Микрогели на основе карбоксиметилцеллюлозы как мультифункциональные носители для иммобилизации ингибитора и активатора индуцибельной NO-синтазы

А. С. Золотова,^а М. А. Орлова,^{а,б*} В. В. Спиридонов,^а Т. П. Трофимова,^{а,в} А. Ю. Лупатов,^г А. А. Ярославов,^а С. Н. Калмыков^а

^а Московский государственный университет имени М. В. Ломоносова, Химический факультет, Российская Федерация, 119991 Москва, Ленинские горы, 1, стр. 3. E-mail: orlova.radiochem@mail.ru

⁶Российский национальный исследовательский медицинский университет имени Н. И. Пирогова,

Российская Федерация, 117997 Москва, ул. Островитянова, 1

^вФедеральный исследовательский центр проблем химической физики

и медицинской химии Российской академии наук,

Российская Федерация, 142432 Черноголовка Московской обл., просп. Академика Семенова, 1 ^гИнститут биомедицинской химии имени В. Н. Ореховича, Российская Федерация, 119435 Москва, Погодинская ул., 10, стр. 8

> Получены трехкомпонентные микрогели на основе карбоксиметилцеллюлозы и ионов меди(п) с иммобилизованным ингибитором индуцибельной NO-синтазы (N-(5,6-дигидро-4H-1,3-тиазин-2-ил)бензамидом), а также активатором этого фермента (гидробромидом N-(4-изопропилфенил)-N-(1иминоэтил)пиперидин-1-карботиоамида). Исследованы гидродинамические и электрокинетические характеристики этих микрогелей, демонстрирующие их оптимальный размер и высокую коллоидную устойчивость как в водной, так и в физиологической среде. Синтезированные трехкомпонентные микрогели характеризуются повышением цитотоксичности, увеличивая апоптоз лейкемических клеток линии Jurkat.

> Ключевые слова: карбоксиметилцеллюлоза, микрогели, ионы меди, эффекторы NO-синтазы, ранний апоптоз, клеточная линия *Jurkat*.

Механизм образования бинарных микрогелей карбоксиметилцеллюлозаионы меди (КМЦ-Си) за счет образования электростатических контактов ионов меди(п) с карбоксильными группами полимера был изучен ранее¹. Установлен отрицательный заряд полученных водорастворимых микрогелей. Показано, что размеры и цитотоксичность таких наноносителей сильно зависят от содержания меди, а в некоторых случаях имеется весьма значительное терапевтическое окно между воздействием микрогелей на здоровые и лейкемические клетки. Полученные результаты открывают возможность широкого использования таких носителей для комплексной доставки нескольких лекарственных компонентов, включая радионуклиды и антиопухолевые препараты, т.е. для создания тройных микрогелей.

Среди антиопухолевых агентов различного строения^{2,3} следует выделить ингибиторы и активаторы NO-синтазы (NOS)⁴, среди которых хорошие показатели имеют N-(5,6-дигидро-4H-1,3-тиазин-2-ил)бензамид (ингибитор iNOS, L¹)

и гидробромид N-(4-изопропилфенил)-N-(1-иминоэтил)пиперидин-1-карботиоамида (активатор NOS, L²). В качестве модельного лиганда был также использован 2-аминопиримидин (AP), на основе которого создано большое количество антилейкемических препаратов.

Целью настоящей работы является получение и исследование коллоидной устойчивости в водной и физиологической средах, эффективного размера и цитотоксичности водосовместимых тройных микрогелей КМЦ—Си—L¹ и КМЦ—Си—L².

Обсуждение полученных результатов

В описанные ранее¹ двухкомпонентные системы КМЦ—Си (**I**—**III**), где мольное соотношение $Q_1 = [$ Мономерное звено КМЦ $] : [Cu^{2+}]$ изменялось от 7 : 1 до 15 : 1, вводили L¹ (табл. 1) так, чтобы соотношение КМЦ : L¹ составило 2 : 1. Получили микрогели **IV**—**VI**, хорошо растворимые в воде, в отличие от самого лиганда, который в водных растворах практически нерастворим.

