statistical power,
i.e., the ability to correctly reject the null hypothesis when the
alternative is true, when sample size is either very small or very
large.33,38,39 Estimates of the sample sizes required can be
found in the corresponding section of the Supporting
Information.

In practice, all of the above leads to obtaining meaningless
identification results when using goodness-of-fit criteria to
compare theoretical and observed distributions in the course of
isotopic distribution brute force. In such a case, multiple
unrealistic elemental compositions would be assigned to low-
intensity (yet distinguishable) ions. In the meantime, the
goodness-of-fit tests would not pass when evaluating the
isotopic distributions of true compositions for high-intensity
ions. Figure S10 and Table S2 from the Supporting
Information depict the example of this phenomenon for ions
Re5S8

+, Re5MoS8
+, PbCl3−, and Pb2Cl3O−.40 Thus, goodness-

of-fit tests cannot be used to compare isotopic distributions
during ion identification by means of brute force.
Comparison of Theoretical and Observed Isotopic

Distributions: Vector Similarity Measures. The task of
testing the identity of theoretical and observed isotopic
distributions can be seen in an alternative way. Once the
theoretical distribution is calculated and each theoretical peak
is matched to the experimental one, two relative intensity
vectors of equal length are formed. Thus, the decision on the
identity of distributions can be made using the vector similarity
measures.

Such an approach to the comparison of mass spectra (and
their parts) has been studied much better than the application
of goodness-of-fit criteria and is particularly used in library
search. A detailed review of similarity measures that are
commonly used to compare intensity vectors of two mass
spectra was presented in previous papers.41,42 The theoretical
and observed isotopic distributions of an individual ion can
also be considered as separate mass spectra and thus can be
analyzed using such vector similarity measures.

Cosine similarity and its numerous modifications are the
vector similarity measures that are the most widely used in
mass spectrometry. Recall that the original cosine similarity is
calculated as

= =

= =

S X T
x t

x t
( , )

( ) ( )
C

m m i
n

i
m

i
m

i
n

i
m

i
n

i
m

( ) ( ) 1
( ) ( )

1
( ) 2

1
( ) 2

m

m m

Given the non-negativity of intensities, the unmodified
cosine similarity may take values in the range [0; 1]. Two
modifications of cosine similarity that scale the resulting value
to [0; 1000) range were listed in ref 42. One of those
modifications, namely, the identity match factor, is known to
be directly used in library search software.

Norms, i.e., geometric distance measures, are also used to
quantify the similarity between two mass spectra. In particular,
l1 and l2 norms (Manhattan and Euclidean distance,

respectively) were applied in the practical part of study.42

The use of the mentioned norms involves difficulties when
selecting the threshold value for distributions to be considered
identical, since the resulting calculated distance has no easily
interpreted upper bound (e.g., 1). However, we believe that
this inconvenience can be eliminated by applying l1 and l2
norms together with weights and indicator functions (see the
Supporting Information, section “Using the weights and
indicators together with geometric norms”).

Pearson correlation coefficient (yields values in range [-1;
1]), Wasserstein distance, and partial correlation were also
suggested as alternative measures of similarity of mass spectra
in previous studies.41,42 We shall note that Wasserstein
distance has no fixed upper bound, like the l1 and l2 norms,
and calculation of the partial correlation in the form proposed
in ref 41 requires a large number of arithmetic operations.
Thus, we believe that the aforementioned alternative metrics
cannot be easily used as the measures of isotopic distribution
similarity in the course of brute force.

Data presented in the literature show that the quality of
comparison of mass spectra attained by application of
traditional vector similarity measures may vary significantly
depending on the set of input data used. For example, the
usage of “modified” cosine similarity in ref 43 resulted in a
maximum precision of over 0.8; meanwhile, a precision of only
∼0.5 was reported for the original cosine similarity.41

However, it is commonly agreed that similarity measures
based on cosine distance allow those reference mass spectra
that evidently do not match the experimental data to be
reliably excluded from consideration,41−43 which is sufficient
for isotopic distribution brute force. In the experimental part of
this study, we use the unmodified cosine distance as the
spectral similarity measure.

