МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

РОССИЙСКАЯ АКАДЕМИЯ НАУК

Отделение энергетики, машиностроения, механики и процессов управления

Федеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова РАН

7-я Международная научно-техническая конференция

Живучесть и конструкционное материаловедение ЖивКоМ – 2024

Survivability and Structural Materials Science SSMS - 2024

29-31 октября 2024 г. Москва

ТРУДЫ КОНФЕРЕНЦИИ

7-я Международная научно-техническая конференция «Живучесть и конструкционное материаловедение» (ЖивКоМ – 2024): Сборник трудов конференции (Москва, 29-31 октября 2024) / М: Изд-во ИМАШ РАН, 2024, электронный формат – 479 с.

В сборнике представлены статьи участников 7-й Международной научно-технической конференции «Живучесть и конструкционное материаловедение» (ЖивКоМ – 2024).

7-я Международная научно-техническая конференция «Живучесть и конструкционное материаловедение» (ЖивКоМ – 2024) прошла с 29 по 31 октября 2024 г. в Институте машиноведения им. А.А. Благонравова РАН, г. Москва. На конференции были заслушаны научные доклады и сообщения по следующим восьми научным направлениям:

1. Модели и критерии разрушения материалов и живучести конструкций на различных масштабно-структурных уровнях.

2. Вычислительная механика разрушения в проблемах живучести и конструкционного материаловедения.

3. Риск-анализ в системе критериев живучести и безопасности.

4. Динамические процессы разрушения. Диагностика и мониторинг поврежденных машин и конструкций. Экспериментальные методы исследования.

5. Сопротивление длительному статическому и циклическому деформированию и разрушению конструкционных материалов, работающих в экстремальных условиях.

6. Структура, прочностные и технологические свойства материалов со специфическими свойствами (наноматериалы и нанопокрытия, материалы с памятью формы, биметаллические материалы и т.п.).

7. Керамические и метало-керамические материалы и покрытия (получение, свойства, применение).

8. Влияние структурного состояния на деформационные, прочностные и трибологические характеристики конструкционных материалов.

Требования к оформлению статей были размещены на сайте конференции. Оргкомитет оставил публикации в авторском исполнении.

Сайт конференции <u>https://ssms-imash.com</u>

© ИМАШ РАН, 2024

УДК 602.17

ИССЛЕДОВАНИЕ УСТАЛОСТНОГО МАСШТАБНО-СТРУКТУРНОГО РАЗРУШЕНИЯ МАТЕРИАЛОВ ПРИ СЛОЖНОМ НАГРУЖЕНИИ ЦИКЛИЧЕСКОЙ ОСЕВОЙ СИЛОЙ И ПОСТОЯННЫМ КРУТЯЩИМ МОМЕНТОМ

Завойчинская Э.Б. – д. ф.–м. н., профессор, Усачев М.А. – аспирант кафедры теории упругости механико-математического факультета МГУ имени М.В. Ломоносова, Москва, Россия elen@velesgroup.com

INVESTIGATION OF SCALE-STRUCTURAL FATIGUE AT COMPLEX LOADING BY CYCLIC AXIAL FORCE AND CONSTANT TORQUE Zavoychinskaya E.B. – d. phys.-math.sci., professor,

Usachev M.A. - postgraduate student of the Elasticity Theory Department of the Mechanics and Mathematics Faculty

> MGU named after M.V. Lomonosov elen@velesgroup.com

Abstract. New equations for fatigue curves on defect levels at symmetric axial loading with a constant component of torque are presented and their analysis is carried out for aluminum alloy D16T at high- and very high fatigue.

Key words: complex loading, brittle failure, aluminum alloy D16T, fatigue curves, high cycle fatigue, very high cycle fatigue.

Аннотация. Представляются новые уравнения для кривых усталости по уровням дефектности при симметричном осевом нагружении с постоянной компонентой касательного напряжения и проводится их анализ для алюминиевого сплава Д16Т в областях много- и гигацикловой усталости.

Ключевые слова: сложное нагружение, хрупкое разрушение, алюминиевый сплав Д16Т, кривые усталости, многоцикловая усталость, гигацикловая усталость.

