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Abstract: Telomeres—special DNA–protein structures at the ends of linear eukaryotic chromosomes—
define the proliferation potential of cells. Extremely short telomeres promote a DNA damage
response and cell death to eliminate cells that may have accumulated mutations after multiple
divisions. However, telomere elongation is associated with the increased proliferative potential of
specific cell types, such as stem and germ cells. This elongation can be permanent in these cells and is
activated temporally during immune response activation and regeneration processes. The activation
of telomere lengthening mechanisms is coupled with increased proliferation and the cells’ need for
energy and building resources. To obtain the necessary nutrients, cells are capable of finely regulating
energy production and consumption, switching between catabolic and anabolic processes. In this
review, we focused on the interconnection between metabolism programs and telomere lengthening
mechanisms during programmed activation of proliferation, such as in germ cell maturation, early
embryonic development, neoplastic lesion growth, and immune response activation. It is generally
accepted that telomere disturbance influences biological processes and promotes dysfunctionality.
Here, we propose that metabolic conditions within proliferating cells should be involved in regulating
telomere lengthening mechanisms, and telomere length may serve as a marker of defects in cellular
functionality. We propose that it is possible to reprogram metabolism in order to regulate the telomere
length and proliferative activity of cells, which may be important for the development of approaches
to regeneration, immune response modulation, and cancer therapy. However, further investigations in
this area are necessary to improve the understanding and manipulation of the molecular mechanisms
involved in the regulation of proliferation, metabolism, and aging.

Keywords: telomere; development; alternative lengthening of telomeres; ALT; telomerase; metabolism;
glycolysis; oxidative phosphorylation; OXPHOS

1. Introduction

Somatic cell proliferation depends on the availability of intracellular resources and
is tightly coordinated with metabolism. To divide, a cell must accumulate proteins and
lipids and replicate its DNA to produce a daughter cell. Eukaryotic cells cannot divide
endlessly; the end-replication problem restricts the cellular proliferation capacity [1,2].
Telomeres—repetitive sequences located at the ends of linear chromosomes—provide the
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defense of genetic information from loss during the replication process and discrimination
from internal double-stranded breaks. However, telomeres shorten with each cellular
division, and once they reach a critical length, cells induce senescence [3,4]. This mechanism
likely helps a multicellular organism eliminate cells that may have accumulated mutations
due to multiple rounds of replication. Telomeres shortening limits the number of times
eukaryotic cells can divide. This is usually sufficient for most somatic cells, which do
not divide extensively; however, it is not sufficient for special cells like stem and germ
cells, which must divide constantly [5,6]. Tissue regeneration, immune response, and
tumor formation—all of which highly depend on proliferation and differentiation—require
increased cell growth. Indeed, this growth is supported by telomere lengthening and the
activation of anabolism—a pathway that uses energy for biosynthetic processes [7–9].

Telomerase—a specialized reverse transcriptase—is activated to elongate telomeres
in vertebrates under conditions that support increased proliferation [6,10,11]. The alter-
native lengthening of telomeres (ALT) through break-induced replication of telomeric
DNA supports telomere lengthening in some stages of embryonic development and in
telomerase-negative cancer cells [12]. This review aims to provide an overview and dis-
cussion of the mechanisms underlying telomere elongation during gametogenesis, early
development, and immune response, as well as any potential connections to cellular
metabolism programs.

2. Telomeres: Structure and Regulation
2.1. Telomere Structure

The very ends of linear eukaryotic chromosomes are organized in special DNA–protein
structures called telomeres. Telomeres protect linear eukaryotic chromosomes from the
loss of genetic information during replication and false recognition as DNA breakage
sites. Vertebrate and some invertebrate telomeric DNA are composed of long (several
kilobases) double-stranded regions of TTAGGG (Figure 1) repeats, flanked by a 3′-end
single-stranded G-overhang [13–15]. The telomeres shorten with every cell division, serving
as a molecular clock that limits the proliferative lifespan of cells. Critically short telomeres
activate mechanisms of cellular senescence, promoting cell death [16,17]. Telomeres may be
elongated by telomerase [18] or through an alternative mechanism based on homologous
recombination [19]. The initial telomere length of somatic cells is derived from germline
cells [20]. Stem cells need to preserve telomere length so they can regenerate effectively.
Cancer cells also use mechanisms to maintain telomere length, allowing them to keep
dividing for longer periods. Telomere length is important for the lifespan of cells and
organisms. If it is not properly regulated, it can lead to issues with regeneration, premature
aging, tumor formation, and growth with subsequent cancer progression.

The shelterin complex associates with mammalian telomeres to regulate various as-
pects of telomere function and contains six protein subunits: telomeric repeat binding
proteins 1 and 2 (TRF1 and TRF2), TRF1-interacting nuclear factor 2 (TIN2), protection
of telomeres protein 1 (POT1), POT1 and TIN2-interacting protein (TPP1), and repres-
sor/activator site-binding protein (RAP1) [21–23].

Shelterin caps the ends of chromosomes and organizes the T-loop structures [24],
but the long double-stranded region of telomeric DNA is packed with nucleosomes in
specific columnar arrangement. Telomeric nucleosomes are less stable and more dynamic
structures with unwrapping of DNA ends compared to canonical nucleosomes [25–28].
Human telomeric chromatin is enriched in histone H3 trimethylated at Lys9 (H3K9me3),
a marker of constitutive heterochromatin, which coexists in telomeres with H3K27me3, a
marker of facultative heterochromatin. Taken together, telomeric structure can be viewed
at two different scales: the higher-order chromatin architecture, which regulates telomere
accessibility, and the more compacted structure of telomeric ends, which influences specific
telomere replication mechanisms (Figures 1–3).
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Figure 1. Human telomeric chromatin structure. The long double-stranded region of telomeric DNA 
is packed with nucleosomes in specific columnar arrangement and the very ends of telomeres are 
organized by the shelterin complex composed of telomeric repeat binding proteins 1 (TRF1) and 2 
(TRF2), TRF1-interacting nuclear factor 2 (TIN2), TIN2-interacting protein (TPP1), protection of te-
lomeres protein 1 (POT1), and repressor/activator site-binding protein 1 (RAP1). To prevent the 
degradation and reparation of chromosome ends, T-loops and D-loops protect telomeres. G-rich 3′-
overhangs form G-quadruplex structures that stimulate telomerase to synthesize telomeric repeats 
and prevent the synthesis of the C-rich strand by the CTC1-STN1-TEN1 (CST) complex. Transcrip-
tion of subtelomeric regions produces TERRA (TElomere Repeat containing RNA), which promotes 
R-loop formation stabilized by G-quadruplex structures at the opposite strand. 