Conceptual Limitations of Ion Identification by
Means of Isotopic Distribution Brute Force. The
described approach to the automated identification of ions
has several conceptual limitations. First of all, for obvious
reasons, the isotopic distribution brute force cannot be used to
identify ions composed only of monoisotopic elements. As
mentioned earlier, only the elements that have stable isotopes
are considered in this study for simplicity purposes. Of 80 such
chemical elements, 26 are monoisotopic.12 Thus, isotopic
distribution brute force can technically be used to identify ions
formed of = 71.25%80 26

80
elements with known stable

isotopes.
Next, among chemical elements that have two or more

stable isotopes, there are at least eight elements (notably N and
O) for which around 99% of natural abundance is attributable
to just one isotope.12 While the identification of ions
composed only of such elements (and, additionally, any
monoisotopic elements) is technically possible, meaningful
results are unlikely to be obtained under such conditions in
practice. As mentioned earlier, the peaks corresponding to rare
isotopologues may not be registered in the mass spectrum in
some cases, since the real abundances of isotopes in the sample
may differ from the reported average values.

One special case is worth mentioning separately. Certain
ions may simultaneously contain elements, the integer mass of
one of which is a multiple of the integer mass of the other. For
example, a series of clusters with the most intense peaks placed
at distances of ∼16 Da was observed when the mass spectra of
natural rhenium sulfide were acquired in negative ion mode
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during this study. Such a mass difference may indicate the
presence of oxygen. The mass of 32S, which is the most
abundant sulfur isotope, amounts to ∼31.9721, which is
approximately equal to the mass of two atoms of the 16O
oxygen isotope (2 × 15.9949 ≈ 31.9898).

The mass difference of 31.9898 − 31.9721 = 0.0177 Da can
only be detected using high-resolution equipment. Assuming
an ion mass of 1000 Da and a charge state of 1, the required
resolution in this case is 565001000

0.0177
units. However, the

application of high-resolution mass spectrometers still cannot
be considered as common practice. Meanwhile, the “replace-
ment” of one S atom by two O atoms does not alter the
resulting theoretical isotopic distribution significantly, since
isotopes 32S and 16O account for ∼95% and ∼99% of
theoretical S and O abundance, respectively. As can be seen
in Figure 3, the theoretical isotopic distributions of Re2S5

− and

Re2S4O2
− ions are almost identical (cosine similarity yields

values of 0.932 and 0.943, respectively). Under conditions of
low resolution, only a list of candidate compositions of the
given ion can be obtained by using the isotopic distribution
brute force in mentioned cases.

In addition to the discussed conceptual shortcomings of
specific isotopic distribution brute force, every brute force
technique is prone to low performance and reduced
effectiveness when the amount of processed input data is
high, i.e., the search space is large. In such cases, a performance
drop is driven by the need to perform a large number of
arithmetic operations, and lower effectiveness is a consequence
of higher probability of random false-positive matches.
However, such negative effects may not be pronounced until
a certain number of objects, e.g., hypothetical compositions, as
in the described case, are tested. In the next sections, we
attempt to determine the constraints on the input data, subject
to which the isotopic distribution brute force produces useful
results both effectiveness-wise and performance-wise.

■ EXPERIMENTAL SECTION
As part of this study, dedicated software was developed in
IPCE RAS in order to determine whether the isotopic
distribution brute force can be used to identify inorganic
ions in practice. The program was written in C++. The
IsoSpec2 package (C++ API, GPL license) is used by the
program internally to calculate theoretical isotopic distribu-
tions.24 The graphical interface was created using the
WxWidgets library (GPL license). All other functions were
implemented using the standard library of C++. Additional
technical details on program implementation can be found in
the Supporting Information, section “Implementation of
software for isotopic distribution brute force”.

