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Abstract: Using the finite-difference time-domain (FDTD) method we 
have numerically investigated the transmission and reflection of both long 
and ultrashort elliptically polarized light pulses in periodic metamaterial 
made of polymer. In the first time we have analyzed the polarization 
evolution in the hodograph of the transmitted long pulses, and we 
demonstrated the behavior of the electric field in transmitted ultrashort 
pulses. The mechanisms of light-matter interaction in terms of the 
electromagnetic energy oscillation in polymeric metamaterial are shown. 
We studied the influence of all the parameters of metamaterial unit cell (a 
helix) on the transmission and reflection. Particularly, the increase of the 
amount of the helix cycles broadens the polarization-selective frequency 
range for the transmitted light. 
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1. Introduction 

During last year’s metamaterials representing themselves a 2D-lattice composed of 3D-
helices attract a great interest owing to their application in compact devices for polarization 
control of ultrashort laser pulses (see [1] and references therein). Such structures have a big 
difference between the transmission coefficients for circularly polarized light pulses with 
opposite handedness of polarization rotation. They are very prospective [1] for the generation 
of circularly polarized light, which required in various [2–4] applications. The traditional 
methods of generation of monochromatic circularly polarized light, based on the utilization of 
a / 4λ − plate (birefringent plate with a thickness equal to one fourth of a wavelength) or the 
cholesteric liquid crystal with pitch of its helical structure close to the wavelength of the 
propagating light cannot be used for the ultrashort pulses with broad spectrum. 

In [1] it was experimentally demonstrated that a metamaterial consisting of metallic 3D 
helices can be used as a broad-band thin-film polarizer for electromagnetic radiation, 
transforming the polarization of the transmitted light into circular. Spectral properties of this 
object were analyzed using the commercial calculating software [5, 6]. The unit cell of such a 
material can be composed of two coaxial helices oriented in a peculiar way one relatively to 
the other. This allows one to make the operating frequency range of such a polarizing device 
broader at almost 50% [6] comparing to conventional metamaterial polarizer [1]. If the unit 
cell contains bigger amount of the coaxial helices, then the signal-to-noise ratio significantly 
improves in such a device [5]. In [7] the polymeric material with 8-periods helices was used. 
It was shown that this sample provides twenty times difference between the mean 
transmission coefficients for the circularly polarized light with the opposite handedness of the 
polarization rotation, if the angle of incidence (relatively to the axes of the helices) was less 
than 7 degrees. 

However, in the abovementioned works the authors consider mainly the spectral features 
of the transmitted and reflected radiation, while the polarization evolution of the propagating 
pulses (in case of relatively long ones) and the temporal behavior of the electric field vector in 
them (in ultrashort pulses) remained outside their scope. In addition, for the polymeric 
metamaterials (unlike for the metallic nano- and microstructures), the light-matter interaction 
and the role of the geometry of the metamaterial unit cell was not studied so thoroughly. 

In the present work the finite-difference time-domain (FDTD) method is applied to the 
study of polymeric metamaterial unit cell analogous to that in [7], where the effect of 
polarization-selective transmission was observed experimentally. We model the problem of 
light propagation in such a metamaterial numerically, and particularly we study the influence 
of metamaterial unit cell parameters (first of all, of a number of helix coils) on the 
transmission and reflection of the elliptically polarized light. In case of long pulses with 
duration of about 20 light-field oscillations or more the temporal dynamics of polarization of 
transmitted and reflected light can be described analogously to [8, 9] by the hodograph of the 
electric field vector in the electromagnetic wave. In case of ultrashort pulses with much 
broader spectra we define the parameters characterizing the polarization in spectral domain, 
because the interpretation of the hodograph of the electric field becomes too complex. 

We discuss the origins of the optical resonances causing the strong difference in optical 
properties of the metamaterial under consideration for the transmission of the RHCP and 
LHCP light. Unlike in metallic 3D helix metamaterials, where the optical resonance is caused 
by the oscillations of the conduction electrons in metal [5], the polymeric dielectric material 
causes the specific oscillations of the electric and magnetic parts of the electromagnetic field 
energy. 

2. Formulation of the problem 

Let us consider the plane electromagnetic wave propagating along the z − axis in a thin layer 
of a periodic medium. This medium periodic in x- and y-directions can be represented by a 
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unit cell. Each cell contains a right-handed (or left-handed) helix with n  coils having pitch h  
(Fig. 1). Such a helix can be manufactured from the isotropic dielectric material with 
dielectric permittivity 1ε  using a technique described in [5, 6]. The z − axis is parallel to the 

axis of the helix. 