In addition to T-loops, telomeric DNA is involved in the formation of two other non-
canonical structures: the G-rich chain forms G-quadruplexes [29,30], and the transcription 
of telomeric regions stimulates the formation of R-loops, which are RNA–DNA hybrids 
[31,32] (Figure 1). For a long time, the telomeric region of chromosomes was considered 
transcriptionally silent. However, recently, transcription resulting in the synthesis of long 
non-coding RNA named TElomere Repeat containing RNA (TERRA) was reported [33,34]. 
RNA polymerase II starts from promoters in the subtelomeric regions and synthesizes G-
rich heterogeneous in length (from 100 nts to more than 9000 nts in mammals) and consists 
of RNA 5′-UUAGGG-3′ repeats in the direction of the end of chromosomes. An increased 
level of TERRA correlates with the accumulation of R-loops at telomeres, and the study 
demonstrated that the number of R-loops is higher at critically short telomeres [35]. In-
deed, TERRA R-loops are stabilized at critically short telomeres, interfering with replica-
tion, which causes replication stress and the induction of double-stranded breaks [36,37]. 
The activated DNA damage response promotes homology-directed repair to elongate te-
lomeres. 

In the majority of vertebrate cells, telomeres shorten with each division cycle because 
of the end-replication problem and nuclease action. However, telomeres must be main-
tained in cells with increased proliferation potential, such as germ, stem, and cancer cells. 
At the beginning of embryonic development, telomeres elongate very efficiently to obtain 
the length necessary for many divisions before birth and throughout the life of the organ-
ism. There are two basic mechanisms of elongation of telomeres known to be used in cells: 
elongation of the 3′-overhang by telomerase, followed by filling in the C-rich strand by 
DNA polymerase a; and the alternative lengthening of telomeres (ALT), which is based 
on homology recombination. 

  

Figure 1. Human telomeric chromatin structure. The long double-stranded region of telomeric DNA
is packed with nucleosomes in specific columnar arrangement and the very ends of telomeres are
organized by the shelterin complex composed of telomeric repeat binding proteins 1 (TRF1) and
2 (TRF2), TRF1-interacting nuclear factor 2 (TIN2), TIN2-interacting protein (TPP1), protection of
telomeres protein 1 (POT1), and repressor/activator site-binding protein 1 (RAP1). To prevent the
degradation and reparation of chromosome ends, T-loops and D-loops protect telomeres. G-rich
3′-overhangs form G-quadruplex structures that stimulate telomerase to synthesize telomeric repeats
and prevent the synthesis of the C-rich strand by the CTC1-STN1-TEN1 (CST) complex. Transcription
of subtelomeric regions produces TERRA (TElomere Repeat containing RNA), which promotes R-loop
formation stabilized by G-quadruplex structures at the opposite strand.

In addition to T-loops, telomeric DNA is involved in the formation of two other
noncanonical structures: the G-rich chain forms G-quadruplexes [29,30], and the tran-
scription of telomeric regions stimulates the formation of R-loops, which are RNA–DNA
hybrids [31,32] (Figure 1). For a long time, the telomeric region of chromosomes was
considered transcriptionally silent. However, recently, transcription resulting in the syn-
thesis of long non-coding RNA named TElomere Repeat containing RNA (TERRA) was
reported [33,34]. RNA polymerase II starts from promoters in the subtelomeric regions and
synthesizes G-rich heterogeneous in length (from 100 nts to more than 9000 nts in mammals)
and consists of RNA 5′-UUAGGG-3′ repeats in the direction of the end of chromosomes.
An increased level of TERRA correlates with the accumulation of R-loops at telomeres,
and the study demonstrated that the number of R-loops is higher at critically short telom-
eres [35]. Indeed, TERRA R-loops are stabilized at critically short telomeres, interfering
with replication, which causes replication stress and the induction of double-stranded
breaks [36,37]. The activated DNA damage response promotes homology-directed repair
to elongate telomeres.

In the majority of vertebrate cells, telomeres shorten with each division cycle because of
the end-replication problem and nuclease action. However, telomeres must be maintained
in cells with increased proliferation potential, such as germ, stem, and cancer cells. At the
beginning of embryonic development, telomeres elongate very efficiently to obtain the
length necessary for many divisions before birth and throughout the life of the organism.
There are two basic mechanisms of elongation of telomeres known to be used in cells:
elongation of the 3′-overhang by telomerase, followed by filling in the C-rich strand by
DNA polymerase a; and the alternative lengthening of telomeres (ALT), which is based on
homology recombination.
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2.2. Telomere Lengthening by Telomerase

Telomerase reverse transcriptase elongates the 3′-overhang of the telomeric DNA
copying template region of the telomerase RNA component (TR) [10,11]. The telomeric
3′-overhang is used for primer base pairing, with 3′-end binding to the template region of
the TR, which initiates the telomerase catalytic cycle (Figures 1 and 2).
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Figure 2. Scheme of telomerase action at telomeres. Telomeric chromatin is organized in a closed
state. Subtelomere DNA is methylated at CpG dinucleotides. Histones are characterized by het-
erochromatin modifications (H3K9me3 and H4K20me3), which are established by SUV39H1/2
and SUV4-20H1/2. Despite the heterochromatin status of telomeric regions, subtelomeric regions
contain promoters that provide low-level transcription of the long non-coding RNA TERRA. The
a-thalassemia/mental retardation syndrome and X-linked (ATRX) and death-domain-associated
protein (DAXX) complex (ATRX/DAXX complex) stimulates the accumulation of H3.3 nucleosomes
and prevents the homological recombination of telomeric regions. The shelterin complex, through
TPP1, loads telomerase to the very end of the telomere and stimulates the synthesis of telomeric
repeats in a processive manner, allowing the enzyme to translocate along the telomere and add more
telomeric repeats after the synthesis of a single repeat.

The interaction with telomeres is the first and main step of the catalytic cycle of
telomerase. The dynamic structures of telomeres and shelterin play an important role
in regulating telomere accessibility for telomerase. Shelterin can protect telomeres by
stimulating the formation of T-loops and/or end-capping the telomeric 3′-overhang [21].
Alternatively, it can recruit telomerase to telomeres and stimulate telomerase processivity
in the addition of multiple telomeric repeats [38–40]. The TEL-patch (TPP1 glutamate (E)
and leucine (L)-rich patch) of the OB-fold (oligonucleotide/oligosaccharide-binding) of
TPP1 directly interact with the TEN (telomerase essential N-terminal) domain of TERT
during the S-phase of the cell cycle after genome replication. The process of this interaction
is highly dynamic, and multiple tentative interactions occur before contact stabilizs through
base pairing of the telomeric end with the template region of telomerase RNA [41,42]. TPP1
should help telomerase designate the telomeric tail and exclude binding with internal
regions of telomeres.

Interestingly, POT1 has a controversial role regulating telomerase attraction. When
bound to the internal regions of the ssDNA overhang, it stimulates telomerase association
and activity; however, its interaction of the POT1 with the very end of the telomere
blocks telomerase binding and inhibits telomere lengthening [43,44]. Moreover, POT1,
in coordination with TERRA and hnRNPA1 [45], removes replication protein A (RPA)
from telomeric ssDNA, which inhibits telomerase activity [46]. POT1 binding is necessary
to protect telomeric ssDNA [47,48], and its association with TPP1 stimulates telomerase
processivity [49].
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2.3. ALTernative Mechanism of Telomere Lengthening

In some cells where telomerase is repressed, the DNA repair pathway, particularly
homologous recombination (HR), is activated to maintain telomere length through the
ALT mechanism (Figure 3) [19]. The ALT pathway is associated with the inactivation
of a-thalassemia/mental retardation syndrome and X-linked (ATRX) and death-domain-
associated proteins (DAXX) [50]. ATRX and DAXX are the components of a multifunctional
chromatin-remodeling histone chaperone complex responsible for replication-independent
localization of histone H3.3 at telomeres and pericentromeric chromatin [51–53]. ATRX
interacts with DNA methyltransferase 1 (DNMT1). Mutations of lysine 27 (K27M) in his-
tones H3.1 and H3.3 have been identified in some cases of glioblastomas [54]. Moreover,
mutations in isocitrate dehydrogenase (IDH1) [55], which regulates the production of
a-ketoglutarate required for the enzymatic demethylation of histones and DNA, have been
found in ALT tumors (low-grade astrocytoma and multiform glioblastoma). As a result,
2-hydroxyglutarate accumulates, competing with 2-oxoglutarate, and affects DNA/histone
methylation, hypoxia signaling, DNA repair, and redox homeostasis, impacting the onco-
genesis of IDH-mutated cancers [56,57]. All mutations associated with the ALT mechanism
for telomere maintenance promote significant remodeling of telomeric chromatin, making
it acceptable for homologous recombination (HR) mechanisms.