Two practical aspects of the proposed approach were
evaluated during the experiments. The first evaluated aspect
was the ability to correctly identify inorganic ions with various
compositions and signal-to-noise ratios by means of the
proposed algorithm. Test identification was conducted on a
data set containing seven low-resolution laser-desorption
ionization mass spectra of lead halides and copper halides.
All the mass spectra in the data set were acquired during a real
investigation of the surface of construction material according
to the method described in ref 17. The data set notably
included two mass spectra of lead(II) halides placed on a
copper support. This allowed us to test the ability of the
algorithm to establish the composition of heterometallic
clusters based on the observed isotopic distribution. Graphical
representations of all the spectra from the data set are shown in
Figures S3−S9.

A total of 61 ions, including 51 unique species, were
manually identified in the mass spectra from the tested data
set. The latter number comprised 9 copper bromides, 6 copper
chlorides, 3 mixed chlorine-bromine copper clusters, 5 lead
chlorides, 10 oxide-chloride lead clusters, 4 lead oxide and lead
hydroxide species, 4 lead clusters with potassium adducts, and
individual element ions of lead and bromine. Full lists of ions
for each of the mass spectra from the data set can be found in
Tables S4−S10.

During the trial identification, different sets of allowed
elements were used for each mass spectrum from the data set
depending on the studied compound. Tested compounds were
generated from the minimum and maximum numbers of
atoms. The minimum number of atoms of each element was
always set to 0. In order to imitate the assumed common
scenario of program usage by the researcher, the maximum
number of elements was equal to 5 in the majority of the cases.
As an exception, a maximum of 1 atom of those elements that
commonly form adducts under laser desorption−ionization
conditions (K, H, and, in the case of the simultaneous presence
of chlorine and bromine in sample, Br or Cl) was allowed.
Complete sets of allowed elements and maximum allowed
number of atoms are presented in Table S11 of the Supporting
Information.

For the test identification purposes, the minimum value of
cosine similarity for a tested composition to be considered a
candidate for the true composition of the ion was set to 0.95.
The calculation of the local signal-to-noise ratio for the most
intensive peak in the observed distribution was additionally
performed to filter out unwanted assignments of hypothetical
compositions to background signals. Computation of the local
signal-to-noise ratio was based on the method presented in ref
43 and is described in the Supporting Information, section

Figure 3. A comparison of theoretical (red line) and observed (blue
line) isotopic distributions for (a) Re2S5

− and (b) Re2S4O2
− ions.

Note that both theoretical distributions are nearly identical.
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“Calculation of local signal-to-noise ratio for validation of
results of test identification” in detail.

Following the assessment of identification quality, an
evaluation of performance was carried out to determine
whether the isotopic distribution brute force was computa-
tionally viable. The assessment of isotopic distribution brute
force runtime was conducted using two mass spectra as input
data, namely, the mass spectrum of PbCl2 (negative ion mode,
Figure S8) from the data set used previously and the mass
spectrum of natural rhenium sulfide (positive ion mode, Figure
S1). During the performance assessment, the number of
studied mass spectra was intentionally limited to 2, since the
performance of the isotopic distribution brute force depends
on the number of arithmetic operations performed. Thus, by
increasing the number of tested compositions and making the
compositions more complex, it is possible to obtain
representative data on the performance of isotopic distribution
brute force using a limited number of input data and study
asymptotics in more detail.

During the performance assessment, tested elemental
compositions were generated in an automated manner using
data on identification range bounds, as described in the
theoretical part (Input Data) and in the Supporting
Information. The identification range was set to [0; 2000]
Da, since most of nonbackground signals registered in the
studied mass spectra were observed in the respective m/z
range. The sets of allowed chemical elements comprised a
maximum of four elements (Re, Mo, S, and O for rhenium
sulfide and Pb, Cl, O, and K for PbCl2). The presence of these
elements in samples was either identified during manual
processing or established based on preliminary information
about the sample.

Performance measurements were conducted on a regular
Acer Aspire A317-51KG office laptop (manufactured in 2019).
Detailed specifications of the laptop are presented in Table
S13. A total of 21 different identification scenarios were run.
Each identification scenario was executed 50 times in order to
reduce the influence of instant CPU load by other applications.
The average total runtime and the average time of execution of
individual brute force operations are presented in Table S14 of
the Supporting Information for each calculation scenario.