 

Fig. 1. Schematic image of a helix, representing the metamaterial unit cell. The definition of 
characteristic sizes is shown in the scheme. 

Maxwell equations and material equations connecting strength and induction of electric 
( ( , , , )x y z tE  and ( , , , )x y z tD ) and magnetic ( ( , , , )x y z tH  and ( , , , )x y z tB ) fields can be 

written as following: 

 
1 1 1

,y y yx x xz z z
E H BB D EE H E

c t z y c t y z c t x z

∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂
= − = − = −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
            (1) 

 
1 1 1

,y y yx x xz z z
D E HH E HH B D

c t z x c t y x c t x y

∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂
= − = − = −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
          (2) 

 ( , , )i i i iD x y z E B H= ε =,        (3) 

In Eq. (3) 1( , , )x y zε = ε , if the point with coordinates ( , , )x y z  lie within the helix area 

and ( , , ) 1x y zε =  if ( , , )x y z  is in empty space. We consider the elliptically polarized light 

pulse with central frequency of its spectrum 0ω , half width of its profile (along z-axis) w0 and 

the wavelength λ . Initially ( 0t = ) the light pulse is incident on the border of the medium 
located at / 2z nh= − . The Cartesian components of the electric field in this light pulse are 
given by the following expressions: 

 
1/2 2 1/2 1/ 2 2 2

0 0 0 0

0 0

( 0) ( / 2) [1 (1 ) ] exp[ ( ) / ]

sign{ }sin(2 ( ) / ),
xE t I M z z w

M z z λ
= = − − − − ×

× π −
 (4) 

 
1/ 2 2 1/ 2 1/2 2 2

0 0 0 0

0

( 0) ( / 2) [1 (1 ) ] exp[ ( ) / ]

cos(2 ( ) / ).

yE t I M z z w

z z λ
= = + − − − ×

× π −
 (5) 

At 0z z=  the maximum value of their dimensionless intensity 2 2
0( ) [ ( ) ( )] /x yI z E z E z I= +  

is achieved. The value of the ellipticity degree of the polarization ellipse 0M  of the incident 

pulse can be chosen from 1  to 1−  (see also [10]). 0 1M =  (or 0 1M = − ) corresponds to the 
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right- handed (or left-handed) circular polarization, and 0 0M =  corresponds to the linear 

polarization. 
In our calculations we used the value of time step as 0.043 fs and the value of space step 

26 nm. As in [7] we considered the translation period (in x −  and y − directions) of the 

metamaterial unit cell (the lattice constant of the metamaterial) as 1.3 μm, the helix pitch as 
1.3 μm, the spiral diameter as 0.79 μm, the lateral diameter of the spiral arms as 0.38 μm, the 
axis diameter of the spiral arms as 0.83 μm. All the above mentioned parameters are shown in 
the scheme in Fig. 1. The dielectric permittivity of the helix was taken as 2.47ε = . The 
numerical methods, their substantiation and the algorithm of the numerical scheme are 
described in the Appendix. 

3. The discussion of results 

In case of a long pulse ( 20w λ= , 1.67λ = μm, 0 50z λ= − ), and if the helices have big 

number of coils n there takes place selective reflection of the circularly polarized light. 
Namely, in case of right-handed helices, the LHCP light passes through the metamaterial, 
while the RHCP light appears to be almost wholly reflected. And we observe the opposite 
behavior for the left-handed helices. In both cases the z-components of the electric field 
vector in the reflected and transmitted waves turn to zero for / 2z nh<< −  and for / 2z nh>>  

/ 2z nh>>  (at long distance from the sample), while , , ( , , )x y x yE E x y z=  components of these 

waves practically do not change in the xy − plane. In Fig. 2 there are shown typical 

hodographs of the electric field vector (trajectory traced by the end of vector ( )zE  in xyz -

space) in light pulses reflected from (a, c and e) and transmitted through (b, d and f) the 
metamaterial for different values of 0M  in case of right-handed helices. Designations 

1/ 2
, , 0/x y x yE E I′ =  are used in Fig. 2. 

In case of the incidence of the linearly polarized pulse the peak intensities of the reflected 
and transmitted pulses are approximately the same (Figs. 2(a) and 2(b)). In case of the 
incidence of the RHCP light pulse ( 0 1M = ) onto a medium composed of right-handed 

helices (Figs. 2(c) and 2(d)), the peak value of the electric field strength in the transmitted 
pulse is order of magnitude smaller than that in case of the incidence of LHCP pulse (Figs. 
2(e) and 2(f)). In the latter case the transmitted radiation is almost circularly polarized (lef-
hand), and the elliptically polarized reflected pulse has complicated profile (Fig. 2(e)). 