Alternative lengthening of telomeres is carried out by proteins that participate in the
homology recombination mechanism. Telomeric DNA synthesis in ALT cells involves both
intra- and inter-telomeric recombination and replication. ALT cells are characterized by
several hallmarks at telomeres: specialized ALT-associated promyelocytic leukemia foci
(APBs), heterogeneous telomere length, abundant extrachromosomal telomeric sequences
(ECTSs) such as T- and C-circles, and high levels of telomere sister chromatid exchange
(T-SCE) [12,58,59]. APBs are unique nuclear structures specific to ALT cells, containing
promyelocytic leukemia (PML) protein and telomeric DNA. In APB clusters, telomeres and
shelterin associate with recombinase RAD51, RPA [60], DNA resection MRE11-RAD50-
NBS1 (MRN) complex [61], Bloom helicase (BLM) [62], and other HR accessory factors such
as FANCM, BRCA1 [63], BRCA2, RAD51AP1 [64], and RAD52 [58].

In this brief overview, we have described how many proteins are involved in telomere
homeostasis; many of them have crucial cellular functions, implying a close relationship
between telomeres and cellular state.
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Figure 3. ALTernative mechanism of telomere maintenance. Absence of ATRX at telomeres promotes
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activation of homology searching, and strand exchange, assisted by RAD51 and RAD52 accessory
factors. After DNA synthesis, break-induced and/or homology-directed repair finalize the process of
recombination. The accumulation of variant repeats in ALT cells resulting from telomere recombina-
tion can induce the binding of NR2C/F transcription factors to telomeres, leading to chromosomal
rearrangements and genomic instability.

3. Non-Telomeric Roles of Telomere Components
3.1. Noncanonical Functions of Telomeric Proteins

The telomere is not a self-sustaining structure; rather, it is strongly linked to cellular
functions. This relationship is most evident when telomere components execute non-
telomeric functions. The regulation of transcriptional control by the telomeric components
may be significant in aspects of cellular metabolism regulation. The noncanonical functions
of shelterin and telomerase components have recently been reviewed [65]. It is well known
that RAP1 is involved in transcription regulation of both subtelomeric and extratelom-
eric regions. Chip-Seq (chromatin immunoprecipitation sequencing) analysis revealed at
least 16 genes involved in cell adhesion, metabolism, and cancer whose expression was
affected in RAP1-deficient mouse embryonic fibroblasts (MEFs) [66]. Mammalian RAP1
cannot bind directly to telomeric DNA and requires an interacting partner, TRF2, whose
binding to thousands of non-telomeric sites was recently demonstrated. RAP1 regulates
the specificity of TRF2 to different genomic regions, influencing transcriptional control [67].
Moreover, TRF2-mediated regulation of VEGF-A (vascular endothelial growth factor A)
expression [68] in the process of vascularization and PDGFR-b in the activation of natural
killer (NK) cells [69] was demonstrated.

TRF2, in association with nuclear lamina, is involved in organization and stabilization
of higher-order DNA looping [70], chromatin compaction, and telomere–interstitial chro-
matin interaction [71,72]. Recently, it was shown that TRF2 is necessary for the expression
of cancer stem cell markers Oct4, Sox2, KLF4, and c-Myc [73].

TRF1 has been shown to be essential for the proliferation of induced pluripotent cells
and directly regulated by Oct3/4 [74]. TRF1 involvement in the regulation of cell cycle
progression was demonstrated in several investigations. It positively regulates Aurora B
kinase during chromosomal segregation [75] and induces cytokinetic failure through direct
interaction with the cell cycle regulator Nek2 [76].

3.2. Noncanonical Functions of Telomerase Components

The non-telomeric functions of the major components of telomerase have been investi-
gated more intensively. TERT is involved in the regulation of several signaling pathways
related to proliferation and metabolism. The activation of the Wnt pathway and prolifer-
ation by TERT expression have been demonstrated in mice and human cells. Moreover,
the expression of TERT has been shown to be regulated by Wnt. However, the genetic
background may affect the results obtained by different scientific groups [77].

It has been demonstrated that TERT regulates inflammation by modulating the expres-
sion of NF-kB-dependent genes, suggesting that the interplay between TERT and NF-kB
regulates inflammation and development [78–81].

TERT stabilizes myelocytomatosis oncogene (Myc) protein levels and regulates its
binding to target promoters, contributing to either the activation or repression of Myc-target
genes, independently of its telomeric role, which influences Myc-dependent oncogene-
sis [82–84]. TERT was shown to regulate the expression of VEGF and tumor develop-
ment [85,86].

TERT is involved in the long-term regulation of gene expression in cells. It has
been demonstrated that TERT expression results in the upregulation of DNMT1 and
DNMT3B [87,88]. DNMT3B upregulation promotes de novo methylation of the promoter
of the tumor suppressor PTEN, which is involved in the regulation of PI3K/AKT sig-
naling. PTEN inhibition led to an increase in AKT activity, enhanced cell survival, and
proliferation [88].
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Unlike TERT, the telomerase RNA component is expressed in somatic cells constitu-
tively, and its alternative non-telomerase functions have been demonstrated. TR (telomerase
RNA component) is involved in the regulation of gene expression by direct complementary
interaction with promoter regions of Wnt, Myc target genes, along with several genes
related to NF-kB-pathway and genes involved in developmental myelopoiesis [89–92].

Telomerase components are also involved in cell protection mechanisms. Both TR
and TERT are involved in DNA damage response. It has been demonstrated that TERT
influences the phosphorylation of yH2AX-histone and ATM (ataxia-telangiectasia mutated)
autophosphorylation [93], while TR is involved in the regulation of ATR kinase activity [94].
TR overexpression promotes T-cell survival under apoptosis induction conditions [95].

