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Abstract

Numerical simulations of processes of three and four top quark hadroproduction are
carried out in the SMEFT model framework. The simulated data are used to derive expected
theoretical constraints on Wilson coefficients of relevant SMEFT operators of dimension six.
Obtained limits for both cases are discussed and compared in terms of processes’ sensitivity
to possible BSM contribution. Results show that operator O1

tt is better constrained by the
process of four top quark production, whereas other four operators O1

QQ, O
1
Qt, O

8
Qt and O8

QQ,
are similarly constrained in three and four top quark production processes. In all cases, the
expected limits taken from the simultaneous analysis of the production of three and four top
quarks are strengthened. Analytical expressions for the partial amplitudes of the processes
tt → tt and tt̄ → tt̄ caused by the operators O1

tt, O
1
QQ, O

1
Qt, O

8
Qt, O

8
QQ were obtained for

the first time. Based on the expressions of the obtained partial amplitudes, graphs of the
perturbative unitarity boundary for the listed operators were drawn. The question of how
kinematic cuts motivated by partial unitarity affect the resulting constraints on the Willson
coefficients is addressed. It is shown that in all cases the limits are getting somewhat worse
if such cuts are applied.

1 Introduction

Currently, no experimental evidence of physics beyond the Standard Model (BSM) has been
observed. In the pursuit of the New Physics, researchers are inclined to try “indirect” approaches,
in which one seeks BSM manifestations in the interactions of already known Standard Model
particles. The conventional assumption here is that New Physics is on a scale beyond our direct
reach at the moment, but should still manifest itself on lower scales in the form of modified SM
interactions, which can be measured and analyzed. A convenient framework for such kind of
analyzes is the Standard Model Effective Field Theory (SMEFT) [1–6] (see also reviews [7, 8]
and references therein). SMEFT approach is to parametrize BSM effects in a model-independent
way in terms of higher dimension gauge-invariant operators. If only operators of dimension six
are preserved, then the SMEFT Lagrangian reads as follows:

L = LSM +
∑ ci

Λ2
Od=6

i , (1)
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where LSM is the SM Lagrangian, Λ - hypothetical scale of the BSM physics, Od=6
i - local

composite SMEFT operators of dimension six, ci - dimensionless Wilson coefficients. We consider
here only terms of dimension six since in the processes under study they are leading in the
expansion on inverse scale Λ−1. In the SMEFT framework any observable, in particular the
cross-section, can be parametrized in the following form:

σ = σSM +
∑
k

ci
Λ2

σ
(1)
k +

∑
j<=k

cick
Λ4

σ
(2)
k,j , (2)

where σSM is the SM value, σ(1) and σ(2) - coefficients, representing linear and quadratic (in
terms of EFT coupling) contributions of the SMEFT operators. Given the measurement of
σ and having calculated values of σSM , σ(1) and σ(2), one can estimate constrains on Wilson
coefficients ci. These constraints can be used to calculate limits on physical parameters in various
SM extensions.

Search for four top quark production was performed and upper limits on its cross-section
have been established [9–11] in proton-proton collisions at

√
s = 13 TeV. The process was

observed recently with measured cross-section 17.7+6.0
−5.4 fb [12] by CMS and 22.5+6.6

−5.5 fb [13] by
ATLAS experiments. The SM NLO QCD cross section at 14 TeV has been calculated [14] for
various choices of the factorization and renormalization scales. In addition, the computation
of NLO QCD and EW corrections in SM have been carried out in [15] at 13 and 100 TeV
energies. The SM cross section at next-to-leading logarithmic accuracy including threshold non-
logarithmic corrections (so-called NLL′) is now available for 13 and 13.6 TeV [16]. Complete
tree level QCD and Electroweak analysis including contributions of all five relevant SMEFT
operators of dimension six was presented and expected individual theoretical limits were given
at various energies [17]. CMS and ATLAS collaborations also presented experimental limits on
corresponding dimension six operators [9, 13]. One should stress that all the computations of
the four top quark production cross sections at corresponding energies are consistent with each
other and with the mentioned experimental measurements within claimed uncertainties.

One can also consider processes with 3, 5, etc. top quarks in a final state when searching for
SMEFT manifestation beside the four top production. The four top quark production is mostly
due to the QCD contribution. The three top quark production, on the other hand, always contain
EW vertices, which results in a lower cross-section, but also a lower background. This suggests
that, despite the lower cross-section, the triple top production may still be a fairly good target
for BSM studies. In the current work, we consider the process of three top quark production and
compare its sensitivity to the contributions of the SMEFT operators with that obtained in the
relatively well-studied four top quark production process, and also investigate how the sensitivity
improves when both processes are taken into account simultaneously.

Three top quark production has LO SM cross-section of 1.9 fb [18, 19] and has not been
experimentally observed yet. Nevertheless, one can estimate possible constraints on relevant
Wilson coefficients following from three top quark production by comparing SM and SMEFT
theoretical cross sections. We use the SM cross section as an effective “measurement” and
compare it with the SMEFT cross-section as given in Eq. 2. In order to compare expected
sensitivities obtained from the three and four top quark production processes, the same analysis
procedure is applied to both processes to determine the limits. The expected limits obtained
are also compared with currently known experimental limits only for the production of four top
quarks [9, 13].

One potentially serious problem arising in the SMEFT approach is that the contributions of
EFT operators grow too fast with energy. An important consequence is that one should be very
careful with the potential violation of unitarity. In the current work, we investigate this problem
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Figure 1: Representative Feynman diagrams of four top quarks LO production in the Standard
Model.

Figure 2: Representative Feynman diagrams of three top quarks LO production in the Standard
Model.

by studying the effect of the partial unitarity requirement on the limits of the extracted Wilson
coefficients. We also obtain the corresponding kinematic cutoff, which can be used in simulations
to ensure partial unitarity.

Thus, the work has two main goals: to estimate the theoretically expected limits on the
Wilson coefficients obtained in the process of the production of three and four top quarks and
to study the impact of the unitary requirement. The paper is organized as follows. Section 2
contains computation details, cross sections and theory uncertainties. The partial unitarity limits
are discussed in Section 3. In Section 4 the methodology of obtaining limits has been discussed.
The final results and comparisons are presented in the Summary.