Проблема усталостного разрушения материалов и элементов конструкций при различных видах статических и циклических нагрузок, несмотря на многочисленные теоретико-экспериментальные исследования, остается актуальной [1,2]. Это особенно относится к усталостным разрушениям при различных видах комбинированного нагружения статическими и циклическими нагрузками, которые характерны, например, для большинства вращающихся валов, лопаток газовых турбин, элементов фюзеляжа воздушных судов, деталей каркасов, шпангоутов и др. Получение экспериментальных кривых усталости, которые описывают зависимости долговечности от амплитуды цикла напряжения для каждого значения постоянной компоненты является дорогостоящей и трудоемкой работой. Предлагаются эмпирические зависимости предельной амплитуды осевого напряжения от величины касательного напряжения при заданном числе циклов. Применяется концепция эквивалентного напряжения, при этом, например, нагружение осевым симметричным напряжением и постоянным касательным напряжением заменяется на некоторый эквивалентный симметричный цикл. Такие подходы обеспечивают удовлетворительные результаты, в основном, для конкретного материала и при некоторых параметрах процесса. Таким образом, анализ известных результатов приводит к необходимости построения модели усталостного разрушения при сложном нагружении и получении следствий для конкретных процессов, чему и посвящено это исследование.

В данной работе исследуются процессы нагружения циклической осевой силой и

постоянным крутящим моментом на интервале времени $\tau \in [0, t]$ следующего вида:

$$\sigma_{11} = \sigma_a \sin \omega \tau, \ \sigma_{12} = \tau_m, \ \tau \in [0, t].$$
⁽¹⁾

где τ_m – постоянное значение касательного напряжения, σ_a – амплитуда осевого напряжения, ω – частота нагружения. Постановка задачи о нахождении вероятности хрупкого разрушения по уровням дефектности при нагружении (1) основывается на подходе теории предельных процессов нагружения [3] и теории усталостного масштабноструктурного разрушения [4,5].

Кратко представим основные гипотезы модели [4,5]. Выделяется шесть масштабноструктурных уровней разрушения (до образования макротрещины-лидера длины L) и вводится понятие дефекта *j*-ого масштабного уровня в некотором представительном объеме V_c ($V_c = L^3$). Дефект *j*-ого уровня описывается своим линейным размером $l_j = l_j(\tau)$ и плотностью дефектов $q_j = q_j(\tau)$, в объеме $V_c: q_j(\tau) = \lim_{\Delta V \to V_c} \Delta q_j(\tau) / \Delta V$, $j = 1, ...6, \tau \in [0, t]$, где $\Delta q_i = \Delta q_i(\tau)$ -среднее количество дефектов в объёме ΔV в момент времени τ. Предельное состояние дефекта *j*-ого уровня определяется предельным линейным размером $l_{f,j}$ и предельной плотностью $q_{f,j}$ в объёме V_c . Вводится непрерывная возрастающая усредняющая функция j-ого уровня $l_j^* = l_j^*(\tau), \ \tau \in [0, t]$, имеющая размерность длины, и определяемая выражением: $l_{j}^{*}(\tau) = l_{j}(\tau) (q_{j}(\tau)V_{c})^{\gamma}$, $\gamma = const$, j = 1,...6. В предельном состоянии усредняющая функция $l_j^* = l_j^*(\tau)$ достигает своего предельного значения $l_{f,j}^*$, j = 1,...6. Полагается, что образование дефекта j-ого масштабного уровня начинается с достижения усредняющей функцией (j-1)-ого уровня предельного значения в момент времени t_{j-1} , j = 2,...6. Вследствие случайного распределения дефектов по объему V_c процесс усталостного разрушения является стохастическим, а значения l_j^* для каждого момента времени au – случайными величинами. Вводится функция $F_i = F_i(\tau)$ распределения вероятности неразрушения (функция надежности) на *j*-ом уровне, т. е. вероятности, с которой случайное значение усредняющей функции l_i^* в момент времени τ принимает значения меньше своего предельного значения: $F_{j} = P(l_{j}^{*} < l_{f,j}^{*}), j = 1,...6$. Вероятность разрушения определяется как: $Q_j(\tau) = Q_{j,th} - F_j(\tau)$, $\tau \in [0,t]$, j = 1,...6, где $Q_{j,th} \in [0,1]$ - некоторое заданное значение вероятности (в данной работе $Q_{j,th} = 1$). Формирование дефекта каждого уровня происходит вследствие последовательного образования, роста и слияния дефектов всех предыдущих уровней. Это должно быть отражено при построении определяющих соотношений $Q_j = Q_j(\tau)$, j = 1,...6. Кривые усталости по уровням дефектности определяются уравнениями: $Q_j(t_j) = Q_{j,th}$, j = 1,...6, где t_j - долговечность на j - ом уровне. Вводится функция $Q = Q_5(\tau) + Q_6(\tau)$, $\tau \in [0, t]$, $0 \le Q \le Q_{th}$, определяющая макроразрушение материала, достижение ею соответствующей вероятности Q_{th} определяет t_f – долговечность по образованию макротрещины конечной длины. Дальнейшее развитие макротрещины описывается методами и подходами механики разрушения.