Образец	[Мономерное звено КМЦ] : Cu ²⁺ (мол.)			
		КМЦ	Cu ^{II}	L ¹ (исходное)
IV	15:1	$2 \cdot 10^{-4}$	$1.33 \cdot 10^{-5}$	10 ⁻⁴
V	10:1	$2 \cdot 10^{-4}$	$2.00 \cdot 10^{-5}$	10^{-4}
VI	7:1	$2 \cdot 10^{-4}$	$2.86 \cdot 10^{-5}$	10 ⁻⁴

Таблица 1. Количественное соотношение реагентов в трехкомпонентных нано/микрогелях КМЦ-Си^{II}-L¹

Таблица 2. Количественное соотношение реагентов в двух- и трехкомпонентных нано/микрогелях, содержащих L^2

Образец	[Мономерное звено КМЦ] : Си ²⁺ (мол.)	<i>N</i> /м	<i>N</i> /моль		[КМЦ] : [L ²]
		Cu ²⁺	L ²		
КМЦ–L ² (VII) КМЦ–Си ²⁺ – L ² (VIII)	$2 \cdot 10^{-4}$ $2 \cdot 10^{-4}$	$0 \\ 2.00 \cdot 10^{-5}$	$5 \cdot 10^{-5}$ $5 \cdot 10^{-5}$	10:1	4:1 4:1

Содержание лиганда в микрогелях **IV—VI** определяли спектрофотометрически. На рисунке 1 приведены УФ-спектры лиганда L¹ и полученных образцов **IV—VI**.

Аналогично синтезировали образцы с лигандом L^2 : двухкомпонентный КМЦ— L^2 и трехкомпонентный КМЦ—Cu— L^2 (VII и VIII соответственно) (табл. 2). Соответствующие УФспектры приведены на рисунке 2.

Гидродинамические и электрокинетические характеристики полученных микрогелей представлены в таблицах 3 и 4. Значения величин ЕРМ (электрофоретической подвижности) указывают на частичную нейтрализацию полисахарида за счет образования мостиковых электростатических контактов между фрагментами макромолекул через ионы меди, что сопровождает образование микрогелевой структуры.

Из анализа физико-химических характеристик (см. табл. 3) микрогелей, содержащих лиганд L¹, следует, что при увеличении количества ионов меди размеры конъюгатов уменьшаются, причем в физиологическом растворе этот процесс сжатия проявляется сильнее. Ранее, при введении

в двухкомпонентный микрогель 2-аминопиримидина (АР) сжатие происходило от 400 нм для чистого КМЦ до 350 нм для трехкомпонентного микрогеля. При этом гидродинамический диаметр двухкомпонентного микрогеля КМЦ-Си (7:1) составлял 380 нм в водном растворе и наблюдалась тенденция его уменьшения до 220 нм в физиологическом растворе и до 195 нм, если дополнительно вводили БСА.¹ При сравнении двух- и трехкомпонентных композиций VII и VIII, содержащих активатор NOS — лиганд L² (см. табл. 4), видно, что устойчивость микрогелей повышается, вероятно, за счет увеличения числа сайтов связывания КМЦ с этим лигандом. Вследствие этого наблюдается уменьшение гидродинамических размеров по сравнению с микрогелями, содержащими как AP, так и L¹. В физиологическом растворе размер таких частиц приближается к 0-мерным наночастицам, что является очень важным параметром для медицинских препаратов^{5,6}.

Для оценки цитотоксического воздействия микрогелей на клетки использовали проточную цитофлуориметрию на поздний апоптоз и некроз (рис. 3). Ранее⁷ было показано, что как для двух-,

Рис. 1. УФ-спектры лиганда $L^1(I)$ и комплексов **IV**—VI (2—4 соответственно).

Рис. 2. УФ-спектры лиганда $L^2(1)$ и комплексов **VII** и **VIII** (2 и 3 соответственно).

Таблица 3. Гидродинамические и электрокинетические характеристики микрогелей IV—VI в водных и физиологических растворах

Образец	[КМЦ] : [L ¹] (мол.)	$D_{\rm h}$ */нм		EPM**
		Водный раствор	0.15 <i>M</i> NaCl	
IV	2:1	370±25	285	$-(3.34\pm0.05)$
V	2:1	340±25	230	$-(3.31\pm0.02)$
VI	2:1	230±15	190	$-(3.46\pm0.02)$

* Гидродинамический диаметр. ** В мкм • см • с $^{-1}$ • B^{-1} .