2 Cross sections and theoretical uncertainties

2.1 Simulation details

In the present work, most of the calculations are conducted using the MadGraph5 aMCNLO
package [20]. Some of the results were also cross-checked with the CompHEP package [21,22]. For
modeling with SMEFT operator contributions, we use the SMEFTatNLOmodel [23]. Simulations
at LO and NLO are done using NNPDF31 lo as 0118 and NNPDF31 nlo as 0118 luxqed [24]
PDF sets respectively. The value of αs is taken as follows from the PDF set. The mass of the
top quark is set to 172.5 GeV. To obtain factorization/renormalization scale uncertainties, we
perform calculations at various characteristic scale points as implemented in MadGraph. All
other settings are taken as default in Madgraph unless stated otherwise.

2.2 Computations in Standard Model

Representative LO diagrams for four top SM production are depicted in figure 1. In our
study, we use NLO corrections to the cross section of four top quark production as calculated
in SM [14, 15]. The numerical value of the cross-section strongly depends on the factoriza-
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Order LO
Scale, µF/R cross-section, σ pb δscale δPDF

mtop 9.03 +73% -39% ±7.3%
2mtop 5.47 +65.1% -36.9% ± 6.81%
Ht/2 3.93 +60% -35% ± 6.4%

Order QCD NLO
Scale, µF/R cross-section, σ pb δscale δPDF

mtop 13.2 +9.5% -20.1% ± 2.7%
2mtop 11.2 +26.7% -25.0% ± 2.6%
Ht/2 8.4 +29.6% -25.1% ± 2.5%

Table 1: Cross-sections of the four top quarks hadroproduction with corresponding scale/PDF
uncertainties.

tion/renormalization scale µF/R and the PDF set chosen. In table 1 SM cross sections at
√
s = 13

TeV are presented. We explore different choices of factorization/renormalization scales, which
are often used for this process: Ht/2, 2mtop, and mtop. Ht/2 is defined as half of a scalar sum
of transverse momenta of all final state particles, while the mtop corresponds to the fixed scale
equal to the mass of the top quark. With the current PDF set, the latter choice of scale provides
a smaller K-factor, hence we will use it for all subsequent computations.

The three top quark production is also been studied in some works [18,19,25,26]. Represen-
tative diagrams for three top LO SM production are shown in figure 2. A full set of diagrams
can be found in [18]. The three top production is also strongly dependent on the choice of QCD
factorization scale, the main consequence of which is a relatively large scale uncertainty. To
correctly compare the two processes we also want to use NLO corrections to the cross section of
three top quark production, similar to the four top quark production. The calculation of triple
top production with NLO corrections is tricky due to the presence of resonant diagrams in the
real part of the correction. These are diagrams of type pp → tt̄tt̄ with decay t → Wb. LO
cross-section for the production of four top quarks is an order of magnitude greater than one for
triple top production, which therefore leads to spoilage of convergence of the perturbative series.
From a computational point of view, this means that the simulation will produce very unstable
results (or will not converge at all). To obtain precise results, the issue should be considered
in the same way as tWb production processes, which is beyond the scope of the current work.
Therefore, for the current exploratory goal of this paper, we simply use the general Diagram Re-
duction procedure as implemented in the MadSTR plugin [27] for Madgraph. Table 2 contains
results for three and four top quarks SM production at c.o.m. energies 13 and 14 TeV.

2.3 SMEFT computations

The introduction of SMEFT operators adds new possible interaction vertices, which modi-
fies SM cross-sections. There are only 5 dimension-six four-fermion SMEFT operators, which
contribute to the four top quark production process:
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4 top production, LO
C.o.m. energy, TeV SM cros.-sect. σSM , fb scale uncert., % PDF uncert., %
13 9.02 73.4 7.32
14 12.0 72.6 7.28

4 top production, NLO
13 13.2 20.1 2.5
14 17.8 20.3 2.5

3 top production, LO
C.o.m. energy, TeV SM cros.-sect. σSM , fb scale uncert., % PDF uncert., %
13 1.16 30.1 7.1
14 1.5 29.2 6.64

3 top production, NLO
13 1.78 20.0 3.3
14 2.3 19.4 3.1

Table 2: SM cross-sections for processes pp → tt̄tt̄ and pp → tt̄t̄(tt̄t)

O1
tt = (t̄Rγ

µtR)(t̄RγµtR), (3)

O1
QQ = (Q̄Lγ

µQL)(Q̄LγµQL),

O1
Qt = (Q̄Lγ

µQL)(t̄RγµtR),

O8
Qt = (Q̄Lγ

µTAQL)(t̄RγµT
AtR),

O8
QQ = (Q̄Lγ

µTAQL)(Q̄LγµT
AQL),

Since much of this analysis is based on comparisons between the four and the three top quark
production processes, we will consider only this set of five operators in what follows. Some
representative SMEFT Feynman diagrams with operators from list 3 can be seen in Fig. 3

The SMEFT model introduces several additional parameters, namely the New Physics scale
Λ and Wilson coefficients ci for each SMEFT operator. The scale Λ is conventionally set to 1
TeV, while ci is our ”parameters of interest”, which we want to set bounds on.

The main idea of this work is to use the theoretical value of the cross-section as an ap-
proximation for the experimental value in Eq. 2 to obtain theoretical constraints on the Wilson
coefficients of operators listed in Eq. 3.

To extract values for parameterization coefficients σ(1) and σ(2) a series of simulations using
SMEFT model was conducted. The latest versions of Madgraph allow for direct computations
of squared and interference SMEFT terms, however, it is not advised, as computation of small
interference parts can potentially be unstable. Therefore following procedure of coefficient ex-
traction is utilized. Our approach is to calculate the cross-section with two opposite values of
ci (i.e. ci and −ci). In principle, one can take an arbitrary value of ci, since it only affects
coefficients in the set of linear equations generated by 2, which when solved for σ(1) and σ(2)

provide the same values, regardless of the choice. One should note, however, that due to the
choice of Λ the value of ci is required to stay within the [−4π, 4π] range to ensure the stability
of the perturbation series. We tested several choices of ci and settled for the simple ci = ±1 for
the sake of clarity. Hence, to obtain coefficients σ(1) and σ(2) we calculate cross-section twice
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(a) (b)

Figure 3: Examples of Feynman diagrams with SMEFT vertices for the four (a) and the three
(b) top quark hadroproduction.

with ci = ±1 and solve linear equation set obtained from 2.
The described procedure is conducted for all of the SMEFT operators listed in 3 as well as for

both three and four top production processes. Thus obtained values for σ(1) and σ(2) are used
in section 4 to obtain limits for Wilson coefficients ci. However, before moving to the calculation
of restriction on Wilson coefficients, the important point to discuss is the problem of potential
violation of perturbative unitarity.