In order to describe the evolution of polarization of long pulse we use an approach 
formulated in [8, 9]. Within this approach instead of continuous dependencies , ( )x yE z  we use 

a sequences of polarization ellipses determined by the values ,x yE  in points mz z=  , where the 

intensity I achieves local maxima. The ellipticity degree and the angle of orientation of the 
polarization ellipses in these points can be found using the following formulae: 

 
1/2 1/2 1/2

1

1

2 ( )[ ( ) ( )]
| ( ) | ,

( ) [ ( ) ( )] / 2
m m m

m
m m m

I z I z I z
M z

I z I z I z
+

+

+
=

+ +


  
 (6) 

 ( ) arctg[ ( ) / ( )],m x m y mz E z E zΨ = −    (7) 

Here mz  are the points of local minima of ( )I z , their numbering m is given in such a way 

that 1m m mz z z +≤ ≤ . The sign of ( )mM z  is determined by the handedness of rotation of the 

electric field vector. Defined above discrete dependencies ( )mM z  and ( )mzΨ   show the 

evolution of the polarization ellipse ellipticity degree and orientation angle along the pulse 
envelope. In the extreme case, when the monochromatic radiation propagates, the defined 
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above quantities coincide with the ellipticity degree and the angle of orientation of the 
polarization ellipse of monochromatic light. 

 

Fig. 2. Hodographs of the electric field vector in light pulses reflected from (a, c and e) and 
transmitted through (b, d, and f) the metamaterial, 1075=t fs, 8=n , 00 =M  (а, b), 10 =M  

(c, d), 10 −=M  (e, f). 

In case of incidence of linearly polarized pulse, the transmitted pulse has bell-like shape. 
If we increase the number n  of helix coils (Fig. 3), the intensity peak in the pulse shifts and 
the maximum intensity value becomes almost 30% less. If 2n =  the transmitted pulse is 
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elliptically polarized, and if 8n =  the transmitted pulse is almost LHCP (see the black and 
the blue curves in Fig. 3(a)). In latter case the z-dependence of the angle of orientation of the 
polarization ellipse (along the pulse envelope) becomes non-monotone (Fig. 3(b)). When the 
RHCP pulse falls onto a medium consisting of right-handed helices, the intensity of the 
transmitted radiation decreases exponentially with the increase of n, and its polarization 
becomes closer to LHCP (Fig. 3(c)). In addition, the monotone change of orientation angle 
along the pulse becomes steeper with the increase of n  (Fig. 3(d)). The π − jump of 
Ψ − dependence is due to the definition of this quantity (see Eq. (5)). In case of incidence of 
LHCP pulse, the peak intensity is the biggest and the ellipticity degree of the polarization 
ellipse is most close to the initial one in case of 2n =  (Fig. 3(e)). In this case the increase of 
the number of helical coils results in non-monotone character of the change of polarization 
ellipse orientation angle along the pulse (Fig. 3(f)). 

 

Fig. 3. The dependencies of the ellipticity degree M  (a, c, and e) and the angle of orientation 
of the polarization ellipse Ψ  (b, d and f) on the longitudinal coordinate z along the temporal 
envelope of a pulse traversed through the metamaterial consisting of right-handed helices. The 
dependencies are shown at time moment 1075=t fs (in a far-field region after the 
metamaterial) in case of the incidence of (a and b) – linearly polarized pulse; (c and d) – RHCP 
pulse; (e and f) – LHCP pulse. Black curves correspond to 2n = ; red curves: 4n = ; blue 
curves: 8n = . 

Our studies have shown that in case of incidence of long circularly polarized pulse on a 
border of the metamaterial, there can take place various modes of oscillation of electric and 
magnetic constituents of the energy of the electromagnetic field. Let us consider the RHCP 
pulse incidence on the metamaterial consisting of right-hand helices. In this case there are 
such time values pt  ( 1, 2,3,p =  ) separated with a period of 2π/ω, when the density of the 

electric field energy ( , , , ) ( ) / 8ew t x y z = ⋅ πD E  becomes concentrated (non-zero) only in the 

helices (Fig. 4(a)), while the density of the magnetic field energy ( , , , ) ( ) / 8hw t x y z = ⋅ πB H  

turns to zero within the whole metamaterial (both within and outside the helices). 
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Simultaneously ew  exponentially decays as the field propagates further in a bulk of a 

metamaterial (Figs. 4(a) and 4(b)). After half of the period passes, 0ew =  in a whole 

metamaterial, while the magnetic part of the energy is concentrated outside the helices 
between them (Fig. 4(b)), and also decays exponentially in the course of propagation into the 
metamaterial. 