Таблица 4. Гидродинамические и электрокинетические параметры водных растворов микрогелей VII и VIII*

Образец	D _h /	EPM**	
	Водный раствор	0.15 <i>M</i> NaCl	
VII VIII	220 250	110 180	-5.99 -4.86

* Концентрация водных растворов микрогелей во всех случаях составила 1 мг • мл⁻¹. ** В мкм • см • с⁻¹ • B⁻¹.

Рис. 3. Анализ гибели клеток клеточной линии *Jurkat*: отрицательный контроль (*a*), положительный контроль в присутствии сауроспорина (*b*), в присутствии комплексов **VIII** (*c*), **VII** (*d*) и **IV** (*e*); *N* — число клеток, *I*_{fl} — интенсивность флуоресценции; P3 — клетки на поздней стадии апоптоза.

так и для трехкомпонентных микрогелей, содержащих AP, характерна тенденция увеличения раннего апоптоза, причем тем сильнее, чем больше было содержание ионов меди в образцах. Сходная картина гибели клеток линии Jurkat наблюдается и для образцов, содержащих в микрогелях лиганды L^1 и L^2 . С учетом в дальнейшем введения в микрогели радионуклидов меди была рассмотрена радиационная устойчивость лигандов. Оказалось, что под действием γ -облучения устойчивость лигандов в физиологическом растворе сохраняется примерно до дозы 1.5 кГр.

Экспериментальная часть

Лиганды L^1 и L^2 получены по методикам, описанным ранее^{4,8,9}.

Микрогели IV—VIII. Тройные микрогели синтезировали введением соответствующего лиганда в КМЦ— Си (КМЦ: M = 90 кДа, степень замещения $\varphi = 0.7$) так, чтобы мольное соотношение КМЦ : лиганд составляло 2 : 1, как описано в работе¹. Синтез двойных микрогелей Си^{II}—КМЦ проводили при комнатной температуре: к 50 мл 0.1%-ного раствора КМЦ при интенсивном перемешивании по каплям добавляли 5 мл раствора, содержащего от 3.7 до 7.4 мг CuSO₄ · 5 H₂O. Таким способом варьировали соотношение Q = [Мономерное звено KMЦ] : [Cu²⁺] = 15 : 1 (IV), 10 : 1 (V), 7 : 1 (VI), увеличивая содержание Cu²⁺ в реакционной смеси. Полученные растворы перемешивали 20 мин, после чего проводили диализ в течение 1 сут («Sigma», MWCO (molecular weight cut-off) ~12000 Да) для вымывания низкомолекулярных солей. После диализа растворы лиофильно высушивали. Выход сухого продукта составлял ~90 мас.%.

Гидродинамический радиус/диаметр определяли методом динамического светорассеяния на приборе «ALV-5» («ALV», Германия) с помощью Не—Ne-лазера с мощностью 25 мВт и длиной волны 632.8 нм, угол рассеяния 90°. Математическую обработку проводили методом регуляризации по Тихонову. Гидродина-мические радиусы рассчитывали по уравнению Стокса: $R_{\rm h} = kT/(6\pi\eta D)$, где $R_{\rm h}$ — стоксов радиус частицы, k — константа Больцмана, T — температура смеси, η — вязкость среды, D — коэффициент диффузии в данной среде. Измерение повторяли до 10 раз.

Электрокинетические характеристики (EPM) определяли на анализаторе электрофоретического светорассеяния и размеров наночастиц «Brookhaven Instruments» («NanoBrook Omni», США).

Количественные измерения ионов меди и лигандов в образцах проводили спектрофотометрически («Shimadzu UV-1280», Япония), используя предварительно полученные калибровочные кривые.

Проточная цитофлуориметрия. Метод основан на облучении потока клеток лучом лазера и дальнейшей регистрации флуоресценции и рассеянного света каждой клетки. Для окрашивания клеток использовали пропидийиодид («Sigma—Aldrich», США) в концентрации 1 мкг•мл⁻¹, который способен проникать в клетку только через поврежденную мембрану клеток, находящихся на поздней стадии апоптоза, или мертвых клеток. Для анализа образцов использовали цитофлуориметр «FACSAria» («BD Bioscience», США) с возбуждением флуоресценции аргоновым лазером (λ = 488 нм). Данные обрабатывали с помощью компьютерной программы Statistica 5.11.2.