3 Optical theorem and perturbative unitarity

Effective operators lead to an increase in cross sections with an increase in energy, which
violates unitarity. For our calculations to be self-consistent, we must check that we do not
consider kinematic regions where perturbative unitarity is violated. To estimate the admissible
range of parameters, we apply the optical theorem, which follows from the unitarity of the S
matrix. The optical theorem states that the imaginary part of the forward scattering amplitude
is proportional to the total cross section of the process:

σ =
1

s
Im (A(θ = 0)) =

16π

s

∞∑
l=0

(2l + 1)|al|2, (4)

where al – is the amplitude of the partial wave. Therefore, Imal = |al|2 and

|Re(al)|2 +
[
Im(al)−

1

2

]2
=

1

4
. (5)

|Re(a0)| <
1

2
. (6)

a0 =
1

16πλ

∣∣∣∣∣∣
t+∫

t−

dt ·A

∣∣∣∣∣∣ (7)

where λ is the kinematic function of the triangle and A is the amplitude of the process.
Effective four-fermion operators are obtained by functional integration over massive modes

of intermediate vector fields. A four-particle vertex can be formed from three-particle vertices
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of the interaction of two fermions with an auxiliary massive vector field and propagators of this
massive field. In this case, the denominator of the auxiliary field propagator is replaced by a
constant equal to the scale of the new physics. The effective vertex of the interaction of right-
handed polarized fermions with the auxiliary vector field has the form γ(1 + γ5)/

√
2, and that

of left-handed polarized fermions - γ(1− γ5)/
√
2.

Using the Weyl representation for spinors and the method of helicity amplitudes, for each
case of an anomalous operator, the amplitudes 2 → 2 of tt → tt and tt̄ → tt̄ processes were
calculated. It should be noted that the tt → tt process includes t and u channel components,
and the tt̄ → tt̄ process includes s and t channel components, which were taken into account
in the calculation. For each process, out of 16 possible helicity amplitudes, the one that gives
the greatest contribution was chosen. The resulting helicity amplitudes were expressed in terms
of the Mandelshtam invariant variables and integrated over the two-particle phase volume to
calculate the corresponding partial amplitudes.

Now let’s take a closer look at each of the listed processes. Thus, the amplitude of the tt → tt
process caused by the operator O1

tt is formed by two interacting right-handed fermionic currents
and consists of one t-channel and one u-channel component. For simplicity, we fixed the angle
ϕ = 0. The helicity amplitudes of this process do not depend on the angle θ. To evaluate the
applicability of the O1

tt operator, we chose one of the dominant helicity amplitudes, which is
proportional to the square of the invariant mass s of the two top quarks. The remaining helicity
amplitudes are proportional to the t-quark mass, and their relative contribution decreases with
increasing s. Analytical expressions for the dominant helicity amplitude and the partial amplitude
calculated on its basis are given in the Appendix in formulas (8) and (9), respectively. It can be
seen that the partial amplitude of the process is proportional to the factor (1+ β)2, which tends
to 4 for large s.

The process tt → tt with the operator O1
QQ is caused by the interaction of two left-handed

currents and its dominant helicity amplitude looks similar to the case of the operator O1
tt. The

corresponding expressions for the amplitudes are given in formulas (11) and (12).
For a process with the operator O1

Qt the picture becomes more complicated. This process is
caused by the interaction of the left and right currents of massive fermions. To the t-channel and
u-channel amplitude components, two more are added, in which the right-handed and left-handed
three-particle vertices are swapped. The dominant helicity amplitude of the process still does not
depend on the angle θ and is directly proportional to s (formula 13), however, due to a different
combination of initial and final polarizations of fermions, as well as a different composition of the
diagrams, the common factor of the dominant helicity amplitude is now proportional to (1+β2).
This factor tends to 2 as s increases, therefore the partial amplitude of the process tt → tt with
the operator O1

Qt (formula 14) is half the corresponding amplitude with the operators O1
tt or

O1
QQ.

Now consider the process tt → tt with the operators O8
QQ and O8

Qt. The Lorentz structure
of the corresponding amplitudes (formulas 14 and 17) is similar to the cases of the operators
O1

QQ and O1
Qt, however, color factors λa

j,iλ
a
k,l/4 additionally appear in the diagrams. In order

to estimate the level of maximum influence of the operators O8
QQ and O8

Qt, we took the largest
possible value of the color factor λa

j,iλ
a
k,l/4 = 1/2. Thus, the obtained partial amplitudes for the

process tt → tt with the operators O8
QQ and O8

Qt are two times smaller than the corresponding

amplitudes with the operators O1
QQ and O1

Qt.
The listed operators also contribute to the processes tt̄ → tt̄. The amplitudes of this process

include s-channel and t-channel components. The dominant helicity amplitude of the process
tt̄ → tt̄ with the participation of the operator O1

tt (formula 19) has an angular dependence and
is proportional to the factor −(1 + cos θ), which is proportional to the Mandelstam variable u.
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Also, this helicity amplitude is proportional to the factor (1 + β), which tends to 2 as the value
of s increases. Technically, the difference in the dominant helicity amplitudes for the processes
tt → tt and tt̄ → tt̄ is due to different redistribution of momenta between the initial and final
states, as well as different combinations of initial and final polarizations. These differences lead
to the fact that at large s the partial amplitudes for the processes tt → tt with the operators
O1

tt and O1
QQ are 4 times larger than the corresponding partial amplitudes for processes tt̄ → tt̄.