 

Fig. 4. Spatial distributions of ),0,( zyxwe =  and ( , 0, )hw x y z=  in case of propagation of the 

long pulses at time values pt  (а), (c) and after half of the oscillation period, at /pt + π ω  (b), 

(d). RHCP incidence – (a) and (b); LHCP incidence – (c) and (d). The metamaterial consists of 
right-hand helices, 8n = . 

When the LHCP pulse falls on the metamaterial consisting of right-handed helices the 
character of the oscillations of the electric and magnetic field energy is essentially different 
from the described above for the RHCP pulse. The values of ew  and hw  are always non-zero 

in any point of the metamaterial, and after a half of the oscillation period both electric and 
magnetic field energies move from one end of the helix to another (Figs. 4(c) and 4(d)). 
Unlike in previous case the magnetic part of the energy now is concentrated in a space 
between the helices. 

If one decreases the duration of the incident pulse the abovementioned processes make the 
interpretation of hodographs of the electric field in transmitted and reflected pulses very 
complex and almost unsuccessful (Fig. 5). The discrete dependencies ( )mM z  and ( )mzΨ   

defined in (6), (7) also are changing irregularly with the quasi-period of oscillations 
comparable with the wavelength. The information about the polarization of the transmitted 
radiation can be accessed through the transmission coefficient 

2 2 1/2 2 2 1/ 2( ) (| | | | ) (| | | | )t t i i
x y x yT S S S S −ω = + ⋅ +  for the radiation at given frequency ω and the 

ellipticity degree of its polarization ellipse 2 2( ) ( ) (| | | | )t t t t t t
y x x y x yM i S S S S S S∗ ∗ω = − ⋅ + , which 

changes in a range from 1−  to 1 . Here , ( )i
x yS ω  and , ( )t

x yS ω  are the Fourier images of the 

temporal dependencies of Cartesian components of the electric field vector in transmitted and 
reflected pulses (the asterisk in the superscript stands for the complex conjugated quantity). 

Figure 6 shows the dependencies 0( / )T ω ω  and 0( / )M ω ω , where 15
0 1.16 10ω = ⋅ rad/s, 

in case of the incidence of RHCP (red curves) or LHCP (blue curves) pulse, when a 
metamaterial consists of right-handed helices with 8n =  (solid lines) or 4n =  (dashed lines). 
If the incident radiation is RHCP, then there is a relatively broad frequency range around 

0ω ≈ ω  where the intensity of the transmitted RHCP radiation is only a few percents of the 

intensity of the incident RHCP radiation (Fig. 6(a)) and 0( / ) 1M ω ω ≈ −  (Fig. 6(b)). With the 

increase of the number of coils in the helices this frequency range becomes broader. The 
LHCP radiation within this frequency range almost does not changes its polarization after 
propagation in a metamaterial. 
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Fig. 5. The hodographs of the electric field vectors in (a) reflected and (b) transmitted pulses at 
1075=t fs after the incidence of ultrashort ( 0 2w = λ ) linearly polarized pulse on the 

metamaterial; λ−= 120z . 

However, for higher frequencies it becomes linearly polarized and then with the further 
increase of the frequency the ellipticity degree of the polarization ellipse in spectrum domain 
non-monotonically decreases to 1−  (Fig. 6(b)). Slight and moderate variations of the 
following parameters: the dielectric permittivity of the helix material, the translation period of 
the unit cell of a metamaterial, pitch and diameter of a helix, lateral and axial diameters of the 
helix arms, do not change qualitatively the dependencies shown in Fig. 6, and only shift the 
central frequency of the “anomalous transmission” range and change the size of this range. 
For example, with the increase of ε  (when the other parameters are fixed) this range 
broadens and its center shifts to lower frequencies. 

 

Fig. 6. (a) The frequency spectrum of the transmission coefficient and (b) the frequency 
spectrum of the ellipticity degree of the polarization ellipse in case of the incidence of RHCP 
(red curves) or LHCP (blue curves) pulse, when a metamaterial consists of right-handed 

helices with 8n =  (solid lines) or 4=n  (dashed lines). 
15

0
1.16 10ω = ⋅ rad/s. 