Для одноосного нагружения вида (1), $\tau_m = 0$, определяющие соотношения для вероятности разрушения $Q_i = Q_i(\tau)$ записываются в следующем виде [4]:

$$Q_{j}(\tau) = \mu_{j}(\tau) \max_{z \in [0,t]} \left| \varphi_{j}(z) \right|, \quad \varphi_{j}(z) = \frac{1}{t} \int_{0}^{t} K_{j}(z,\tilde{t}) \sigma(\tilde{t}) d\tilde{t}, \quad j = 1,...6$$
(2)

при условии, что $\sigma = \sigma(\tau) \in L_2([0,t])$ (является функцией с интегрируемым квадратом $\int_0^t \sigma^2(\tau) d\tau \leq M^2$, M = const). Функции $K_j = K_j(z,\tilde{t})$, j = 1,...6 – положительно определенные симметрические ядра интегральных операторов, и функции $(K_j)^2$ интегрируемы по Лебегу. Тогда для $Q_j = Q_j(\tau)$ справедливы такие выражения:

$$Q_{j}(\tau) = \mu_{j}(\tau) \max_{z \in [0,t]} \left| \sum_{k=0}^{\infty} \frac{D_{k} \Omega_{k}(z)}{\lambda_{k}^{j}} \right|, \quad j = 1, \dots 6; \quad \mathbf{D}_{k} = \frac{1}{t} \int_{0}^{t} \sigma(\tilde{t}) \Omega_{k}(\tilde{t}) d\tilde{t}, \quad k = 1, \dots \infty, \quad \tau \in [0,t], \quad (3)$$

где λ_k^j , $k = 1, ...\infty$, j = 1, ...6 – характеристические числа ядра, соответствующие собственным функциям $\Omega_k(z)$, $k = 1, ...\infty$, на отрезке $z \in [0, t]$. В соотношениях (3) ряды сходятся абсолютно и равномерно. Выбираются ядра интегрального оператора, собственными функциями которых является полная ортогональная в $L_2([0, t])$ система тригонометрических функций вида:

 $\Omega_0 = 1, \Omega_1 = sin \frac{2\pi z}{t}, \Omega_2 = cos \frac{2\pi z}{t}, \dots \Omega_{2k-1} = sin \frac{2\pi zk}{t}, \Omega_{2k} = cos \frac{2\pi zk}{t}, k \in \mathbb{N}$ (4) Для одноосного нагружения вида (1), $\tau_m = 0$, функции $\mu_j = \mu_j(\tau)$ в (3) выбираются в виде:

$$\mu_{j} = \sqrt{\lg \frac{n}{n_{j-1}}}, \quad \lg n > \lg n_{j-1}, \quad j = 1, \dots 6$$
(5)

где n - число циклов нагружения, n_{j-1} – число циклов (долговечность) при разрушении на (j-1) – ом уровне. Алгоритм определения λ_k^j , $k = 1, ...\infty$, представлен в работе [4]. Таким образом, вероятность разрушения $Q_j = Q_j(\tau)$ определяется следующими зависимостями:

$$Q_{j}(n) = \frac{\sigma_{a}}{\sigma_{j}(\omega, N_{j})} \sqrt{\frac{\lg n - \lg n_{j-1}(\sigma_{a})}{\lg N_{j} - \lg n_{j-1}(\sigma_{j})}}, \quad \sigma_{a} \ge \sigma_{j-1}, \lg n \ge \lg n_{j-1}, \ n_{0} = 0, \ j = 1, \dots 6$$
(6)