At the same time, for large values of s, partial amplitudes with the operator O1
Qt for the process

tt̄ → tt̄ coincide with the corresponding partial amplitude of the process tt̄ → tt̄.
From the calculations performed, it is clear that the partial amplitudes for the processes

tt̄ → tt̄ do not exceed the partial amplitudes for the processes tt → tt, therefore, further, to
estimate the limits of applicability of the operators, we will use only partial amplitudes for
tt → tt processes.

It should be noted that the considered helicity dominant amplitudes do not allow us to
correctly estimate the contribution of processes with different operators. For such a comparison,
it is necessary to calculate the full square of the amplitude modulus based on all the helicity
amplitudes of the process. We used the dominant helicity amplitudes only to estimate the limits
of applicability of the corresponding anomalous operators. We also note that the use of pair
production processes of top quarks to determine the unitary limit of applicability of four-fermion
operators provides a more conservative estimate than directly using the processes of production
of three or four top quarks. We extend the values of the unitary limits obtained in the processes
tt → tt to all processes involving the four-fermion operators under study. We used the obtained
restrictions on the invariant mass of a pair of top quarks to set cutoffs on the invariant mass of
three and four top quarks in the corresponding processes.

Based on the calculated partial amplitudes for the operators under study, we plotted graphs
of the boundary of perturbative unitarity, where the invariant mass of a pair of top quarks is
plotted along the x-axis, and the current upper experimental limits for the Wilson coefficients
of anomalous operators are plotted along the y-axis. The intersection of the dotted lines corre-
sponding to the accuracy of the Wilson coefficient measurements with the line of the unitarity
boundary shows the value of the invariant mass of a pair of top quarks above which the effective
field theory approach does not work. As experimental limits for the Wilson coefficients, their
current values of measurement accuracy in the processes of production of three top quarks are
taken.

In Fig. 4, the red color marks the values at which the partial amplitude a0 = 1
2 . The green

color marks the zone of parameters allowed from the point of view of perturbative unitarity. The
dashed horizontal line indicates the experimental limits on the corresponding Wilson coefficients
for different LHC operating modes. Dashed vertical lines with an arrow indicate the limits of
the invariant mass of two t-quarks for corresponding LHC modes. When evaluating the unitarity
limitation on the operators O1

tt, O
1
QQ, O

1
Qt, O

8
Qt at the LHC energy equal 13 TeV, the current

values of the measurement accuracy of the Wilson coefficients obtained in the CMS experiment [9]
were used. At the same time, when estimating the corresponding limitations for the LHC energy
equal to 27 and 100 TeV, the expected values of the measurement accuracy, obtained theoretically,
were used. For operator O8

QQ only theoretical values of measurement accuracy were used.
From Fig. 4 it is clear that the lower the value of the upper experimental limit on the Wilson

coefficient of the operator, the higher the value of the invariant mass of the process is allowed
by the condition of perturbative unitarity. At the same time, the upper limit of the Wilson
coefficient of the operator depends on the cross section of the process under study. The larger
the cross section of a hypothetical process involving an anomalous operator, the greater the
accuracy of its measurement is allowed. In the absence of manifestations of new physics, this
leads to lower values of the experimental limits on the value of the Wilson coefficient.
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Figure 4: Perturbative unitarity limit a0 = 1
2 (red line) for various anomalous operators. Upper

left: O1
tt, upper right: O

1
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Qt, bottom: O8

QQ. The green zone
corresponds to the allowed area. The dashed horizontal line indicates the experimental limits
on the corresponding Wilson coefficients for different LHC energy values. Dashed vertical lines
with an arrow indicate the limits of the invariant mass of two t-quarks for corresponding LHC
energy values.
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For example, consider the behavior of unitary limits for 4t operators at the LHC 13 TeV
mode. (Fig. 4 top left) shows the unitary bound for the operator O1

tt. With an experimental
limit on the interaction parameter of this operator equal to 2 TeV −2, we obtain an upper unitary
limit on the invariant mass of the process equal to 1.5 TeV. The same values are obtained for
the operator O1

QQ on (Fig. 4 upper right). For the operator O1
Qt (Fig. 4 middle left) the picture

changes. Since the partial amplitude for this operator is two times less than for the operators O1
tt

and O1
QQ, the line of the unitary boundary moves further from the coordinate axes. At the same

time, the cross section for processes with four top quarks involving this operator is smaller than
the corresponding cross sections for the operators O1

tt and O1
QQ, therefore the accuracy of the

experimental measurement of C1
Qt/Λ

2 is more rough and equal to 3.5 TeV−2. It turns out that
the intersection of the rough value of the experimental limit with the moved unitary boundary
again gives a unitary limit on the invariant mass equal to 1.5 TeV. This trend continues for
the O8

Qt operator (Fig. 4 middle right). The partial amplitude corresponding to this operator

is additionally two times smaller, and the measurement accuracy C8
Qt/Λ

2 is even rougher and is

equal to 6.5 TeV−2. This leads to the fact that the unitary constraint on the invariant mass of
a process with this operator is again around the value of 1.5 TeV. Thus, the total unitary limit
for all considered 4t operators in the LHC 13 TeV mode is close to the value of 1.5 TeV.

It is also clear from (Fig. 4) that although changing the LHC operating mode from 13 TeV
to 27 TeV and 100 TeV leads to an expansion of the unitary limits of operators, this expansion
is not very significant and is equal to 2 TeV and 3 TeV, respectively. This situation is due to
the fact that the cross sections for processes with four top quarks are accumulated at invariant
masses not exceeding 10 TeV.

It should be noted that in the case of the considered 4-fermion operators, the partial amplitude
grows proportionally to s, which limits the use of these operators already for the invariant mass
of two top quarks equal to 1–3 TeV. For comparison, the unitary limitation obtained for single
top production with anomalous operators contributing to the Wb [28] vertex, as well as with
FCNC operators [29], is at the level of 10 TeV and higher.