3.3. Telomeric and Telomerase Components and Mitochondria

The interconnection between telomeres and mitochondria plays a role in genome
stability and cell fate. The mitochondrial electron transport chain (ETC) provides the
transmembrane proton gradient used by ATP synthetase to produce ATP during oxidative
phosphorylation (OXPHOS), sufficient for the energy supply of cell needs [96]. Controlled
leakage of electrons carried by the respiratory chain to oxygen results in the production of
reactive oxygen species (ROS). At low levels, these ROS work as signal molecules, but at
high levels, they have the potential to damage all types of biomolecules [97]. Eukaryotic
cells have antioxidant mechanisms to protect against oxidative stress by balancing ROS
production and utilization through enzymatic and non-enzymatic processes. However,
an imbalance between ROS production and cellular defense mechanisms results in ox-
idative stress, which is believed to be highly damaging to telomeric DNA because it is
enriched with guanine residues, which are more sensitive to oxidation, producing 8-oxo-
7,8-dihydroguanine (8-oxoG). Moreover, DNA damage repair is repressed at telomeres.
The existence of a correlation between oxidative stress and telomere attrition in short-lived
species has been demonstrated in vitro and in vivo under physiological conditions [98–101].
On the other hand, recent data also support the view that mitochondrial ROS are not directly
involved in DNA damage overall, or at telomeres in particular, although the occurrence of
damage to nuclear DNA during oxidative stress of mitochondrial origin is undisputed [102].

One of the shelterin components, TIN2, contains an N-terminal mitochondrial localiza-
tion signal, which overlaps with the TPP1-interacting domain and normally targets TIN2 to
the telomeres. Thus, the localization of TIN2 is regulated through the abundance of TPP1.
TIN2 is processed to the shorter form through proteolytic cleavage in mitochondria. It is
involved in the regulation of glucose metabolism and production of ATP [103].

Surprisingly, the major components of telomerase, TERT and TR, are localized in
mitochondria and regulate the functioning of this organelle. Human TERT contains an
N-terminal leader sequence, which is used for targeting in mitochondria upon oxida-
tive stress in various human cells [104,105]. The overexpression of TERT increases the
mitochondrial membrane potential and reduces the superoxide level via an unknown
mechanism [106–108]. It has been proposed that hTERT regulates the expression of SOD2
superoxide dismutase and proteins involved in ATP synthesis [108–113]. Thus, hTERT
can not only regulate utilization but can also indirectly control the production of ROS,
which positively correlates with the value of the membrane potential spent during the
work of F0F1 ATP-synthase. It is known that, under physiological conditions, a decrease in
membrane potential during ATP synthesis in intact, isolated mitochondria or cells leads
to a decrease in ROS levels, reflecting complex reciprocal relationships between metabolic
activity, ROS-mediated signaling, and oxidative stress in living cells [114–116]. Interestingly,
the paradox of the steep H2O2 gradient around the mitochondria, which is often cited as
the main argument against mitochondrial ROS damaging nuclear DNA [116], along with
the shuttle transfer of TR, TERT, and microRNA between the nucleus and mitochondria (for
review, see [117]), can be resolved by considering the localization of mitochondria directly
within the nucleus. While TR has also been observed in mitochondria, it is processed
into a shorter form before being re-exported to the cytoplasm, enabling the sensing of
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mitochondrial membrane potential [118,119]. First proposed in 1958 and long rejected,
this concept has recently found experimental confirmation and helps explain a number
of paradoxes of mitochondrial–nuclear cross-talk; however, further studies are needed to
elucidate the significance and mechanisms of such interactions in higher eucaryotes, as
well as the mechanisms by which telomerase reduces ROS, which remain underexplored
and require further investigation [120,121].

Interestingly, telomerase is also involved in mitophagy and mitochondrial biogene-
sis activation for the recycling of damaged mitochondria [122]. Recently, it was shown
that mitochondrial protein methylcrotonoyl-CoA carboxylase, responsible for the enzy-
matic conversion of 3-methylcrotonyl-CoA to 3-methylglutaconyl-CoA in the catabolism
of aliphatic amino acids, is responsible for telomerase–mitochondria interaction through
its competitive binding and complex formation with the telomere binding protein TRF2;
this complex is suggested to be critical for telomerase recruitment to telomeres [123]. In
knockout cell models, both the number of mitochondria (through the upregulation of fusion
markers MFN1, MFN2 and OPA1) and telomere lengths were reduced in the absence of
methylcrotonoyl-CoA carboxylase.

Furthermore, since TR encodes the regulatory protein hTERP, it may control the
autophagy program [124]. Anabolic growth of cells is regulated by genes activated by the
mammalian target of rapamycin (mTOR), a serine/threonine kinase that integrates multiple
extra- and intracellular signals and promotes glycolysis, growth, and proliferation [125,126].
mTOR is regulated by a sensor of the AMP/ATP ratio, AMPK, which drives catabolic
metabolism when energy stores are depleted. It stimulates mitochondria biogenesis and
inhibits mTOR activity. Both mTOR and AMPK form an axis of reciprocal regulation of
catabolic and anabolic pathways [127,128]. Interestingly, the hTERP protein encoded in
the precursor of the human telomerase RNA component is involved in the regulation of
autophagy and cell proliferation through the AMPK pathway and stimulates autophagy
and proliferation [124,129]. Autophagy is activated when glycolysis is inhibited, so we
could hypothesize that the switching between the biogenesis pathway of the primary
transcript of the telomerase RNA gene [130] may be regulated by intracellular signals and
metabolic reprogramming to modulate the telomerase activity in accordance with cell’s
requirements for proliferation rate.

4. Metabolic Programs and Telomere Elongation

Telomere maintenance mechanisms are activated during certain physiological stages
and processes that require an increase in the cell proliferation rates [131,132]. Proliferation
rate activation requires increased levels of nutrients for the synthesis of components neces-
sary for building new cells. Moreover, it is becoming clear that metabolic pathways can
also play modulatory or instructive roles in the regulation of cellular programs, which can
be summarized as metabolic signaling functions [133,134].

The majority of cells in normal physiological status use oxidative phosphorylation
(OXPHOS) as the main metabolic program. However, in cases of increased proliferation
rates and oxygen deficiency in lesions or neoplasia, OXPHOS switches to the glycolysis
program in satellite stroma cells (cancer-associated fibroblasts in the tumor microenviron-
ment, for example), whereas in proliferating cells, OXPHOS increases. The formation of
the so-called metabolic symbiosis between glycolytic stroma cells and proliferating cells
provides a chance to generate enough energy to fulfill the requirements of dividing cells
through the import of lactate and pyruvate from the intercellular space (Figure 4) [133–135];
for review, see also [136]. It is of note that intermediate metabolites affect downstream
biochemical reactions and protein modifications, such as protein acetylation, glycosylation,
and methylation [137].
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Figure 4. An overview of glucose metabolism. Glucose is catabolized in a series of enzymatic
reactions yielding pyruvate. Pyruvate is converted in lactate or transported in mitochondria and
metabolized by pyruvate dehydrogenase (PDH) into acetyl-CoA, fueling the tricarboxylic acid cycle
(TCA). FBP—fructose biphosphate; 1,3-BPG—1,3-biphosphoglycerate; 3PG—3-phosphoglycerate;
PEP—phosphoenolpyruvate. Glycolysis also fuels the pentose phosphate pathway, which produces
nucleotides, amino acids, and fatty acids.