4. Conclusion 

Using the FDTD method we have studied the influence of the parameters of polymeric 
metamaterial unit cell on the transmission and reflection of normally incident elliptically 
polarized light. In case of long incident pulses (with duration of about 20  oscillation periods 
or more) we analyzed hodographs of the electric field vectors in order to describe the 
temporal evolution of the transmitted and reflected light pulses. If the polarization of the 
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incident pulse is close to linear, then the intensities of the transmitted and reflected elliptically 
polarized pulses are approximately equal. In case of the incidence of the RHCP pulse onto a 
metamaterial consisting of right-handed helices, the peak intensity in the transmitted pulse is 
order of magnitude lower than in case of the incidence of the LHCP pulse. If the polarization 
of the incident radiation is close to left-hand circular polarization, than after propagation 
through the metamaterial the polarization of this pulse remains practically unchanged. At the 
same time, the reflected pulse which is elliptically polarized has rather complicated shape. 

It is shown that in case of incidence of long circularly polarized pulse on a border of the 
metamaterial, there can take place various modes of oscillation of electric and magnetic 
constituents of the energy of the electromagnetic field. In case of incidence of the RHCP 
pulse there are such time frames, when the density of the electric field energy has non-zero 
value only within the helices, while the density of the magnetic field energy turns to zero 
within whole metamaterial (both within and outside the helices). After half of the period 
passes, the density of the electric field energy turns to zero in whole metamaterial, while the 
magnetic part of the energy becomes concentrated outside the helices between the coils. In 
case of incidence of the LHCP radiation on the metamaterial consisting of right-handed 
helices the electric and magnetic parts of the energy are always non-zero in any point of the 
metamaterial, and after a half of the oscillation period both electric and magnetic field 
energies move from one end of the helix to another. 

If the incident ultrashort pulse is RHCP and the metamaterial contains of right-handed 
helices, then there is a reasonably broad frequency range, where the intensity of the 
transmitted radiation is only a few percent of that of the incident, and its polarization is close 
to LHCP. With the increase of the number of helix coils the size of this frequency range 
grows. If the LHCP radiation is incident on the metamaterial it practically does not changes 
its polarization in the course of propagation, however, at higher frequencies in spectrum 
domain its polarization becomes linear, and at even higher frequencies it becomes circular. 
Slight and moderate variations of the dielectric permittivity of the helix material, the 
translation period of the unit cell of a metamaterial, pitch and diameter of a helix, lateral and 
axial diameters of the helix arms, shift the central frequency of the “anomalous transmission” 
range and change the size of this range. However, they do not change qualitatively the overall 
character of light polarization evolution. 

5. Appendix 

In order to perform discrete representations of the spatial derivative operators of the Maxwell 
equations we used FDTD method, which implies that the Cartesian components of the 
strength of the electric and magnetic fields are calculated in the centers of the cells of the grid 
(Liu scheme [11]). Unlike in more widespread approach, when the Cartesian components of 
these vectors are calculated at different grids shifted one relatively to another, our approach is 
more prospective for its further implementation in nonlinear optics problems, for example, in 
propagation of the ultrashort laser pulse through the nonlinear metamaterial. Unlike in a linear 
problem, in this case the material equations do not split to independent equations for each 
Cartesian component of the field. Moreover, if the Cartesian components of vectors of the 
electric and magnetic fields are calculated not in the same point of the cell, then additional 
interpolation procedures are needed in order to resolve the material equations, which 
inevitably result in losses in precision and efficiency of the numerical scheme. As in scheme 
in [11] we used non-symmetric expressions for the spatial derivatives at unstaggered grid. It 
allows one to get rid of numerical oscillations due to odd–even decoupling [12], appearing 
when using symmetric (central) difference approximations in such grids. The increase of the 
order of the approximation allow us to overcome typical disadvantages of second-order 
approximation schemes, such as large numerical dispersion and scheme anisotropy on the 
unstaggered grid. 

#220521 - $15.00 USD Received 6 Aug 2014; revised 4 Sep 2014; accepted 5 Sep 2014; published 12 Sep 2014
(C) 2014 OSA 1 October 2014 | Vol. 4,  No. 10 | DOI:10.1364/OME.4.002090 | OPTICAL MATERIALS EXPRESS  2098



Let us consider homogeneous Cartesian grid and a template consisting of 1r l+ +  points 
on it ( l r≥ ). In order to calculate the spatial derivatives Hα  we used upwind-biased 

differencing operator [11]: 

 
,

( 1/2) ( 1/ 2)
,μ , , ,μ ,( , , , ( 1 / 2) ) (1/ ) .