4 Setting limits on Wilson coefficients

Having the values of coefficients σ(1) and σ(2) and their uncertainties, calculating constraints
on ci is a matter of choice of a suitable statistical model. In the statistical model, we compare
the calculated with Eq. 2 total cross section with the measured or SM expected cross section,
with corresponding uncertainties. We consider three types of uncertainties. The first type is
theory uncertainty which has been discussed in Sec. 2, the numbers are provided in Tables 1, 2.
The other two uncertainties are experimental systematic and statistical uncertainties. Based on
the recent measurements of four top-quark production in CMS [12] and ATLAS [13] experiments

pp → 4top pp → 3top+X
Energy int. Luminosity δsys, % δstat, % δsys, % δstat, %
13 TeV 138 fb−1 13 24 13 76
14 TeV 3 ab−1 13 5 13 14
27 TeV 15 ab−1 13 0.6 13 2
100 TeV 25 ab−1 13 0.1 13 0.3

Table 3: Estimated experimental systematic and statistical uncertainties for processes of three
and four top quark production at energies of 13, 14, 27 and 100 TeV
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Stat. model C1
tt C1

QQ C1
Qt C8

Qt C8
QQ

χ2,1D,4t [-27,27] [-39,39] - [-28,28] -
EFTfitter,1D,4t [-27,27] [-39,39] - [-28,28] [-130,130]
SMEFiT,1D,4t [-27,27] [-39,39] - [-28,28] [-130,130]
χ2,1D,3t - [-27,27] [-64,64] [-123,121] [-43,43]
EFTfitter,1D,3t - [-27,27] [-64,64] [-123,121] [-43,43]
SMEFiT,1D,3t - [-27,27] [-64,64] [-123,121] [-43,43]
χ2,1D,3+4t [-27,27] [-22,22] [-64,64] [-27,27] [-42,42]
EFTfitter,1D,3+4t [-27,27] [-22,22] [-64,64] [-27,27] [-42,42]
SMEFiT,1D,3+4t [-27,27] [-22,22] [-64,64] [-27,27] [-42,42]
EFTfitter,5D,4t [-138,138] [-141,141] - [-138,138] -
SMEFiT,5D,4t [-138,138] [-141,141] - [-138,138] -
EFTfitter,5D,3t - [-125,125] - - -
SMEFiT,5D,3t - [-125,125] - - -
EFTfitter,5D,3+4t [-132,132] [-123,123] - [-140,140] -
SMEFiT,5D,3+4t [-132,132] [-123,123] - [-140,140] -

Table 4: Comparison of the expected limits on Ck/Λ
2[TeV−2] estimated for pp → 4top (4t) and

pp → 3top+X (3t) cross sections with only linear σ(1) EFT terms. The statistical models with
only one Wilson coefficient have marked 1D and the models with all five coefficients considered
simultaneously have marked 5D. The models with the combination of 4t and 3t processes are
marked 3+4t. The results were obtained under LHC conditions (13 TeV, 138 fb−1).

one can extrapolate the statistical uncertainty and estimate experimental systematic relative
uncertainty to be the same for all calculations. This approach is more or less conservative since
the analysis methodology usually improves and one can expect smaller systematic uncertainties in
the future. Since the number of expected events n ∼ σL the extrapolation of statistical relative
uncertainty can be taken as δ(n1)/δ(n2) =

√
(σ2L2)/(σ1L1). Based on the CMS results [12]

σ4top = 17.7+3.7
−3.5(stat)

+2.3
−1.9(sys) fb we estimate experimental uncertainties as listed in Table 3.

The integrated luminosity (L) for the calculations has been taken as 138 fb−1 for 13 TeV (available
experimental results), 3 ab−1 for 14 TeV (HL-LHC), 15 ab−1 for 27 TeV (HE-LHC) and 25 ab−1

for 100 TeV (FCC).

4.1 Cross checks of the methodology

For the first fit, a statistical model based on the chi-square distribution was used. Later, the
results were validated using acknowledged EFTfitter [30] and SMEFiT [31] packages. The first
comparison between different statistical models was done for linear terms in Eq. 2 where only
σ(1) terms are taken into account. Based on the calculated cross sections of the four and three
top-quarks production processes in SM and with EFT contribution one can estimate the expected
results with different statistical approaches. The achieved with the fit 95% CL exclusion limits
on the Wilson coefficients Ck/Λ

2(TeV −2) are shown in Table 4. Two processes pp → 4top (4t)
and pp → 3top+X (3t) at

√
s = 13 TeV are considered separately and as a combination in one

statistical model. Two types of statistical models are realized. The 1D approach with a variation
of only one Wilson coefficient in the statistical model, and the 5D approach with a simultaneous
variation of all five coefficients in the same model. The combination of 4t and 3t processes has
been considered in a dedicated statistical model marked as (3+4t). For some of the couplings,
there is no sensitivity (flat posterior distribution) with linear terms in the range from -150 to
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Stat. model C1
tt C1

QQ C1
Qt C8

Qt C8
QQ

χ2,1D,4t [-1.3,1.2] [-2.5,2.3] [-2.2,2.2] [-6.3,5.2] [-5.6,5.5]
EFTfitter,1D,4t [-1.1,1.1] [-2.2,2.1] [-2.0,2.0] [-5.7,4.6] [-5.1,4.9]
SMEFiT,1D,4t [-1.1,1.1] [-2.2,2.1] [-2.0,2.0] [-5.7,4.6] [-5.0,4.8]
χ2,1D,3t [-4.2,4.1] [-2.9,3.2] [-2.9,3.0] [-6.0,6.3] [-5.8,6.8]
EFTfitter,1D,3t [-3.8,3.7] [-2.5,2.9] [-2.6,2.7] [-5.4,5.6] [-5.2,6.1]
SMEFiT,1D,3t [-3.7,3.7] [-2.5,2.9] [-2.6,2.7] [-5.3,5.6] [-5.1,6.1]
χ2,1D,3+4t [-1.3,1.2] [-2.2,2.2] [-2.1,2.1] [-5.2,4.7] [-4.8,5.0]
EFTfitter,1D,3+4t [-1.1,1.1] [-2.0,2.0] [-1.8,1.9] [-4.7,4.2] [-4.3,4.5]
SMEFiT,1D,3+4t [-1.1,1.0] [-2.0,2.0] [-1.8,1.8] [-4.7,4.2] [-4.2,4.5]
EFTfitter,5D,4t [-0.94,0.92] [-2.3,2.2] [-1.7,1.6] [-4.9,3.7] [-5.2,5.1]
SMEFiT,5D,4t [-0.95,0.90] [-1.8,1.7] [-1.6,1.6] [-4.8,3.6] [-4.2,4.0]
EFTfitter,5D,3t [-3.3,3.7] [-2.1,2.4] [-2.2,2.5] [-4.6,5.4] [-4.3,5.5]
SMEFiT,5D,3t [-3.1,3.0] [-2.0,2.4] [-2.1,2.2] [-4.3,4.6] [-4.2,5.1]
EFTfitter,5D,3+4t [-0.98,0.92] [-1.8,1.8] [-1.5,1.6] [-4.0,3.4] [-3.9,4.0]
SMEFiT,5D,3+4t [-0.95,0.90] [-1.6,1.6] [-1.5,1.5] [-4.0,3.3] [-3.5,3.7]