It is well known that metabolism is regulated over time and space at the intercellular,
subcellular, and tissue levels. Metabolism is regulated during cell cycle progression. Gly-
colysis is activated during the G1/S transition, while mitochondrial respiration increases
during the G2/M transition [138–141]. The reduced OXPHOS activity at the stage of DNA
replication should minimize the risk of oxidative damage to DNA due to ROS produced
by mitochondria in stroma cells. Moreover, acetyl-CoA—the main substrate for energy
production by mitochondria—originates in proliferating cells mainly from imported lactate.
It is also used for the acetylation of histones, promoting the epigenetic regulation of gene
expression, and its levels should be enhanced during DNA synthesis and the establishment
of epigenetic marks [142]. The epigenetic state of chromatin is also regulated by the level of
other metabolic intermediates. The level of a-ketoglutarate is important for maintaining
the methylation of DNA and histones, thereby regulating the expression activity of the
genome [143].

It is interesting that during the cellular phase in which telomerase elongates telomeres,
the glycolytic metabolism program is activated; moreover, in cells with an increased
proliferation rates where telomeres need to be elongated, mitochondrial OXPHOS activity
is enhanced, and glycolysis continues to provide the necessary resources for the synthesis
of compounds for new cells.

4.1. Cellular Metabolic Programs and Telomere Elongation in Cancer Cells

The link between metabolism and telomere maintenance is mostly addressed in cancer
cells. Cancer cells activate glycolysis in cancer-associated fibroblasts (CAFs) to import
the nutrients needed for making new cells. In transformation and cancer progression, the
cellular environment changes. For example, it has been demonstrated that during the first
steps of tumor growth, cells are in a state of hypoxia, but further development promotes
vascular growth, and the level of oxygenation reverses to a normal range. Moreover, tumor
cells activate glycolysis via a mechanism known as the Warburg effect, but the OXPHOS
mechanism is hyperactivated in cancer cells during cancer progression [144]. Cancer
cells proliferate faster because of changes in certain mechanisms that lengthen telomeres.
These changes can be caused by mutations in promoter regions [145–147], resulting in the
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expression of hTERT and activation of telomerase. Some metabolites provide the resources
for chromatin modifications, which influence the regulation of expression activity. Acetyl-
CoA provides the acetyl group for histone acetylation, while a-ketoglutarate is used for
maintaining the methylation of histones and DNA. Changes in the metabolic program
during oncogenic transformation of cells may affect long-range chromatin organization
in the promoter region of the hTERT gene [148], followed by the mutation of this region,
leading to the activation of expression. The hTERT supports noncanonical functions
and regulates the expression of genes that are involved in cancer cell metabolism [149].
Furthermore, telomere proteins control many aspects of cellular functioning, especially
in cancer cells [150,151], and may influence metabolism, inflammation, and repair. The
decrease in these repair processes leads to the activation of a mechanism called alternative
lengthening of telomeres, which is based on a type of DNA recombination [19].

Next, we will focus on the mechanisms of switching the metabolism program and
telomere lengthening mechanisms during development and T-cell activation. In con-
trast to cancer cells, in normal development, the activation of telomere lengthening is
transient and switched off after a short period of telomere elongation coupled with
increased proliferation.

4.2. Metabolism and Telomere Lengthening during Gametogenesis and in Early Development

Mammalian organisms start to develop from fertilization, where two specialized cells,
the spermatozoa and the oocyte, fuse together to form a totipotent 1-cell zygote. Further
division, coupled with the differentiation of newly obtained cells, gives rise to the whole
embryo and extra-embryonic tissues, such as trophoblasts, which give rise to the placenta
at later stages of development. Successful growth of a new organism requires proper
reorganization of chromatin that is restricted in time and coordinated with the stage of
development. Proper telomere length is crucial for organizing the genome of eukaryotic
organisms. It enables cells to divide multiple times during development, because both
mechanisms of telomere lengthening are used at different stages.

Gametogenesis represents a pivotal phase preceding embryonic development, wherein
germline cells, having colonized the gonadal tissue, engage in successive processes of active
proliferation and meiotic division, leading to substantial cellular specialization. In the field
of telomere biology, a prevailing consensus asserts that germ cells prevent the attrition of
telomeres through the active expression of telomerase, and then, as embryonic development
ensues, telomeres undergo gradual reduction with each cycle of DNA replication [20].
Nonetheless, there exists a significant disparity in telomerase activity between oogenesis
and spermatogenesis.

4.2.1. Metabolism and Telomere Lengthening during Spermatogenesis

Sperm cells undergo maturation, which is accompanied by telomere elongation and a
decrease in telomerase activity [152] (Figure 5). However, the data on telomerase activity
in different types of male germ cells during differentiation are controversial, which may
be attributed to the difficulties in obtaining pure populations of cells from specific stages
of differentiation. It was observed that late generations of mice lacking telomerase RNA
(mTR−/−) are sterile. In these animals, male germ cells are depleted, showing that
telomerase activity is required for effective spermatogenesis. The majority of research
findings have consistently indicated that men experiencing idiopathic infertility tend to
exhibit shorter telomere lengths in comparison to their fertile counterparts [153]. Telomere
length is positively correlated with sperm count, motility and the ratio of high-quality
and transferable embryos [154]. Consequently, contemporary research places considerable
emphasis on telomere length as a highly promising marker for evaluating male reproductive
biology [155].

The maturation process of spermatogonial stem cells occurs in the testicles, which also
produce sex steroid hormones. They consist of the seminiferous tubules and the intervening
interstitial space. Sertoli cells create the blood–testis barrier through junctions between
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adjacent cells and compartmentalize the seminiferous epithelium. The blood–testis barrier
consists of three components: a physical barrier that restricts the movement of molecules
and stem cells from the basal compartment to the abluminal compartment of seminiferous
tubules; an immunological barrier that regulates the movement of immune cells and the
levels of cytokines; and a physiological barrier composed of transporters and channels that
supply necessary compounds to germ and Sertoli cells [156].

Sertoli cells work as “nurses” (CAF analogs) and are responsible for providing en-
ergy in the form of pyruvate or lactate and nutritional support to developing germ cells.
Mammalian spermatogenesis is a process of cellular differentiation with three main stages:
mitotic spermatogonial proliferation and differentiation; meiotic phase; and spermatoge-
nesis. Spermatogonial cells, which lie at the basement membrane, replicate mitotically
to support the population of germ stem cells (spermatogonia A) and give rise to new
populations (spermatogonia B) committed to differentiate and move along the seminiferous
epithelium. Spermatogonia B differentiate into primary spermatocytes, cross the blood–
testis barrier, and undergo the first division of meiosis, yielding secondary spermatocytes.
Round spermatids are produced through the second meiotic division. After meiosis, cell
division stops, and spermatogenesis starts, giving rise to elongated spermatids. Elongated
spermatids are released into the lumen of the tubule as immature spermatozoa. During
differentiation, germ cells have specific metabolic requirements, switching their metabolic
profile throughout development. They are supported with lactate [157], which is produced
by Sertoli cells via the metabolism of various substrates, preferentially glucose [158].
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Figure 5. A schematic overview of spermatogenesis. Sertoli cells play an important role in energy and
nutritional support of developing germ cells. Telomerase activity decreases during the differentiation
of spermatogonia to mature spermatozoa, contributing to the elongation of telomeres.