r

m m m m
m l

H x y z t H a H
β μβ ν ρ ρβ

σ+ σ+
β α α ν ρ α + δ ν+ δ + δ

=−

∇ μΔ νΔ ρΔ σ + Δ = ∇ = Δβ  (8) 

Here α and β take values , ,x y z . Indices μ , ν , ρ  and σ  determine the number of the 

calculation cell in xyzt − space, Δβ  is a step at β − axis, tΔ  is a step at time axis. In order to 

calculate spatial derivatives Eα  we used downwind-biased differencing [11]: 

 
μ

( ) ( )
,μ , , ,μ , ,(μ , , , ) (1/ ) .

l

m m m m
m r

E x y z t E a Eσ
β νβ ρβ

σ
β α β α ν ρ − α + δ ν+ δ ρ+ δ

=−

Δ Δ νΔ ρΔ σΔ = Δ = − Δβ   (9) 

Here coefficients ma  in (8) and (9) correspondingly must satisfy the following systems of 

equations: 0
r

m
m l

a
=−

= , 1
r

m
m l

ma
=−

= , …, 0
r

n
m

m l

m a
=−

= , where 2,3, ,n r l= + . For the 

scheme with third-order approximation on the spatial coordinates we will obtain the following 
difference analogues of the Maxwell Eqs. (1), (2): 

 

( 1/ 2) ( 1/2) ( ) ( ) ( ) ( )
,μ , , ,μ , , 2 ,μ , , 2 1 ,μ , , 1 0 ,μ , , 1 ,μ , , 1

( ) ( ) ( ) ( )
2 ,μ , 2, 1 ,μ , 1, 0 ,μ , , 1 ,μ , 1, ,

x x y y y y

z z z y

H H a E a E a E a E

c t z

a E a E a E a E

y

σ+ σ− σ σ σ σ
ν ρ ν ρ − ν ρ+ − ν ρ+ ν ρ ν ρ−

σ σ σ σ
− ν+ ρ − ν+ ρ ν ρ ν− ρ

− + + +
= − +

Δ Δ
+ + +

+
Δ

 (10) 

 

( 1/ 2) ( 1/2) ( ) ( ) ( ) ( )
,μ , , ,μ , , 2 ,μ 2, , 1 ,μ 1, , 0 ,μ , , 1 ,μ 1, ,

( ) ( ) ( ) ( )
2 ,μ , , 2 1 ,μ , , 1 0 ,μ , , 1 ,μ , , 1 ,

y y z z z z

x x x x

H H a E a E a E a E

c t x

a E a E a E a E

z

σ+ σ− σ σ σ σ
ν ρ ν ρ − + ν ρ − + ν ρ ν ρ − ν ρ

σ σ σ σ
− ν ρ+ − ν ρ+ ν ρ ν ρ−

− + + +
= − +

Δ Δ
+ + +

+
Δ

 (11) 

 

( 1/2) ( 1/ 2) ( ) ( ) ( ) ( )
,μ , , ,μ , , 2 ,μ , 2, 1 ,μ , 1, 0 ,μ , , 1 ,μ , 1,

( ) ( ) ( ) ( )
2 ,μ 2, , 1 ,μ 1, , 0 ,μ , , 1 ,μ 1, , ,

z z x x x x

y y y y

H H a E a E a E a E

c t y

a E a E a E a E

x
ν ν ν

σ+ σ− σ σ σ σ
ν ρ ν ρ − ν+ ρ − ν+ ρ ν ρ ν− ρ

σ σ σ σ
− + ρ − + ρ ν ρ − ρ

− + + +
= − +

Δ Δ
+ + +

+
Δ

 (12) 

 

( 1) ( ) ( 1/ 2) ( 1/2) ( 1/ 2) ( 1/ 2)
,μ , , ,μ , , 2 ,μ , 2, 1 ,μ , 1, 0 ,μ , , 1 ,μ , 1,

( 1/ 2) ( 1/ 2) ( 1/ 2) ( 1/ 2)
2 ,μ , , 2 1 ,μ , , 1 0 ,μ , , 1 ,μ , , 1 ,

x x z z z z

y y y y

D D a H a Hz a H a H

c t y

a H a H a H a H

z

σ+ σ σ+ σ+ σ+ σ+
ν ρ ν ρ − ν− ρ − ν− ρ ν ρ ν+ ρ

σ+ σ+ σ+ σ+
− ν ρ− − ν ρ− ν ρ ν ρ+

− + + +
= −

Δ Δ
+ + +

−
Δ

 (13) 

 

( 1) ( ) ( 1/ 2) ( 1/ 2) ( 1/2) ( 1/2)
,μ , , ,μ , , 2 ,μ , , 2 1 ,μ , , 1 0 ,μ , , 1 ,μ , , 1