где $\sigma_j = \sigma_j(\omega, N_j)$, j = 1, ...6 – материальные функции при числе циклов N_j при разрушении на j-ом уровне (т.е. достижении функции $l_j^* = l_j^*(\tau)$ своего предельного значения $l_{f,j}^*$). Кривые усталости по уровням дефектности определяются такими уравнениями (N_f – долговечность по образованию макротрещины конечной длины):

$$Q_j(n_j) = 1, \quad j = 1, ...6, \qquad Q(N_f) = 1,$$
(7)

С целью описания процесса разрушения при нагружении циклической осевой силой и постоянным крутящим моментом (1) рассматривается координатный тетраэдр с наклонной гранью, имеющей нормаль \vec{n}_1 и две ортогональные оси \vec{n}_2 и \vec{n}_3 (касательные векторы на этой грани) при условии выполнения следующих уравнений:

 $\vec{n}_i = n_{im^*} \vec{e_m}$, $||\vec{n}_i|| = 1$, $(\vec{n}_i, \vec{n}_j) = \delta_{ij}$, (8) где $\vec{e_m}$, m = 1,2,3 – орты прямоугольной декартовой системы координат в вершине тетраэдра. Так как компоненты этих векторов связаны соотношениями ортогональности (8), среди них имеются три независимые координаты, в качестве которых выбираются (n_{11}, n_{12}, n_{21}) . Процесс нагружения $\vec{P}_n = \vec{P}_n(\tau)$, $\tau \in [0, t]$, в системе координат \vec{n}_i , i = 1,2,3, представляется таким образом:

$$\overline{P_n} = \sum_{i=1}^{3} P_i \overline{n_i}, \qquad (9)$$

$$P_{i} = (\overrightarrow{P_{n}}, \vec{n}_{i}) = \sum_{m,j=1}^{3} \sigma_{mj} * n_{1j} (\overrightarrow{e_{m}}, \vec{n}_{i}) = \sum_{m,j=1}^{3} \sigma_{mj} n_{1j} n_{im} = \sum_{m,j=1}^{3} (S_{mj} + \sigma_{0} \delta_{mj}) n_{1j} n_{im}, \quad (10)$$

$$S_{mj} = \sigma_{mj} - \sigma_{0} \delta_{mj}, \quad m, j = 1, 2, 3, \quad \sigma_{0} = \sum_{i=1}^{3} \sigma_{ii} / 3,$$

где $\sigma_{mj} = \sigma_{mj}(\tau)$, σ_0 , S_{mj} – компоненты тензора напряжений, среднего напряжения и девиатора напряжений соответственно.

Для каждого j-ого уровня дефектности вводятся четыре оператора $\Pi_i^j = \Pi_i^j(z, P_i(\tau))_{\tau=0}^t$, i=1,2,3, $\Pi_0^j = \Pi_0^j(z, \sigma_0(\tau))_{\tau=0}^t$, j=1,...,6, которые рассматриваются в виде операторов Гильберта-Шмидта (2), (3) при условии, что функция $f = f(\tau)$ (под которой понимаются функции $P_i = P_i(\tau)$, i=1,2,3, и $\sigma_0 = \sigma_0(\tau)$) является действительной функцией с интегрируемым квадратом. Таким образом, для каждого из этих операторов можно записать:

$$\Pi_{i}^{j}\left(z,\,f(\tau)\right)_{\tau=0}^{t} = \int_{0}^{t} K_{i}^{j}(z,\tilde{t})f(\tilde{t})d\tilde{t} = \sum_{k=0}^{\infty} \frac{D_{k}\Omega_{k}(z)}{\lambda_{ik}^{j}},\,i=0,1,2,3,\,\,j=1,\ldots,6,$$
(11)

где $K_i^j = K_i^j(z, \tilde{t})$ – положительно определенное симметрическое ядро, $\lambda_{ik}^j = \lambda_{ik}^j(k, t)$ – собственные значения оператора, соответствующие собственным функциям $\Omega_k = \Omega_k(z)$, которые выбираются в виде (4), *i*=0,1,2,3, *j* = 1,...,6. В выражение (11) входят величины D_k , $k = 0,1,...\infty$, которые представляются таким образом:

$$f(\tau) = \sum_{k=0}^{\infty} D_k \Omega_k(\tau), \quad D_0 = \frac{1}{t} \int_0^t f(\tau) d\tau, \quad D_k = \frac{2}{t} \int_0^t \Omega_k(\tau) f(\tau) d\tau, \quad k = 1, \dots \infty$$
(12)