Table 5: Comparison of the expected limits on Ck/Λ
2[TeV−2] estimated for pp → 4top (4t) and

pp → 3top +X (3t) cross sections with quadratic σ(2) EFT terms are taken into account. The
statistical models with only one Wilson coefficient have marked 1D and the models with all five
coefficients considered simultaneously have marked 5D. The models with the combination of 4t
and 3t processes are marked 3+4t. The results were obtained under LHC conditions (13 TeV,
138 fb−1).

150 for the value of the coefficient. In this case, the sign “-” is shown in the table.
The comparison in Table 4 for the linear EFT terms demonstrates significant improvement

of the C1
QQ, C

1
Qt and C8

QQ limits for the scenarios where triple top-quark production has taken
into account. The limits in Table 4 demonstrate very weak sensitivity of the linear EFT terms
to considered operators, the limits are far beyond the perturbative unitarity limits of 4π.

In the scenarios with quadratic EFT terms, where σ(2) in Eq. 2 are taken into account, the
limits are significantly tighter than with only linear terms scenarios. The corresponding limits
with quadratic terms are shown in Table 5 for different statistical models at

√
s = 13 TeV.

The Tables 4, 5 demonstrate good agreement between SMEFiT, EFTfitter and χ2 results. For
the quadratic fit, the χ2 test provides a bit wider limits. For the linear fit multi-dimensional
variation leads to much weaker limits than the one-dimensional statistical model which is com-
parable with previous results with linear fit [32]. In the scenario with quadratic EFT terms, the
multi-dimensional statistical model leads to tighter limits than the one-dimensional statistical
model. Such behavior is comparable with previous results for the quadratic fits [33]. In Fig. 5 the
posterior distributions of the probability density function for the Wilson coefficients are provided
for the one-dimensional (left plots) and multi-dimensional (right plots) statistical models, such
example has taken for four-top-quark production at

√
s = 13 TeV with quadratic EFT terms.

The distributions are calculated with the SMEFiT package. Due to quadratic terms, the dis-
tributions in multi-dimensional models are sharper and the integral for 0.95 quantile is gaining
faster. Depending on the uncertainties such behavior can give tighter limits in multi-dimensional
statistical model than in one-dimensional.

The achieved upper limits in Table 5 for the scenarios with quadratic EFT terms demonstrate
rather similar sensitivity of four- and triple-top quark production processes to the considered
EFT operators. The combination of four- and triple-top quark production in one statistical

12



−2 0 2

c1
QQ

−5 0 5

c8
QQ

−2 0 2

c1
Qt

−5 0 5

c8
Qt

−1 0 1

c1
tt

−2 0 2

c1
QQ

−5 0 5

c8
QQ

−2 0 2

c1
Qt

−5 0 5

c8
Qt

−1 0 1

c1
tt

Figure 5: Posterior distributions of probability density function for the Wilson coefficients in 1D
(left plots) and 5D (right plots) statistical models, in the scenario with quadratic terms are taken
into account.

model leads to better sensitivity, in general.
The theoretical constraints seem to coincide pretty well with experimental limits obtained

from four top-quark production in CMS [9] and ATLAS [13] experiments. Since there is a good
agreement in the results from EFTfitter and SMEFiT packages, EFT limits in the next sections
are shown only from the SMEFiT package.

4.2 Electroweak and QCD contributions in triple top-quark production

The importance of electroweak contribution (EW) to the triple top quark production processes
has been shown in the article [18]. The EW diagrams have the same rate as diagrams with a
gluon (QCD), also the interference between EW and QCD diagrams is of almost the same rate
as QCD or EW contribution and is negative. If one takes into account only QCD diagrams (e.g.
it is the default setting in MadGraph) the total cross section will be almost correct due to the
cancellation of negative interference terms and EW contribution, but the kinematic properties can
be significantly different. In this subsection, we compare how the inclusion of EW contribution
changes the EFT limits in comparison with the limits where only QCD contribution has been
taken into account. The EFT limits shown in Table 6 are calculated with triple top quark

model C1
tt C1

QQ C1
Qt C8

Qt C8
QQ

3t,QCD,1D [-3.6,3.7] [-2.6,2.5] [-2.5,2.5] [-6.3,4.8] [-6.5,5.3]
3t,QCD+EW,1D [-3.4,3.4] [-2.3,2.7] [-2.4,2.5] [-5.0,5.2] [-4.8,5.6]
3t,QCD,5D [-3.0,3.0] [-2.2,2.1] [-2.0,2.1] [-5.3,3.9] [-5.5,4.2]
3t,QCD+EW,5D [-2.8,2.8] [-1.9,2.2] [-1.9,2.1] [-4.1,4.3] [-3.8,4.7]

Table 6: Comparison of the expected limits on Ck/Λ
2[TeV−2] estimated for pp → 3top+X (3t)

cross sections with quadratic σ(2) EFT terms. Two simulation models are considered, the only
QCD diagrams and QCD plus EW diagrams and their interference. The statistical models with
only one Wilson coefficient have marked 1D and the models with all five coefficients considered
simultaneously have marked 5D. The results were obtained under LHC conditions (13 TeV, 138
fb−1).
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model C1
tt C1