( 1/ 2) ( 1/ 2) ( 1/ 2) ( 1/ 2)
2 ,μ 2, , 1 ,μ 1, , 0 ,μ , , 1 ,μ 1, , ,

y y x x x x

z z z z

D D a H a Hz a H a H

c t z

a H a H a H a H

x

σ+ σ σ+ σ+ σ+ σ+
ν ρ ν ρ − ν ρ− − ν ρ− ν ρ ν ρ+

σ+ σ+ σ+ σ+
− − ν ρ − − ν ρ ν ρ + ν ρ

− + + +
= −

Δ Δ
+ + +

−
Δ

 (14) 
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( 1) ( ) ( 1/2) ( 1/2) ( 1/2) ( 1/2)
,,μ , , ,,μ , , 2 ,μ 2, , 1 ,μ 1, , 0 ,,μ , , 1 ,μ 1, ,

( 1/ 2) ( 1/ 2) ( 1/ 2) ( 1/2)
2 ,μ , 2, 1 ,μ , 1, 0 ,,μ , , 1 ,μ , 1, ,

z z y y y y

x x x x

D D a H a H a H a H

c t x

a H a H a H a H

y

σ+ σ σ+ σ+ σ+ σ+
ν ρ ν ρ − − ν ρ − − ν ρ ν ρ + ν ρ

σ+ σ+ σ+ σ+
− ν− ρ − ν− ρ ν ρ ν+ ρ

− + + +
= −

Δ Δ
+ + +

−
Δ

 (15) 

In (3а) ‒ (8а): 2 1/ 6a− = , 1 1a− = − , 0 1 / 2a = , 1 1 / 3a = . For the time derivatives we used 

symmetric (central) approximation. 
In order to analyze the errors connected with the numerical dispersion, numerical 

dissipation and anisotropy of the used difference scheme, let us consider the solution of 
Maxwell equations on a grid as a plane monochromatic wave: 

 (0)
, , , ,( , , , ) exp[ ( )],x y z x y z x y zE x y z t E i k x k y k z tμΔ νΔ ρΔ σΔ = μΔ + νΔ + ρΔ − ωσΔ  (16) 

 (0)
, , , ,( , , , ) exp[ ( )].x y z x y z x y zH x y z t H i k x k y k z tσ σμΔ νΔ ρΔ Δ = μΔ + νΔ + ρΔ − ω Δ  (17) 

Here ω  is a frequency, , ,x y zk  are the Cartesian components of the wave vector k . 

Substituting (16), (17) in (10) ‒ (15), we obtain a system of six linear equations: 

 

(0)

(0)

(0)

(0)

(0)

(0)

0 0 0 0

0 0 0 0

0 0 0 0
,

0 0 0 0

0 0 0 0

0 0 0 0

z y x

z x y

y x z

z y x

z x y

y x z

R Q Q E
R Q Q E

R Q Q E
G G R H

G G R H
G G R H

−     
     −     
     −

⋅ =     −     
     −
         −     

 (18) 

where 
exp( ) exp( ) [exp( 2 ) 6exp( ) 3 2exp( )] / (6 )Q ik ik ik ik ikβ β β β β β β= − β ∇ β = − Δβ − − Δβ + + Δβ Δβ , 

exp( ) exp( ) [exp(2 ) 6exp( ) 3 2exp( )] / (6 )G ik ik ik ik ik
β β β β β β β= − β Δ β = − Δβ − Δβ + + − Δβ Δβ , and 

1 exp( ) exp( ) (2 / )sin( / 2)tR c i t i t i c t t−= − ω ∇ ω = Δ ωΔ  is symmetric (central) differentiation 

operator. We can find the dispersion relation considering the condition of existence of 
solution of system (18) (the equality of determinant of the matrix coefficient in (18) before 

(0)
, ,x y zE  and (0)

, ,x y zH  to zero): 

 2 2sin ( / 2) / ( / 2) ( , ) ( , ) ( , ).x y zt c t F k x F k y F k zωΔ Δ = Δ + Δ + Δ  (19) 

Here, in (12а) 

 2( , ) [25 2cos(3 ) 18cos( ) 9cos(2 )] / [18( ) ].F k k k kβ β β βΔβ = + Δβ − Δβ − Δβ Δβ  (20) 

Decomposing (19) as a series we obtain the dispersion relation connecting ω  and k : 

 
2 4 6 4 6 4 6 2

2 4 4 4                                     

[1 ( ) / 24 ( ) / 30

( )].