Таким образом, в рамках подхода теории предельных процессов нагружения [3] и теории усталостного масштабно-структурного разрушения [4,5] определяющие соотношения для вероятности разрушения $Q_j = Q_j(\tau)$, j = 1,...6, при процессе нагружения

 $\vec{P}_n = \vec{P}_n(\tau), \ \tau \in [0, t],$ записываются в таком виде:

$$Q_{j}(\tau) = \mu_{j}(\tau) \max_{z \in [0,t], n_{11}, n_{12}, n_{21}} \left\{ \left| \Pi_{0}^{j} \right| + \left| \Pi_{1}^{j} \right| + \left| \Pi_{2}^{j} \right| + \left| \Pi_{3}^{j} \right| \right\}, \quad j=1, \dots, 6,$$

(13)

а кривые усталости по уровням дефектности определяются такими уравнениями:

$$Q_j(t_j) = 1, \ j = 1, \dots 6,$$
 (14)

где t_j - долговечность на j- ом уровне. Функции $\Pi_i^j = \Pi_i^j (\mathbf{z}, \mathbf{f}(\tau))_{\tau=0}^t$, i=0,1,2,3, j=1,...6, определяются по (11). Для нагружения (1) имеем следующие выражения модели (максимальное значение по времени реализовано при $sin\frac{(2\pi z)}{t} = 1$):

$$\begin{aligned} Q_{j}(n) &= \sqrt{\lg n - \lg n_{j-1}(\sigma_{a}, \tau_{m}, n)} \max_{n_{11}, n_{12}, n_{21}} \left\{ \left| \lambda_{1}^{j}(\omega, N_{j}) \sigma_{a} \left(\frac{2}{3} n_{11}^{2} - \frac{1}{3} n_{12}^{2} - \frac{1}{3} n_{13}^{2} \right) + 2\lambda_{1} \tau_{m} n_{12} n_{11} \right| + \left| \frac{1}{3} \sigma_{a} \lambda_{1}^{j}(\omega, N_{j}) \right| + \\ &+ \left| \lambda_{2}^{j}(\omega, N_{j}) \sigma_{a} \left(\frac{2}{3} n_{11} n_{21} - \frac{1}{3} n_{12} n_{22} - \frac{1}{3} n_{13} n_{23} \right) + \lambda_{2} \tau_{m} \left(n_{12} n_{21} + n_{11} n_{22} \right) \right| + \\ &+ \left| \lambda_{3}^{j}(\omega, N_{j}) \sigma_{a} \left(\frac{2}{3} n_{11} n_{31} - \frac{1}{3} n_{12} n_{32} - \frac{1}{3} n_{13} n_{33} \right) + \lambda_{3} \tau_{m} \left(n_{12} n_{31} + n_{11} n_{32} \right) \right|, \ n_{11}, n_{12}, n_{21} \right\}, \end{aligned}$$

$$(15)$$

$$Q_{j}(n_{j}) = 1, \qquad j = 1, \dots, 6, \qquad \lg n \ge \lg n_{j-1}. \end{aligned}$$

В выражения (15) входят неизвестные базовые характеристики модели: материальные

константы $\lambda_1, \lambda_2, \lambda_3$ и материальные функции каждого уровня: $\lambda_0^j(\omega, N_j), \lambda_1^j(\omega, N_j), \lambda_2^j(\omega, N_j), \lambda_3^j(\omega, N_j), j = 1,...6$, которые должны быть найдены из системы базовых экспериментов. Для их нахождения рассматриваются: одноосные однократное и симметричное нагружения, однократный и симметричный сдвиг, двухосные равномерные однократное и симметричное нагружения и определяются максимальные значения в (15) по (n_{11}, n_{12}, n_{21}) и условии (16).