Thus, both aerobic and anaerobic pathways of carbohydrate metabolism are vital for
germ cells [159,160]. Spermatogonia are supplied by blood components and use glucose for
ATP production via the aerobic pathway. Spermatocytes—intermediate developing germ
cells—combine two metabolic pathways and also depend on glycolysis. The glycolytic
activity of spermatids is lower than in germ cells at earlier developmental stages, and the
ATP level in spermatids decreases. However, round spermatids support both glycolytic and
gluconeogenesis pathways in order to recycle lactate to glucose-6-phosphate. Spermatozoa
exhibit the highest glycolytic activity and the lowest tricarboxylic acid (TCA) cycle activity,
using only glucose or fructose for their energy metabolism. Moreover, different pathways
are used in different compartments of spermatozoa: OXPHOS is restricted to the midpiece,
while glycolysis is used in the principal piece [161,162].



Int. J. Mol. Sci. 2024, 25, 10500 12 of 26

Taken together, during development, spermatozoa switch from the metabolic program
of OXPHOS in spermatogonium to glycolysis in round spermatids. Further differentiation
is supported through the compartmentalization of metabolic pathways for site-specific
requirements in metabolites. Moreover, DNA replication does not occur during the meta-
morphose of round spermatids to the spermatozoa, so high telomerase activity should not
be necessary.

It is important to note that the testes are naturally oxygen-deprived organs, making
male germ cells susceptible to oxidative stress, which is negatively associated with sperm
DNA fragmentation [163,164]. Abundant evidence underscores the significant role of
reactive oxygen species (ROS)-mediated sperm damage as a primary contributing factor
to infertility among patients [165]. Sperm, due to their relatively limited antioxidant
defense mechanisms and their specific mitochondria structure, are particularly vulnerable
to elevated oxidative stress levels. Oxidative stress can be risky for sperm DNA and RNA,
and can also affect the integrity of telomeres and telomerase activity. This can lead to
shorter telomeres [166].

4.2.2. Metabolism and Telomere Lengthening during Oogenesis

In contrast to the general trend of “greater potency equating longer telomeres,” the
female germline in many mammalian species stands as an exception. Notably, telomeres
within mouse and human oocytes are among the shortest observed throughout the body,
and they exhibit a low to absent level of telomerase activity [20,167]. The divergence in
telomerase activity between oogenesis and spermatogenesis manifests to varying degrees
across distinct mammalian species (Figure 6). A noteworthy illustration can be found in
the Tasmanian devil and other marsupials, where an exceptional degree of telomere length
dimorphism in gametes has been elucidated. This phenomenon involves a distinctive
pattern: all telomeres in spermatozoa undergo hyperelongation, whereas those in oocytes
experience hypershortening [168].
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Figure 6. A schematic overview of oogenesis. The maturation of oocytes is very sensitive to
metabolism coordinated by the follicular cells. Telomerase activity decreases during oogenesis,
providing the elongation of telomeres.

Nonetheless, in the case of mice, humans, and many other mammals, oocyte telomere
length is delicately balanced and serves as an indicator of their quality. Telomerase activ-
ity measurements conducted through in vitro TRAP (telomerase repeated amplification
protocol) assays have unveiled a distinctive pattern: a peak in pre-ovulation oocytes fol-
lowed by a subsequent decline in mature oocytes [169,170]. The telomere length is directly
associated with the developmental potential of oocytes. Oocytes with shortened telomeres
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resulting from telomerase-null mice exhibit a striking pattern of failure, occurring during
both fertilization and the early cleavage embryonic stages [171]. This observation supports
the hypothesis that low telomerase activity may serve as a selective mechanism, favoring
the successful fertilization of egg cells that have already attained adequate telomere length
during oogenesis [172]. This is predominantly because telomere attrition substantially
promotes genomic instability through mechanisms like non-homologous end joining, ul-
timately resulting in conditions such as aneuploidy, mosaicism, and the emergence of
chromosome copy number variants [173]. The shortening of telomeres in telomerase-null
mice has been linked to several detrimental outcomes in oocyte development. These
outcomes include the formation of abnormal meiotic spindles [174], the arrest and frag-
mentation of embryos [175], a decrease in chiasmata and synapsis [176], and ultimately,
infertility. Furthermore, oocyte telomere length has been associated with various challenges
in in vitro fertilization (IVF) cycles, such as failed IVF cycles, embryo fragmentation [175],
and blastocyst aneuploidy [177]. These findings underscore the critical role of telomere
length in oocyte health and reproductive success. The diminishing ovarian reserve that
occurs in tandem with advancing female age leads to a concomitant telomere depletion,
which holds a central role in the process of oocyte aging. This is supported by the discov-
ery of telomere shortening in oocytes obtained from females of advanced reproductive
age [178]. Age-related telomere shortening is primarily attributed to the enduring neg-
ative consequences of reduced telomerase activity and heightened exposure to reactive
oxygen species (ROS) [178,179]. Research findings have demonstrated that the application
of antioxidants enhances the quality of oocytes obtained from older females, including an
increase in both telomerase activity and telomere length [180].

The process of oogenesis occurs in close collaboration with somatic follicular cells,
specifically granulosa cells (Figure 6). The maturation of oocytes is very sensitive to
metabolism, coordinated by the follicular cells. The oocytes preferentially use the pentose
phosphate pathway to metabolize glucose instead of glycolysis. They obtain pyruvate as
a fuel for the TCA from follicular cells with which they are also in a state of metabolic
symbiosis. It is curious that during in vitro cultivation of oocytes obtained through the
IVF program and early embryos after fertilization, pyruvate is an essential component of
the growth medium. During the period of follicular growth, granulosa cells exhibit robust
proliferative activity and elevated levels of telomerase activity [181–184]. The length of
telomeres in granulosa cells plays a pivotal role in regulating the normal progression of
folliculogenesis and overall ovarian function. Reducing telomerase activity in granulosa
cells has been associated with an elevated rate of apoptosis and an increase in the number
of atretic (degenerating) follicles [182,184]. In granulosa cells, the activity of telomerase
and the length of telomeres are regulated by estrogen levels [185,186]. High concentra-
tions of estradiol-17β have been shown to significantly increase the telomere length of
granulosa cells cultured in vitro [187]. Conversely, the withdrawal of estrogen consistently
results in reduced telomerase activity, which may lead to telomere shortening in granulosa
cells, subsequently contributing to follicular atresia [184,188]. Interestingly, estrogen was
shown to play a significant role in the regulation of metabolism. It acts as a transcriptional
factor regulating the expression activity of metabolic genes involved in OXPHOS and
glycolysis switching or directly influencing mitochondrial activity because of estrogen
receptor localization on the mitochondria membrane close to the cholesterol transport sys-
tem [189,190]. Mitochondria are the central sites for steroid hormone biosynthesis. The first
and rate-limiting step in the biosynthesis of steroid hormones occurs in the mitochondria
of granulosa cells [191]. The localization of the estrogen receptor in close proximity to
cholesterol transport opens intriguing possibilities for the regulation of estradiol produc-
tion. Short telomere length and the absence of telomerase activity in the granulosa cells of
women have been associated with occult ovarian insufficiency [192]. Indeed, short telomere
length has been reported in young patients who exhibit a low ovarian response to hormonal
stimulation [193]. This observation highlights the potential significance of telomere length
as a predictor or indicator of ovarian responsiveness and reproductive health in individuals
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of reproductive age. Cumulus cells demonstrate high glycolytic activity for the produc-
tion of pyruvate, which is transported to the oocytes through gap junctions or is directly
taken up from follicle fluid. During ovulation, a subset of the follicular cells that envelop
the oocyte accompanies it as part of the cumulus–oocyte complex [194]. It was observed
that follicle-stimulating hormone (FSH)-dependent mitochondrial elongation shortly after
stimulation led to mitochondrial fragmentation on the next day with a subsequent decrease
in mitochondrial activity and a switch to glycolysis in cumulus cells [195]. These cumulus
cells can be conveniently obtained alongside oocytes, presenting significant diagnostic
potential when employing assisted reproductive technologies. The relative telomere length
tends to be greater in cumulus cells derived from good-quality embryos as compared to
cumulus cells associated with embryos of lesser quality [196]. This finding highlights the
utility of assessing telomere length in cumulus cells as an effective means of evaluating
embryo quality in the context of assisted reproduction and that the metabolic environment
plays a crucial role in germ cell maturation and telomere maintenance [197].