x y zck ck t x k y k z k k

o t x y z

ω = + Δ − Δ + Δ + Δ

+ Δ + Δ + Δ + Δ
 (21) 

From (19) ‒ (21) it follows, that the numerical scheme we use does not possess numerical 
dissipation ( ω  is a real function of k ). The second and the third terms in the right part of 
(21) arise due to the time and space derivatives approximation errors in (1), (2). Their 
presence leads to the effect of grid dispersion (the dependence of the phase velocity of the 
monochromatic plane-wave component of the field in the Fourier space (16), (17) on the 
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frequency of this component). Let us especially remark that the third term in right part of (21) 
not only on the modulus, but also on the direction of the wave-vector, which leads to the 
anisotropy of a grid. Different signs before the second and the third terms indicate that the 
errors arising due to the approximation of time and spatial derivatives partially compensate 
one another. 

Let us analyze the stability of our numerical scheme using Von Neumann approach [13]. 
Let us represent (10) ‒ (15) as 

 

( )
1 2 3 4 5 , , , , , ,

( )
6 7 8 4 9 , , ,

( )
10 11 12 5 9 , , ,

( 1/ 2)
13 14 , , ,

( 1/2)
13 15 , , ,

( 1/ 2)
14 15 , , ,

0

0

0

0 1 0 0

0 0 1 0

0 0 0 1

n
x x
n

y
n

z
n

x
n

y
n

z

E E

E

E

H

H

H

μ ν ρ μ ν ρ

μ ν ρ

μ ν ρ

μ ν ρ

μ ν ρ

μ ν ρ

θ θ θ θ θ
θ θ θ θ θ
θ θ θ θ θ

θ θ
θ θ
θ θ

−

−

−

  
  −   
  − −
 ⋅ = 
  
  −      − −   

( 1)

( 1)
, , ,

( 1)
, , ,
( 1/ 2)
, , ,

( 1/ 2)
, , ,

( 1/ 2)
, , ,

.

n

n
y
n

z
n

x
n

y
n

z

E

E

H

H

H

μ ν ρ

μ ν ρ

μ ν ρ

μ ν ρ

μ ν ρ

+

+

+

+

+

+

 
 
 
 
 
 
 
 
 
 

 (22) 

In (22) the 15 independent elements of matrix T̂  describing the transfer to the next step are 
given as follows: 2 2

1 1 ( / )( )y y z zс t G Q G Qθ = + Δ ε + , 2 2
2 ( / ) y xс t G Qθ = − Δ ε , 

2 2
3 ( / ) z xс t G Qθ = − Δ ε , 4 ( / ) zс t Gθ = − Δ ε , 5 ( / ) yс t Gθ = Δ ε , 2 2

6 ( / ) x yс t G Qθ = − Δ ε , 
2 2

7 1 ( / )( )x x z zс t G Q G Qθ = + Δ ε + , 2 2
8 ( / ) z yс t G Qθ = − Δ ε , 9 ( / ) xс t Gθ = − Δ ε , 

2 2
10 ( / ) x zс t G Qθ = − Δ ε , 2 2

11 ( / ) y zс t G Qθ = − Δ ε , 2 2
12 1 ( / )( )x x y yс t G Q G Qθ = + Δ ε + , 

13 zс tQθ = Δ , 14 yс tQθ = − Δ , 15 xс tQθ = Δ . 

The necessary condition of the scheme stability is the existence of roots Λ  of the 
following characteristic polynomial: 

 ( )22 2 2 2( 1) {( / )[ ] 2} 1 0,x x y y z zc t G Q G Q G QΛ − Λ − Λ Δ ε + + + + =  (23) 

which follows from the condition ˆ ˆdet( ) 0T I− Λ =  inside a circle of unit radius on a complex 

plane ( Î  is a unit matrix). Using the explicit view of the difference operators βΔ  and β∇  

(back and forward differentiating) we obtain the condition of the scheme stability as a 
following: 

 2 2( / )[ ( , ) ( , ) ( , )] 4.x y zc t F k x F k y F k zΔ ε Δ + Δ + Δ ≤  (24) 

The last inequality must be satisfied for any value of the wave vector. Since 
max{(25 2cos3 18cos 9cos 2 ) /18} 9 / 4x x x+ − − = , when we can finally find from (24) the 

condition on the maximum value of the time step, such, that the numerical scheme remains 
stable: 1/ 2 2 2 2 1/ 2(4 / 3 ) / [( ) ( ) ( ) ]t c x y z− − −Δ ≤ ε Δ + Δ + Δ . 
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