Финансирование

Работа выполнена в рамках государственного задания № 122012600116-4 «Получение и использование радионуклидов и меченых соединений для целей ядерной медицины, изучения биологически значимых процессов и взаимодействия живых организмов с ионизирующим излучением».

Соблюдение этических норм

Настоящая статья не содержит описания исследований с использованием в качестве объектов животных и людей.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов в финансовой или какой-либо иной сфере.

Список литературы

- M. A. Orlova, V. V. Spiridonov, A. P. Orlov, N. S. Zolotova, A. Yu. Lupatov, T. P. Trofimova, S. N. Kalmykov, A. A. Yaroslavov, *Colloids Surfaces A.*, 2022, 632, 127814; DOI: 10.1016/j.colsurfa.2021.127814.
- Р. А. Туктарова, Л. У. Джемилева, У. М. Джемилев, В. А. Дьяконов, *Изв. АН. Сер. хим.*, 2024, **73**, 1408 [R. A. Tuktarova, L. U. Dshemileva, U. M. Dshemilev, V. A. D'yakonov, *Russ. Chem. Bull.*, 2024, **73**, 1408; DOI: 10.1007/s11172-024-4259-x].
- С. В. Курмаз, И. И. Иванова, Н. В. Фадеева, В. М. Игнатьев, Н. С. Емельянова, Н. Л. Лапшина, А. А. Балакина, А. А. Терентьев, *Изв. АН. Сер. хим.*, 2023, **72**, 1349 [S. V. Kurmaz, I. I. Ivanova, N. V. Fadeeva, V. M. Ignatiev, N. S. Emelyanova, M. A. Lapshina, A. A. Balakina, A. A. Terentiev, *Russ. Chem. Bull.*, 2023, **72**, 1349; DOI: 10.1007/s11172-023-3910-2].
- 4. М. А. Орлова, Т. П. Трофимова, С. В. Никулин, А. П. Орлов, Вестн. Моск. ун-та, 2016, 57, 269 [М. А. Orlova, Т. Р. Trofimova, S. V. Nikulin, А. Р. Orlov, Mosc. Univ. Chem. Bull., 2016, 71, 258; DOI: 10.3103/s0027131416040052].
- L. Farzin, S. Sheibani, H. E. Moassesi, M. Shamsipur, J. Biomed. Mater. Res. Part A, 2019, 107A, 251; DOI: 10.1002/jbm.a.36550.
- M. Shamsipur, L. Farzin, M. A. Tabrizi, M. Shanehsaz, *Mater. Sci. Eng. C*, 2016, **69**, 1354; DOI: 10.1016/j. msec.2016.08.038.
- М. А. Орлова, Т. П. Трофимова, Н. С. Золотова, И. А. Иванов, В. В. Спиридонов, А. Н. Прошин, А. А. Бородков, А. А. Ярославов, А. П. Орлов, *Изв. АН. Сер. хим.*, 2019, **68**, 1933 [М. А. Orlova, Т. Р. Trofimova, N. S. Zolotova, I. A. Ivanov, V. V. Spiridonov, A. N. Proshin, A. A. Borodkov, A. A. Yaroslavov, A. P. Orlov, *Russ. Chem. Bull.*, 2019, **68**, 1933; DOI: 10.1007/s11172-019-2649-2].
- Т. П. Трофимова, О. Н. Зефирова, А. А. Мандругин, В. М. Федосеев, Д. И. Перегуд, М. Н. Онуфриев, *Вестн. Моск. ун-та. Сер. хим.*, 2008, 328 [Т. Р. Trofimova, O. N. Zefirova, A. A. Mandrugin, V. M. Fedoseev, D. I. Peregud, M. N. Onufriev, *Mosc. Univ. Chem. Bull.*, 2008, 63, 274; DOI: 10.3103/ S0027131408050088].
- 9.А. Н. Прошин, Т. П. Трофимова, С. О. Бачурин, Изв. АН. Сер. хим., 2011, 60, 2432 [А. N. Proshin, Т. Р. Trofimova, S. O. Bachurin, Russ. Chem. Bull., 2011, 60, 2432; DOI: 10.1007/s11172-011-0375-5].

Поступило в редакцию 27 августа 2024; после доработки — 26 сентября 2024; принято к публикации 8 октября 2024