4.2.3. Metabolism and Telomere Lengthening during Early Development

The early stages of mammalian development involve the dynamic regulation of telom-
ere length in embryonic cells, as observed in various mammalian species, including mice,
rats, cows, and humans (Figure 7). Telomere length tends to increase during preimplan-
tation development, reaching its peak at the blastocyst stage [198]. Remarkably, this
elongation process occurs even in the absence of telomerase activity during the early
cleavage stages, spanning from two to four cells up to the morula stage. Telomeres un-
dergo elongation through an ALT-like mechanism during these early developmental stages.
Recombination-mediated telomere lengthening at the early cleavage stage is driven by
telomeric chromatin reorganization due to H3K9 demethylation by KDM4 and Zscan4.
The maintenance of Zscan4 activity in early embryos and 2-cell-like embryonic stem cells
is facilitated by Dcaf11 (Ddb1- and Cul4-associated factor 11) [199,200]. Moreover, the
transcription of TERRA is activated during early cleavage stages, confirming the open
conformation of telomeric chromatin. TERRA accumulation at telomeres promotes ATRX
recruitment followed by the attraction of HP1 and compactization of the telomeres at the
morula stage, accompanied by the inhibition of ALT-like mechanism telomere elongation
and activation of telomerase, providing telomere lengthening at the blastocyst stage [201].

Interestingly, zygotic gene activation, which occurs at the early cleavage stage, is
supported by the regulation of the metabolic program. During the early cleavage stage of
development, the mitochondrial enzymes responsible for the production of acetyl-CoA and
a-KG are transiently localized to the nucleus, where they impact epigenetic histone acetyla-
tion, promoting chromatin opening [202]. It was demonstrated that mitochondrial pyruvate
dehydrogenase (PDH) complex is phosphorylated and inhibited in cleavage-stage embryos,
but nuclear PDH remains unphosphorylated and active, which influences the epigenetic
regulation of genome expression. Pyruvate metabolism supports the development of the
embryo upon fertilization, and glucose catabolism becomes activated at the eight-cell stage
and is associated with the inhibition of ALT-like telomere lengthening and activation of
telomerase, which elongates telomeres up to the blastocyst stage and is inactivated during
cell differentiation.

At the blastocyst stage, the maximum telomere length and mitochondria number
are observed, exceeding those observed both at earlier stages of preimplantation devel-
opment and during subsequent embryogenesis in correlation with an increase in oxygen
consumption [203,204]. Telomerase activity emerges as a crucial factor driving telomere
elongation during the transition from morula to blastocyst. Analysis of telomere length
in eight-cell, morula and blastocyst-stage embryos obtained from mTR−/− or mTR+/+
mouse models revealed that blastocysts from mTR+/+ mice displayed significantly longer
telomeres compared to those at the eight-cell and morula stages. Conversely, blastocysts
from mTR−/− mice did not exhibit this telomere elongation [198]. The blastocyst com-
prises two main cell types: the trophectoderm (TE) covering the outer surface of the embryo
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and the inner cell mass (ICM) situated inside of the blastocyst. While the ICM forms em-
bryonic structures, the TE has more limited potential and contributes to the development
of extraembryonic membranes. Despite these differences in cell fate, telomere length shows
only minor variations between the cells of the inner cell mass and the trophoblast, mak-
ing the latter a convenient object for measuring telomere length during preimplantation
development [198]. Telomere elongation during the blastocyst stage significantly influ-
ences telomere length during subsequent stages of development. In comparing telomerase
activity in bovine embryos undergoing development in vivo, in vitro, and after in vitro
fertilization (IVF) and parthenogenetic activation, researchers noted only minor quantita-
tive differences [198]. However, a recent study involving children born through assisted
reproductive technology (ART) revealed that those born following a blastocyst transplant
procedure exhibited shorter telomeres in their white blood cells by the age of one year
compared to their naturally conceived counterparts [205]. Furthermore, research conducted
in mice has shown that in vitro culture of mouse embryos suppresses telomerase activity
during the early blastocyst stage, which subsequently leads to telomere shortening. The
intricate and dynamic regulation of telomere length during early development renders
this mechanism susceptible to various negative influences, both external and internal. For
instance, studies have demonstrated that a high-fat diet and obesity in female mice can
lead to reduced telomerase activity and telomere shortening in oocytes and early embryos,
indicating the importance of cellular metabolism in telomere maintenance [206].
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Figure 7. Telomere dynamics and metabolic program preferences during mouse embryo preimplan-
tation development. During the first stage following fertilization, extensive chromatin remodeling
occurs with histone-to-protamine replacement, the formation of two parental pronuclei and major
zygotic genome activation (ZGA) at the two-cell stage, accompanied by the elongation of telomeres
via a recombination-mediated mechanism that is telomerase-independent and involves the activation
of the OXPHOS metabolism program. Then, at the stage following the morula–blastocyst transition,
telomerase is activated. This process is characterized by a switch in the metabolism program from
OXPHOS to glycolysis. In mouse zygotes, at the morula stage, ATRX is targeted to telomeres. The
expression of H3K9 lysine demethylases from the Kdm4 family and Zscan4 favors telomere elongation
through recombination in mouse and human zygotes.

Embryonic stem cells (ESCs) obtained from the ICM of a blastocyst have longer
telomeres than mouse embryonic fibroblasts (MEFs) from the same genetic background,
which are typically obtained at embryonic day 13.5. This confirms that telomeres shorten
after the blastocyst stage during cell differentiation to promote embryo development. The
generation of induced pluripotent cells (iPSCs) from MEFs is accompanied by telomere
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elongation up to a length similar to the telomeres in ESCs. Moreover, telomeres are
elongated in MEFs during cultivation, and at early passages (P5), their length is comparable
with that of the telomeres in the ICM of the blastocyst. It was demonstrated that decreased
levels of heterochromatin mark H3K9me3 and H4K20me3 at subtelomeric regions of ESCs
and in iPSCs that could activate the mechanisms of telomere lengthening [203].