Проведены исследования развития много- и гигацикловой усталости (в области по числу циклов $N_f \in [10^4, 10^{10}]$)для алюминиевого сплава Д16Т (пределы текучести $\sigma_s = 340$ МПа, $\tilde{\sigma}_s = 476$ МПа, $\tau_s = 157$ МПа, пределы усталости $\sigma_{-1} = 170$ МПа, $\tilde{\sigma}_{-1} = 238$ МПа, $\tau_{-1} = 109.9$ МПа при $N_4 = 5*10^5$ циклов при одноосном, двухосном равномерном нагружениях и сдвиге соответственно, $N_1 = 5*10^8$ циклов, $N_2 = 5*10^7$ циклов, $N_3 = 5*10^6$ циклов, $N_5 = 10^5$ циклов, $N_6 = 10^3$ циклов, частота 50Гц). Получены следующие значения материальных функций: $\lambda_0 = \lambda_1 = 0.001$, $\lambda_2 = \lambda_3 = 0.002$; $\lambda_0^1(\omega, N_1) = 0.004$, $\lambda_1^1(\omega, N_1) = 0$, $\lambda_2^1(\omega, N_1) = \lambda_3^1(\omega, N_1) = 0.004$; $\lambda_0^2(\omega, N_2) = 0.008$, $\lambda_1^2(\omega, N_2) = 0.007$; $\lambda_1^3(\omega, N_4) = 0$, $\lambda_2^3(\omega, N_4) = \lambda_3^1(\omega, N_4) = 0.008$; $\lambda_0^5(\omega, N_5) = 0.008$, $\lambda_1^3(\omega, N_5) = 0.008$.

На рис. 1 а при одноосном симметричном нагружении представлены кривые усталости по уровням дефектности сплава Д16Т. Опытные данные [6,7] при частоте 50 Гц отмечены ромбами, в области гигацикловой усталости при частоте 20кГц - точками и хорошо описываются построенной кривой усталости по макроразрушению во всем диапазоне много- и гигацикловой усталости. (Цифрами указаны соответствующие уровни дефектности). Изучены механизмы много- и гигацикловой усталости. В области многоцикловой усталости активность поверхностного слоя (неоднородности химического состава самого слоя, остаточные напряжения, окисление поверхности) в энергетическом обмене с окружающей средой в значительной мере определяет образование и развитие микродефектов. В области гигацикловой усталости, в среднем, $N_f \ge 10^6 \mu \mu \kappa no \beta$, наблюдается механизм хрупкого разрушения, связанный с возникновением очагов микроразрушения в обьеме тела (т. н. «рыбьих глаз»), представляющих собой мелкозернистую область, окружающую структурную неоднородность сплава (стыки зерен, включения, неоднородность микроструктуры материала), вследствие, в т.ч., образования технологических дефектов в процессах штампования, термообработки, литья и др.

Написана программа по нахождению максимального значения в в выражениях (15) по n_{11}, n_{12}, n_{21} . В результате расчета получены кривые усталости при отношении $\tau_m/\tau_s = 0.2$, представленные на рис. 1 б и при $\tau_m/\tau_s = 0.5$ на рис. 1 в (сплошная кривая по макроразрушению проходит ниже). На рис. 1 б опытные данные [6,7] при симметричном осевом нагружении с частотой 50 Гц указаны треугольниками, с частотой 20 кГц – ромбами. Кривые усталости при симметричном нагружении (с рис.1 а) обозначены пунктиром и по макроразрушению – сплошными кривыми, расположенными выше. Из проведенного анализа следует, что, например, при амплитуде напряжения 170МПа и отношении $\tau_m/\tau_s = 0.2$ долговечность уменьшается на 40%, а при $\tau_s = 0.5$ - примерно на 8%, а при $\tau_m/\tau_s = 0.5$ - на 27%, что соответствует известным опытным данным. Все

построенные кривые удовлетворительно соответствуют опытным данным.

Рис. 1 Кривые усталости по уровням дефектности для сплава Д16Т

Также проведены расчеты для сплава Д16Т по данным [8] при $\frac{\tau_m}{\tau_{sp}} = 0.5$ (τ_{sp} -

временное сопротивление) и получено удовлетворительное соответствие опытным данным.

Литература

1. Прочность, ресурс, живучесть и безопасность машин// отв. Ред. Н.А. Махутов. М.: Книжный дом «Либроком». 2019. 576 с.