QQ C1
Qt C8

Qt C8
QQ

4t,nocut,1D [-1.1,1.1] [-2.2,2.1] [-2.0,2.0] [-5.7,4.6] [-5.0,4.8]
4t,cut,1D [-1.2,1.2] [-2.4,2.3] [-2.2,2.2] [-6.8,5.0] [-6.0,5.7]
3t,nocut,1D [-3.7,3.7] [-2.5,2.9] [-2.6,2.7] [-5.3,5.6] [-5.1,6.1]
3t,cut,1D [-4.3,4.2] [-2.9,3.2] [-3.1,3.2] [-6.9,7.3] [-6.4,7.7]
3+4t,nocut,1D [-1.1,1.0] [-2.0,2.0] [-1.8,1.8] [-4.7,4.2] [-4.2,4.5]
3+4t,cut,1D [-1.2,1.2] [-2.2,2.2] [-2.1,2.1] [-5.8,4.8] [-5.2,5.4]
4t,nocut,5D [-0.95,0.90] [-1.8,1.7] [-1.6,1.6] [-4.8,3.6] [-4.2,4.0]
4t,cut,5D [-1.0,1.0] [-2.0,1.9] [-1.8,1.9] [-5.7,4.1] [-4.6,4.4]
3t,nocut,5D [-3.1,3.0] [-2.0,2.4] [-2.1,2.2] [-4.3,4.6] [-4.2,5.1]
3t,cut,5D [-3.5,3.4] [-2.3,2.7] [-2.5,2.7] [-5.6,6.1] [-5.1,6.5]
3+4t,nocut,5D [-0.95,0.90] [-1.6,1.6] [-1.5,1.5] [-4.0,3.3] [-3.5,3.7]
3+4t,cut,5D [-1.0,1.0] [-1.8,1.8] [-1.7,1.7] [-4.8,3.8] [-4.1,4.3]

Table 7: Comparison of the expected limits on Ck/Λ
2[TeV−2] estimated for pp → 4top (4t) and

pp → 3top+X (3t) cross sections with quadratic σ(2) EFT terms. The limits are shown for the
case of unitarity bound cuts applied at the simulation level (cut) and without such cuts (nocut).
The statistical models with only one Wilson coefficient have marked 1D and the models with
all five coefficients considered simultaneously have marked 5D. The results were obtained under
LHC conditions (13 TeV, 138 fb−1).

production processes with only QCD diagrams (marked as QCD) and in the complete case with
QCD, EW diagrams and their interference (marked as QCD+EW). Two statistical models are
shown with 1D and 5D variations. The quadratic EFT terms with σ(2) terms are taken into
account.

Direct comparison of the expected limits in Table 6 demonstrate notable improvement in
the sensitivity for the calculations with the correct simulation of all QCD, EW and interference
contributions.

4.3 Limits with unitarity bound cuts

The unitarity bounds considered in Sec. 3 have to be taken into account with additional
requirements for an invariant mass of all top-quark pairs. Such additional requirements have
been applied for the calculation of cross sections and σ(1), σ(2) EFT terms. The achieved limits
on Ck/Λ

2(TeV −2) are provided in Table 7 and are marked as (cut) when the requirement has
applied, for the comparison of the results without unitarity bound requirements (nocut) are also
shown.

Expected limits in Table 7 achieved with additional unitarity bound cuts obviously worse
than without such cuts, but not significantly. Since the unitarity is necessary requirement the
simulation for the final results in the next section obeys the calculated in Sec. 3 unitarity bound
cuts.

The general comparison of the separate and combined results for the four and three top
quark production processes demonstrates significant improvement in sensitivity for the linear
EFT terms, especially for O1

QQ, O
1
Qt and O8

QQ operators. In the scenarios with quadratic EFT

terms the Wilson coefficient of the operator O1
tt is better constrained by the process of four

top quark production. However, in the case of other operators, the three top quark production
apparently provides similar limits. The combination of four and three top quark production
processes gains in sensitivity for most of the considered operators.
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Energy, model C1
tt C1

QQ C1
Qt C8

Qt C8
QQ

13 TeV, 4t [-1.2, 1.2] [-2.4, 2.3] [-2.2, 2.2] [-6.8, 5.0] [-6.0, 5.7]
13 TeV, 3t [-4.3, 4.2] [-2.9, 3.2] [-3.1, 3.2] [-6.9, 7.3] [-6.4, 7.7]
13 TeV, 3+4t [-1.2, 1.2] [-2.2, 2.2] [-2.1, 2.1] [-5.8, 4.8] [-5.2, 5.4]
14 TeV, 4t [-1.1, 1.0] [-2.1, 2.0] [-1.9, 1.9] [-5.8, 4.2] [-5.2, 4.9]
14 TeV, 3t [-2.5, 2.5] [-1.6, 2.0] [-1.8, 1.9] [-3.9, 4.4] [-3.7, 5.1]
14 TeV, 3+4t [-1.1, 1.0] [-1.5, 1.7] [-1.5, 1.6] [-3.8, 3.6] [-3.5, 4.3]
27 TeV, 4t [-0.90, 0.83] [-1.7, 1.6] [-1.6, 1.6] [-4.9, 3.6] [-4.4, 4.2]
27 TeV, 3t [-2.0, 2.0] [-1.3, 1.5] [-1.4, 1.6] [-3.3, 3.9] [-2.7, 4.1]
27 TeV, 3+4t [-0.88, 0.83] [-1.2, 1.3] [-1.3, 1.3] [-3.2, 3.2] [-2.6, 3.5]
100 TeV, 4t [-0.68, 0.66] [-1.3, 1.3] [-1.2, 1.2] [-3.8, 3.0] [-3.7, 3.6]
100 TeV, 3t [-1.3, 1.4] [-0.89, 1.0] [-1.0, 1.1] [-2.1, 2.6] [-1.8, 2.7]
100 TeV, 3+4t [-0.67, 0.64] [-0.85, 0.94] [-0.93, 0.94] [-2.1, 2.3] [-1.8, 2.5]

Table 8: Comparison of the expected limits on Ck/Λ
2[TeV−2] estimated for pp → 4top (4t)

and pp → 3top + X (3t) cross sections with quadratic σ(2) EFT terms. The limits are shown
with applied unitarity bound requirements. The results have been achieved in a one-dimensional
statistical model with a variation of each coefficient separately.

5 Summary

In the present study, numerical simulations of processes of three and four top quark production
were carried out. Simulation results are presented for both the Standard Model and dimension six
SMEFT. For the latter case, the EFT validity issue was addressed by analyzing partial unitarity
requirements for processes of interest, deriving corresponding kinematic cuts, and implementing
them into the simulation.