Interestingly, a correlation between the metabolism program, telomere length, and
ability to differentiate was recently demonstrated for human embryonic stem cells (hESCs).
It was determined that the expression level of genes involved in the OXPHOS metabolic
pathway is increased in hESCs with short telomeres; however, the expression level of genes
related to glycolysis metabolism is upregulated in cells with long telomeres and active
telomerase [207]. Moreover, pluripotent ESCs are characterized by high glycolysis activity,
but primed and differentiated cells demonstrate increased OXPHOS activity [208].

Taken together, the experimental data allow the proposal that telomere lengthening
in the processes of gametogenesis, early development, and differentiation of stem cells is
tightly dependent on the chromatin status of telomeric and subtelomeric regions, which is
regulated by the accessibility of components for epigenetic modifications obtained from
metabolic processes and mitochondrial status in the cell (for review, see [209]).

4.3. Metabolism and Telomere Lengthening during Immune Cell Activation

The switching between different metabolic programs in T-cells during their develop-
ment and maintenance is well studied. Quiescent T-cells use catabolic pathways such as
OXPHOS, which provide efficient and robust energy output, while the immune activation of
T-cells is supported by an anabolic glycolysis pathway, which provides nutrients necessary
for protein production and cell division. The activation of T-cells requires increased prolif-
eration, which is accompanied by telomerase activation and telomere lengthening [132,210].
Naïve and memory T-cells maintain their energy levels by relying on OXPHOS, as their
energy demand is relatively low during homeostasis in a quiescent state. Upon activa-
tion, T-cells proliferate at an incredibly fast rate and differentiate into effector cells. Early
upregulation of glycolysis during T cell activation is supported by the activation of PDH
kinase 1, which phosphorylates and inactivates PDH, leading to the inhibition of OXPHOS
and the engagement of aerobic glycolysis [134,211]. T-lineage progenitor cells undergo
differentiation and selection in the thymus. Mature T-cells leave the thymus and reside
in the peripheral lymphoid tissues while circulating throughout the lymph nodes and
blood. It has been well documented that telomerase activity is tightly regulated during
T-cell lineage development. The highest level of telomerase activity was detected in pro-
genitor cells and in thymocytes from the thymus, where cells use glycolysis to obtain the
necessary nutrients for proliferation. Telomerase activity decreased in resting memory
T-cells when cells do not proliferate and reactivated in memory cells under stimulation
conditions simultaneously with the activation of proliferation supported by glycolysis.
However, the long-term stimulation of memory T-cells results in decreased telomerase
activity and telomere shortening. It was observed that culture conditions unsuitable for the
proliferation activation do not stimulate telomerase activity in T-cells [211,212].

Unfortunately, direct analysis of the association between telomerase activation and
metabolism switching during immune cell activation has not been conducted to date, and
we can only highlight certain events that occur at the same stage of the activation process.

5. Targets and Approaches for Telomere Reprogramming

Telomere reprogramming is an attractive target for the development of approaches and
drugs that influence telomere length. Long telomeres enhance the lifespan of healthy cells;
however, the elongation of telomeres is associated with cancer cell survival and propagation.
The telomerase holoenzyme is considered a promising target for the regulation of telomere
length. Inhibitors of telomerase activity are being developed as potential anticancer drugs;
however, activators of telomerase activity may be considered as a means to increase the life-
time of the organism. Recently, the oligonucleotide derivative GRN163L was approved by
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the U.S. Food and Drug Administration (FDA) to treat low- to intermediate-risk myelodys-
plastic syndromes in adults who do not respond to erythropoiesis-stimulating agents.
GRN163L is a lipidated 13-mer thiophosphoramidate oligonucleotide that, by directly
hybridizing to hTR with very high affinity and specificity, is able to competitively inhibit
telomerase activity [213,214]. A lot of different substances regulate the expression level of
hTERT at the transcriptional level by influencing the promoter region of the gene. One of
them, TA-65, was demonstrated to be a positive regulator of telomere length; however, it
has not been thoroughly investigated to exclude potential side effects such as stimulating
cancer [215].

The treatment with FDA-approved 5-fluoro-2′-deoxyuridine (5-FdU) triphosphate
results in misincorporation in telomeres followed by rapidly inducing telomere dysfunction
and cell death in telomerase-expressing cells. Other nucleotide derivatives, such as 6-thio-
2′-deoxyguanosine, demonstrate similar effects on telomere function [216,217].

Despite the absence of approved drugs at this time, G-quadruplex ligands are consid-
ered a promising target for telomere reprogramming. The stabilization of G-quadruplexes
should prevent telomerase binding and elongation of the G-overhang of telomeres, displace
shelterin components and stabilize DNA loops in the telomeric region during replication or
R-loop formation, leading to replication- and transcriptional-dependent damage [218–220].

The shelterin components may be targeted to induce telomere reprogramming. TRF1,
TRF2 and POT1 proteins are targets for post-translational modifications that regulate their
telomeric binding properties. Therefore, some kinase inhibitors used in cancer treatment
approaches reduce the recruitment of shelterin components to telomeres.

Interestingly, in addition to approaches that manipulate telomeres by directly influenc-
ing telomeric DNA structure or shelterin proteins, some medications for the treatment of
metabolic disorders demonstrate the ability to prevent telomere shortening. For example,
increased telomere shortening is associated with diabetes mellitus [221], and medical care
with metformin slows down the attrition of telomeres [222]. Metformin is a therapeutic
substance that normalizes insulin sensitivity in cells and regulates metabolic processes at
the organismal level [223]. The telomere-protecting effects of other exogenous factors are
also discussed. For example, it has been demonstrated that physical activity, healthy diet,
and other factors that improve metabolism decrease the rate of telomere shortening [224].
Approaches directed at metabolic reprogramming should be recommended as potential
regulators of telomere length at the organismal level, influencing the functions of immune,
reproduction, and other systems in the organism.

6. Conclusions

Cell proliferation is important for organism development, regeneration, immune
system function, cancer progression, and more. Cell division relies on energy, nutrition,
metabolism regulation, genome integrity, and the maintenance of telomere length and
structure. In this review, we analyzed the mechanisms of metabolism and telomere mainte-
nance in processes of proliferation activation. We focused on different models that have
experimental data on homogeneous cellular populations. These models have well-studied
metabolism reprogramming and information on telomere elongation. This review provides
evidence that specific metabolic conditions within proliferating cells are associated with
telomere reprogramming and are likely directly involved in the regulation of telomere
lengthening mechanisms. The study of the molecular mechanisms underlying the relation-
ships between telomeres and metabolic pathways appears to be promising for identifying
strategies to influence telomere maintenance. The ability to use specific metabolites to regu-
late telomere length and cell proliferative activity may be important in the development of
approaches to regeneration, immune response modulation, cancer therapy, and age-related
conditions. The most promising application may be in immunotherapy, where stimulat-
ing telomere lengthening through metabolic manipulation could provide the necessary
proliferation rate for exogenous immune cells. Another attractive area of application is
stimulating telomere lengthening during in vitro fertilization and early embryo develop-
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ment to produce a blastocyst with proper telomere length, potentially ensuring a normal or
improved lifespan for the organism. Investigating the metabolic status of cells, telomerase
activity, and telomere length in each cellular population under specific conditions and
during changes in the proliferation activity is crucial for understanding the biology of
aging. This knowledge can also inform natural approaches for prolonging healthy lifespan,
as well as providing insights into cancer progression and treatment.
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