Parameter values used at various stages of the brute force are
listed in Table S3. Except for the peak matching search range,
all parameters were set to the values that were previously
discussed in theoretical part. Since some of the used mass
spectra required nonlinear internal calibration, the search for
matching peaks was conducted on an extended range of ±0.5
m/z so as not to introduce the effect of calibration parameters
on identification result. As mentioned earlier, profile mass
spectra were searched when peak matching was conducted.
This allowed the elimination of the possible influence of peak
detection or centroiding parameters on the observed
identification quality. Furthermore, the used format of mass
spectrum files (Bruker Flex/XMASS) implies that time-of-
flight and, respectively, m/z values are recorded at a fixed
discretization rate.44,45 Thus, searching the profile mass
spectrum for matching peaks also contributed to correct
assessment of the asymptotics of peak matching execution
time, since each search range contained roughly the same
number of signals.

In addition to the parameters discussed in the theoretical
part, the program accepts another input parameter, namely, the
assumed charge state of ions to be identified. This enables the

program to be directly used for the identification of ions with a
user-specified charge state. For simplicity purposes, the charge
state was assumed to be equal to 1 throughout this study.

■ RESULTS AND DISCUSSION
Test Identification. The aggregated and spectrum-wise

results of the automated identification of lead and copper
halide ions by means of isotopic distribution brute force are
presented in Table S12 of the Supporting Information.

During the test practical application of isotopic distribution
brute force, correct elemental compositions were successfully
established for 58 ions, i.e., for 95% of all the ions identified
manually. This notably included all nine occurrences of seven
unique heterometallic Pb−Cu clusters, the theoretical and
observed isotopic distributions of some of which are depicted
in Figure S11. The ability to identify such clusters by isotopic
distribution brute force may find use in, e.g., studies of alloys.

For 50 ions, or 86% of ions successfully identified by
isotopic distribution brute force, the median rank of the true
ion composition in the list of candidates ordered by cosine
similarity value in decreasing order was equal to 1. Note that
the median rank of the true composition in the list of
candidates was equal to 1 when measured both for the entire
data set and for each mass spectrum individually. The mean
rank of true compositions amounted to 1.42 among all of the
identified ions. In our opinion, such results confirm the
robustness of the comparison of isotopic distributions by
means of cosine similarity.

An important issue of all of the brute force techniques is the
increasing number of false positive matches that arise from
pure arithmetical reasons as the search space increases. This
issue manifested during the test identification. A total of 281
elemental compositions were reported as “found” in the entire
used data set of mass spectra. Of those, 136 compounds were
the candidate compositions for ions identified manually, and
the other 148 compositions presumably were false-positive
matches. Such a proportion of around one candidate match to
one false-positive match was maintained for each individual
mass spectrum from the data set as well.

However, the numbers of matches was unevenly distributed
across the data set. For identification scenarios with up to four
elements (mass spectra no. 1−3, 6, and 7) and up to around
400 tested formulas, no more than 25 potentially matching
compositions per mass spectrum were found by isotopic
distribution brute force. In our opinion, the researcher should
be able to extract useful information from identification results
in such cases, especially given that some of the mismatches can
be additionally filtered out by applying restrictions on the
signal-to-noise ratio. On the other hand, identification
scenarios where 5 and 6 elements were allowed (mass spectra
4 and 5; 2500 and 5000 compositions tested) resulted in over
50 and over 150 matches, respectively. Such results are less
likely to be adequately processed by the user following the end
of the identification. However, note that some of those
matches could also have been avoided by a proper calibration
of m/z values in mass spectra and by the use of more strict
mass tolerance for peak matching.