Theoretical constraints on the Wilson coefficients Ck/Λ
2(TeV −2) of respective SMEFT op-

erators are obtained for both channels of three and four top quark production and are shown in
Table 8.

Analytical expressions for the partial amplitudes of the processes tt → tt and tt̄ → tt̄ caused
by the operators O1

tt, O1
QQ, O1

Qt, O8
Qt, O8

QQ were obtained for the first time. Based on the
expressions of the obtained partial amplitudes, graphs of the perturbative unitarity boundary
for the listed operators were drawn. Such graphs were drawn for various operating modes of the
LHC (13 TeV, 27 TeV, 100 TeV). The analysis of the impact of restrictions, following from the
unitarity, on the accuracy of extracted Wilson coefficients was conducted.

Constraints, obtained from combined statistics of both channels, were also presented. The
results in summary Table 8 have been calculated by taking into account EW contribution in
three top quark production at LO, QCD NLO contribution in four top quark production, and
with applied partial unitarity requirements discussed in the text above. The expected limits
correspond to the univariate variation of each Wilson coefficient separately. Results show that
in the case of the operator O1

tt, better constraints on the corresponding Wilson coefficient are
obtained from the process of four top quark production. For other four operators O1

QQ, O
1
Qt,

O8
Qt and O8

QQ, both processes have similar sensitivity. Combined statistics of three and four
top quark production processes provide the most precise constraints in all considered cases. The
sensitivity to triple top quark production in present collider experiments is largely limited by
statistical uncertainty. For future colliders, such as HL-LHC, the statistical uncertainty will
be comparable to or much smaller than the systematic uncertainty, and the sensitivity to the
BSM contribution in triple top quark production will be limited by theoretical calculations and
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experimental uncertainties. In Table 8 a conservative estimation of the uncertainties is used for
future colliders, and the partial unitarity bounds also reduce the sensitivity for the considered
EFT operators. As a result, we do not observe a dramatic increase in the sensitivity of three and
four top quark production processes to EFT operators with significant increases in the energy of
future colliders.

Overall, the production of three top quarks seems to be quite an interesting target for BSM
studies. Despite the lower cross-section (as compared to the more widely discussed four top quark
production), it can potentially provide some interesting opportunities for constraining the New
Physics. Experimental challenges to distinguish between triple top-quark and four top-quark
production processes can be partially overcome by splitting the phase space using a kinematic
neural network and simulating a complete set of diagrams for the p, p → t, t̄, t,W, b̄ process,
similar to what was done for the tWb process [34].
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Appendix A

Leading helicity and partial amplitudes for process tt → tt:

operator case O1
tt:

A =

(
C1

tt

Λ2

)
· 2 · s · (1 + β)2 (8)

a0 =
1

16π · s · β

∣∣∣∣∣∣∣
0∫

4M2
t −s

dt ·A

∣∣∣∣∣∣∣ =
(
C1

tt

Λ2

)
· s

8π
· β(1 + β)2 (9)

where:

β =

√
1− 4M2

t

s
(10)

operator case O1
QQ:

A =

(
C1

QQ

Λ2

)
· 2 · s · (1 + β)2 (11)

a0 =

(
C1

QQ

Λ2

)
· s

8π
· β(1 + β)2 (12)

operator case O1
Qt:
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A =

(
C1

Qt

Λ2

)
· 2 · s · (1 + β2) (13)

a0 =

(
C1

Qt

Λ2

)
· s

8π
· β(1 + β2) (14)

operator case O8
Qt:

A =

(
C8

Qt

Λ2

)
·
λa
j,iλ

a
k,l

4
· 2 · s · (1 + β2) =

(
C8

Qt

Λ2

)
· s · (1 + β2) (15)

a0 =

(
C8

Qt

Λ2

)
· s

16π
· β(1 + β2) (16)

operator case O8
QQ:

A =

(
C8

QQ

Λ2

)
·
λa
j,iλ

a
k,l

4
· 2 · s · (1 + β)2 =

(
C8

QQ

Λ2

)
· s · (1 + β)2 (17)

a0 =

(
C8

QQ

Λ2

)
· s

16π
· β(1 + β)2 (18)

Leading helicity and partial amplitudes for process tt̄ → tt̄:

operator case O1
tt:

A =

(
C1

tt

Λ2

)
· 2 · u · (1 + β)

β
(19)

a0 =

(
C1

tt

Λ2

)
· s

16π
· β2(1 + β) (20)

operator case O1
QQ:

A =

(
C1

tt

Λ2

)
· 2 · u · (1 + β)

β
(21)

a0 =

(
C1

QQ

Λ2

)
· s

16π
· β2(1 + β) (22)
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operator case O1
Qt:

A =

(
C1

Qt

Λ2

)
·
(
2 · u · (1− β2)

β2
− 2 · s · (1 + β2)

)
(23)

a0 =

(
C1

Qt

Λ2

)
·
( s

8π
· β(1 + β2)− s

16π
· β(1− β2)

)
(24)

operator case O8
Qt:

A =

(
C1

Qt

Λ2

)
·
λa
j,iλ

a
k,l

4
·
(
2 · u · (1− β2)

β2
− 2 · s · (1 + β2)

)
(25)

a0 =

(
C1

Qt

Λ2

)
·
( s

16π
· β(1 + β2)− s

32π
· β(1− β2)

)
(26)

operator case O8
QQ:

A =

(
C1

tt

Λ2

)
·
λa
j,iλ

a
k,l

4
· 2 · u · (1 + β)

β
(27)

a0 =

(
C8

QQ

Λ2

)
· s

32π
· β2(1 + β) (28)
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[23] Cé line Degrande, Gauthier Durieux, Fabio Maltoni, Ken Mimasu, Eleni Vryonidou, and
Cen Zhang. Automated one-loop computations in the standard model effective field theory.
Physical Review D, 103(9), may 2021.

[24] Richard D. Ball, , Valerio Bertone, Stefano Carrazza, Christopher S. Deans, Luigi Del
Debbio, Stefano Forte, Alberto Guffanti, Nathan P. Hartland, José I. Latorre, Juan Rojo,
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