2. Biaxial/Multiaxial Fatigue and Fracture//Editors: Carpinteri A., de Fritas M., Spagnoli A. ESIS, Publ. 31, Elsevier. 2003. 516 p.

3. Завойчинский, Б.И. Долговечность магистральных и технологических трубопроводов. М.: Недра, 1992. 271 с.

4.Zavoychinskaya E.B.A Stochastic Theory of Scale-Structure Fatigue and Structure at Operational Loading // Understanding complex systems. Springer Complexity. 2021. p. 71-89.

5. Завойчинская Э.Б., Панарин И.Ю. Прогнозирование кривых усталости металлов и сплавов на микро-, мезо- и макромасштабных уровнях развития разрушения при периодических программных нагружениях//в сб. «Современные методы и технологии создания и обработки материалов». 2023. ФТИ НАН Беларуси, г. Минск. Т.3. с. 45-58.

6. Вильдеман В.Э., Третьяков М.П., Староверов О.А., Янкин А.С. Влияние режимов двухосного нагружения на усталостную долговечность алюминиевого сплава Д16Т и 40ΧΓΜΑ Пермского исследовательского стали // Вестник национального университета. Механика. C. 169-177.DOI: политехнического 2018. № 4 10.15593/perm.mech/2018.4.16

7. Вильдеман В.Э., Янкин А.С. и др. Усталостное поведение конструкционных сплавов в условиях одноосных и двухосных циклических воздействий, Сборник Трудов XII Всероссийского сьезда по фундаментальным проблемам теоретической и прикладной механики, Уфа, т.3, 2018. DOI 10.22226/2410-3535-2019-congress-v3

8. Pelykh V. N. Solving fatigue problems for combing loading by static torsion and reversed cyclic bending // Int. Applied Mechanics. 2019. Vol. 55. No. 1. p.103-109

I. Модели и критерии разрушения материалов и живучест	N
конструкций на различных масштабно-структурных уровнях	ĸ
Абашев О.В., Поляков А.Н. Деформационные критерии малоциклового	
разрушения и их использование для определения усталостной	4
долговечности с учетом остаточных напряжений	
Артамонов М.А. Определение периода зарождения и роста	
усталостной трещины в образцах из гранулируемого никелевого	8
сплава ЭП74ІНП	
Власов Д.Д., Полилов А.Н. О возможности определения параметров	
ползучести полимерных композитов по результатам динамических	I4
испытаний	
Власов Д.Д., Татусь Н.А., Поляков А.Э. Определение механических	
упругих характеристик полимерных композитов, изготовленных	I9
методами ЗD печати	
Волков А.Н., Одинцев И.Н., Кокуров А.М. Влияние несовершенств	
формы поверхности цилиндрической оболочки на величину	24
критического осевого сжатия	
Волкова О.Д., Полилов А.Н. Развитие подхода Ю.Н. Работнова к	30
оценке прочности композитов (к 110-летию со дня рождения)	
Воронин Н.А. Учет остаточных напряжений при оценке адгезионной	36
прочности тонких твердых покрытии микроиндентированием	
Дмитриев Н. В., Бласов Д. Д. О методах решения задачи о потери	42
устоя чивости композитных стержнея переменноя жесткости	
Mundoneganuant papermenung omanu faurawa tereneguere vereas	A17
микромеханизмы разрушения стали оандажа локомотивного колеса	41
при эксплуагации в экстремальных условина севера	
	59
	52
Завойнинская Э.Б., Усанев М.А. Исслетование усталостного	
нагружении циклической осевой силой и постоянным крутящим	58
MOME HTOM	
Покровский А.М., Матвиенко Ю.Г., Казанцев А.И. Оценка	
трещиностойкости магистрального нефтепровода с поверхностной	~ ~
полуэллиптической трещиной с учетом двухосного стеснения	64
деформаций по ее фронту	
Махутов Н.А. Обоснование системы запасов прочности, ресурса,	20
живучести и безопасности	70
Назаров В.В. Критерий разрушения в полом цилиндре в условиях	70
водородной коррозии при высокой температуре	.(9
Новоженова О.Г. Развитие наследственной механики Ю.Н.Работнова.	QA
Колокольчиков В.В.	04
Пахомов Н.А., Артамонов М.А., Старшинов Д.С. Методика	
определения стойкости к повреждениям рабочих лопаток КНД по	9 0