Unwanted assignments of hypothetical compositions to low
intensity peaks or background signals can be prevented by
invalidating the result of distribution comparisons for
compositions with a signal-to-noise ratio (SNR) of highest
observed peak lower than the threshold. The ions that were
successfully identified by isotopic distribution brute force were
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characterized by a double-digit median SNR of the most
intense peak, which amounted to ∼34 for the entire data set
and exceeded 18 for each individual mass spectrum. The
minimum SNR of the highest peak among identified ions was
roughly equal to 6. The corresponding values for assumed
false-positive matches were several times lower. As it can be
seen from Figure 4, discarding the identification results for

signals with a SNR lower than 10 would reduce the total
number of potentially found compositions by almost 30% to
196. This would come at a cost of failing to identify eight true
ions during the “batch” search over the entire spectrum, with
the share of identified ions dropping to 82%. Note that the
unidentified ions would be distributed over mass spectra
relatively evenly in such a case. However, filtered-out ions may
be successfully identified during a “targeted” isotopic
distribution brute force with higher restrictions on allowed
composition and lower restrictions on SNR.

Based on the above, we may suggest the following practical
recommendations for isotopic distribution brute force to be
used effectively. When the processing of a new mass spectrum
is started, the set of allowed elements should comprise only the
main chemical elements that are expected to be present in the
studied sample. Later, the amount of tested compositions
should be increased gradually, e.g., by adding allowed
elements. Once some of the ions are identified and the need
to test more complex elemental compositions arises, the
researcher should introduce additional restrictions, e.g., by
limiting the allowed number of atoms, to effectively use the
proposed approach for identification of the remaining ions of
interest. The brute force results for signals with single-digit
(less than 10) SNR values of the top peak should be evaluated
carefully and may be discarded during the initial search runs.
The user should remember that the observed peaks
corresponding to rare isotopologues would have even lower
SNR values. Conducting loosely constrained brute force with
more than four allowed elements over the entire mass
spectrum is not recommended. Targeted isotopic distribution
brute force may later be conducted to identify selected ions

that were not identified during the search over the entire mass
spectrum.

Performance Assessment. The results of the perform-
ance measurements revealed no clear dependence of the brute
force runtime on any single numeric characteristic of the tested
compositions set. However, such dependencies were observed
for some of the individual operations. The execution time of
the theoretical isotopic distribution calculation also exhibited
two competing dependencies on two parameters.

In all the considered identification scenarios, the calculation
of theoretical isotopic distributions for tested compositions by
means of IsoSpec2 algorithm constituted the largest (∼50−
75%) part of the total brute force runtime. Per the authors of
IsoSpec2, the time of isotopic distribution calculation should
increase linearly along with the increase in the number of
isotopologues for input composition.23,24 However, in practice,
two competing asymptotics are observed for identification
scenarios, which involve testing the compositions with similar
allowed elements. When the total number of isotopologues for
all tested compositions was relatively low, the time of isotopic
distribution calculation (and the total brute force runtime)
increased linearly and was almost directly proportional to the
number of tested compositions. This can be seen in Figure 5a,

where the distribution calculation time for scenarios with
various combinations of Pb, Cl, O, and K allowed elements is
plotted against the number of tested compositions. We believe
that such a dependency is observed due to implementation
peculiarities. Our implementation of brute force involves
creating a new object of the IsoSpec::FixedEnvelope class,
which is a wrapper over distribution generator, for the
calculation of each theoretical isotopic distribution. It is likely
that until a certain number of isotopologues (or theoretical fine
structure peaks) is reached, the time for actually calculating the
distribution is negligible compared to the time required to
initialize the fields of the FixedEnvelope class. Once the
threshold number of isotopologues is exceeded, the time of the
distribution calculation increases linearly and proportionally to
the total number of fine peaks (see the graph in Figure 5b for
scenarios involving Re, Mo, S, and O elements). This agrees

Figure 4. Influence of minimum signal-to-noise ratio restriction on
(a) the total number of compounds allegedly found in studied mass
spectra during isotopic distribution brute force and (b) the share of
true ions that were correctly identified by isotopic distribution brute
force.

Figure 5. Runtime asymptotics of calculation of theoretical isotopic
distributions (a) for calculation scenarios where up to ca. 1.5 million
isotopologues were computed premerger and (b) for calculation
scenarios where over 1.5 million peaks were computed premerger.
Scenarios with similar allowed elements are shown.
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with the claimed linear asymptotics of the IsoSpec2
algorithm.22,23 Based on obtained results, we believe that the
change of the calculation time dependency parameter occurs
when the total number of isotopologues exceeds ∼1.5 million,
which can be seen when the performance results for {Pb, Cl,
O}, {Pb, Cl, K} and {Pb, K, and O} scenarios are examined.
Under the described conditions, the specified threshold was
exceeded when approximately 15 000 compositions were
tested.

The second largest contribution to the total runtime came
from the sorting of peaks within theoretical isotopic
distributions by the m/z value. This sorting is necessary to
adjust the resolution of the theoretical distribution in further
steps. The sorting time depends on the number of m/z array
element swaps. In general, such a number of swaps cannot be
estimated in advance. The number of swaps and, accordingly,
the sorting time increase with the total number of
isotopologues. However, such a dependency cannot be
unambiguously described by any law. As the total number of
calculated isotopologues grows, sorting constitutes an increas-
ingly larger share of the execution time (an increase from ∼5%
to 50% in the cases considered). Under the described
conditions, sorting was completed within acceptable time
(several dozens of milliseconds) when the number of tested
compositions did not exceed 17 000, as in {Pb, K, O}, {Re, S,
and O}, and {Pb, Cl, and O} scenarios. We believe that the
peak sorting operation should be optimized first if the software
implementing isotopic distribution brute force is developed
further.

Merging neighboring calculated peaks during the adjustment
of resolution of theoretical distribution made the third largest
contribution (∼1−5%) to the total brute force runtime.
Theoretically, the execution time of this operation should
depend linearly on the number of merges. In practice, however,
such a dependence was violated in some cases. We believe that
those violations originate from peculiarities of implementation.
In our implementation of peak merge, the indices of retained
m/z values are inserted into the temporary vector without
prior memory reservation. If a large number of peaks are
retained in distributions following the peak merger, a
significant amount of memory will have to be dynamically
allocated, which implies the repeated execution of computa-
tionally expensive copying operations. Because of that, the time
required for the completion of the peak merger operation in
scenarios that involve retaining many peaks, e.g., {Re, O, S}
and {Cl, K, and O}, may exceed the respective time for
scenarios where many peaks are merged. Reserving the
memory for temporary vector will likely reduce the peak
merger time at the cost of increased memory usage in the
course of brute force, which may be a limiting factor if
operations are executed in a parallel manner. The merger of
neighboring calculated peaks was accomplished within accept-
able 100−200 ms for all realistic identification scenarios (up to
60 000 tested compositions, as in the {Cl, K, and O} scenario)
when the current implementation of brute force was tested.

Calculating the theoretical isotopic distribution, sorting
calculated peaks by m/z, and merging neighboring calculated
peaks together accounted for ∼75−99% of the total
identification time in all the considered cases. Thus, the
three mentioned operations determine the performance of the
isotopic distribution brute force.

The time required to execute two remaining steps, namely,
the peak matching and comparison of distributions (including

the calculation of cosine similarity), increased linearly with the
number of aggregated peaks after the merger. Runtime
asymptotics of peak matching are shown in Figure 6. Since

the shapes of asymptotic graphs are very similar for both of
these operations, the corresponding graph for distribution
comparison is not shown here and is depicted in the Figure
S12 instead.

Similar linear dependence of execution time on the number
of merged peaks was observed for some technical operations,
e.g., the collection of information to be displayed in
identification results (asymptotics is shown Figure S13). The
execution time of another technical operation, namely, the
division of calculated m/z values by specified charge state, also
behaved as expected and depended linearly on the total
number of isotopologues before the merger, with an exception
of the {Re, Mo, S} case (see Figure S14). All four mentioned
operations together were accomplished in less than 0.5 s when
all realistic identification scenarios were considered (up to
60 000 tested compositions and up to 1 million peaks after
merger). Thus, we may conclude that peak matching,
comparison of distributions, and technical operations do not
limit the performance of isotopic distribution brute force.

Finally, we shall note that a significant reduction in
performance of isotopic distribution brute force was observed
when Mo was included into the set of allowed elements. The
asymptotic dependences presented earlier were not violated;
however, the absolute execution time was several times higher
than that in scenarios that did not involve the testing of Mo-
containing compositions. For example, evaluation of 124
compositions in the {Re, Mo} scenario was completed in
∼1000 ms versus ∼14 ms for the {Re, S} option where 371
formulas were tested.

The exact reason for such a sharp increase in execution time
is unclear. However, we assume that this phenomenon is due
to the internal logic of the IsoSpec2 algorithm. In the examples
discussed above, Re and Mo have a total of nine isotopes, while
Re and S together have 6 isotopes. Theoretically, each increase
in the number of isotopes of allowed elements greatly increases
the number of comparisons and other arithmetic operations
required to obtain the smallest possible set of isotopologues.
This is indirectly confirmed by the fact that the time of
distributions calculation in the {Re, Mo} scenario is

Figure 6. Runtime asymptotics of peak matching operation: (a) first
18 scenarios ordered by peak matching time and (b) all considered
scenarios. Note the linear dependence of the peak matching execution
time on the number of peaks after the merger.
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comparable to those in the {Re, S, O} and {Pb, K, O} cases
(498 ms versus 536 and 580 ms, respectively; allowed elements
have a total of 9, 8, and 8 isotopes). Thus, the number of
isotopes of allowed elements also influences the performance
of the isotopic distribution brute force.

■ CONCLUSIONS
The results of trial identification of ions observed in the
studied mass spectra have shown that the isotopic distribution
brute force is capable of correctly establishing the elemental
composition of various inorganic ions, including those of rather
complex nature, e.g., heterometallic clusters.

The effectiveness and the performance of the isotopic
distribution brute force in the described implementation are
influenced by several parameters that characterize the input
data. Values of some of those parameters cannot be estimated
before the identification is conducted. This does not allow us
to formulate generalized numeric constraints on input data,
subject to which the application of isotopic distribution brute
force is feasible from the standpoints of results interpretability
and identification time.

However, based on results of trial practical application, we
suggest that the isotopic distribution brute force can be
successfully used to conduct automated identification of
inorganic ions composed of up to four chemical elements. In
such a case, a brute-force search over the entire spectrum
produces countable and small number of matches, commonly
up to 20−30 formulas, with more than half of matches being
true compositions of observed ions. In our opinion, such
results can be adequately processed by the researcher. The
correct compositions of ions that simultaneously contain more
elements, e.g., 5 or 6, could also be determined by isotopic
distribution brute force; however, additional filtering of results,
e.g., by signal-to-noise ratio of highest peak, has to be applied
to invalidate false-positive matches resulting from pure
arithmetic reasons. In addition, we believe that there is a
potential of further improvement of the effectiveness of the
proposed identification approach by application of advanced
preprocessing techniques. However, a detailed discussion of
such techniques lies beyond the scope of this study.

The best performance of isotopic distribution brute force is
achieved when the allowed elements together have up to 8 or 9
stable isotopes. For search lists composed of two or three
elements satisfying such a condition, ca. 15 000 compositions
of compounds with masses ranging from 0 to 2000 Da can be
tested in less than 1 s using an ordinary office laptop. Under
the described conditions, a brute force performance of 10 to 40
formulas per 1 ms was observed experimentally. Such
performance is presumably lower than the performance of a
library search, which recently showed the capability of
comparing × × 4.623, 009, 902

108.5 60 1000
pairs of entire mass spectra

per millisecond.46,47 However, automated evaluation of several
thousand compositions per second may still greatly reduce the
time spent on ion identification if the library mass spectra are
not available for the studied substance. Taking the constraints
listed above on search space into account, the application of
isotopic distribution brute force in its presented implementa-
tion is not limited by performance in all realistic usage
scenarios.
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